metal nanoparticles for advanced materials: from theory to...

61
Metal nanoparticles for  advanced materials: From theory to practice 01-03 October 2012, Heraklion, Crete, Greece                     

Upload: others

Post on 30-May-2020

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for

 advanced materials: 

From theory to practice

01­03 October 2012, Heraklion, Crete, Greece

                     

Page 2: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Metal nanoparticles for advanced materials: 

From theory to practice

01­03 October 2012, 

Heraklion, Crete Greece

Aims and scopeMetal nanoparticles are studied extensively in both experimental and theoretical materials science. Inclusion of nanoparticles in a material allows for tailoring its mechanical,   optical   and   chemical   properties.   Such   advanced   nanocomposite materials are used today for catalysis, sensing, biolabeling, plasmonics, photonics, smart coatings and superhard coatings.

This meeting will focus on state­of­the­art experimental and theoretical studies of nanoparticles and advanced materials containing nanoparticles.

01-03 October 2012, Heraklion, Crete, Greece 1

Page 3: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Organizers:

Ioannis Remediakis [email protected]

Carla Bittencourt [email protected]

Aristea Maniadaki [email protected]

 Invited speakers:

Spiros H. Anastasiadis  F  ORTH    and University of Crete

Alexandra Carvalh   o   University of Aveiro, Portugal

Mustafa Culha Yeditepe University, Turkey

Frank Dillon Oxford University, UK

Ben Hourahine University of Strathclyde, UK

Nuria Lopez Institut Catala d'Investigacio Quimica (ICIQ), Spain

Marta D. Rossell Center for Electron Microscopy, EMPA Dubendorf, Switzerland

Paul Ziemann Institute of Solid State Physics, Ulm University, Germany

 

 

01-03 October 2012, Heraklion, Crete, Greece 2

Page 4: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

01-03 October 2012, Heraklion, Crete, Greece 3

Page 5: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Monday, 01/10/2012

09:30 Registration 11:30 Ioannis Remediakis

Department of Materials Science and Technology, University of CreteWelcome

Session I: Microscopy of nanoparticles Chair: P.Ziemann

11:50 Three-dimensional characterization of nanoparticles by electron tomography M.D. Rossell1, R. Erni1 , S. Van Aert 2, G. Van Tendeloo 2, K.J. Batenburg 3

1Electron Microscopy Center, EMPA, Swiss Federal Laboratories for Materials Science & Technology, Dübendorf, Switzerland 2Electron Microscopy for Materials Research, EMAT, University of Antwerp, Antwerp, Belgium 3IBBT-Vision Lab, University of Antwerp, Wilrijk, Belgium

12:20 Nanoparticles studied by X-ray microscopy with high spatial and spectral resolutionP. Guttmann, K. Henzler, S. Werner, S. Rehbein, G. SchneiderHelmholtz-Zentrum Berlin für Materialen und Energie GmbH, Institute for Soft Matter and Functional Materials, Berlin, Germany

12:40 Samarium-CNT interaction: HEXPS and HTEMA. A. El Mel1, P. De Marco1, R. Snyders1, C. Bittencourt1, J. Ghijsen2, S. Thiess3, W. Drube3, X. Ke4, G. Van Tendeloo4

1 ChiPS – University of Mons – Belgium 2 LISE - University of Namur – Belgium 3 Deutschen Elektronen Synchrotron DESY, D-22603 Hamburg, Germany 4 EMAT –University of Antwerp – Belgium

13:00Lunch and discussion

Session II: Nanoparticles for catalysis Chair: M.Culha

14:30 Synthesis of Nanocatalysts within pH-responsive Polymeric NanostructuresS. H. Anastasiadis1,2, M. Kaliva,1,3 K. Chistodoulakis,1,3 M.A. Frysali,1,2 L. Papoutsakis1 and M. Vamvakaki1,3 1 Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece 2 Department of Chemistry, University of Crete, Heraklion Crete, Greece 3 Department of Materials Science & Technology, University of Crete,Heraklion Crete, Greece

15:00 Gold nanostructures: challenges and opportunities of wet synthesisN. Lopez, G. Novell-Leruth, Institute of Chemical Research of Catalonia, ICIQ, Tarragona, Spain

15:30 Hydrodechlorination of trichloroethylene over Pd-based nanostructuresK. Honkala, J. AndersinDepartment of Chemistry, Nanoscience Center, University of Jyväskylä, Finland

15:50Coffee around posters

16:30 Customised transition metal oxide nanoparticles for the controlled production of carbon nanostructuresF. Dillon, K. Mandel, A. Ajayan, A. Koos and N. GrobertDepartment of Materials, Parks Road, University of Oxford, Oxford,UK

01-03 October 2012, Heraklion, Crete, Greece 4

Page 6: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

17:00 Catalysis of novel organic transformations by supported gold nanoparticlesManolis Stratakis Department of Chemistry, University of Crete, Greece

17:20 - 18:00 Poster Session

Tuesday, 02/10/2012

Session III: Nanoparticles in applied science Chair: K. Honkala

9:30 Structural Phase Transitions in FePt Nanoparticles: Chemical & Magnetic ConsequencesL. Han, U. Wiedwald, and P. ZiemannInstitute of Solid State Physics, Ulm University, FRG

10:00 Enhanced performance in organic photovoltaic cells using surfactant free gold nanoparticles as additivesE. Stratakis 1 , G. D. Spyropoulos1 and E. Kymakis2

1 Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece and Dept. of Materials Science and Technology, University of Crete, Heraklion, Greece.2 Center of Materials Technology and Photonics & Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, Heraklion, Greece

10:20 Current Analytical Strategies for Detecting Trace Amounts of Nanoparticles in the EnvironmentS.A. Pergantis, E.A. KapelliosEnvironmental Chemical Processes Laboratory, Department of Chemistry, University of Crete

10:40Coffee around posters

11:20 Dopant segregation in silicon nanoparticlesAlexandra Carvalho1, Mark J. Rayson 2, Sven Öberg 2, Patrick R. Briddon 3

1 Department of Physics, I3N, University of Aveiro, Aveiro, Portugal 2 Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden 3 School of Electrical, Electronic and Computer Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom

11:50 Diamond nanoparticles in amorphous matricesGeorge KopidakisDepartment of Materials Science and Technology, University of Crete

12:10 Discussion

13:00Lunch

Session IV: Nanoparticle spectroscopy Chair: K. Velonia

14:30 Biomacromolecule Mediated Ag@Au Core-Shell Nanoparticles and their Performance as SERS LabelsMustafa Çulha, Burak Çağlayan, Ali Yasin Sonay and Mehmet KahramanYeditepe University, Turkey

01-03 October 2012, Heraklion, Crete, Greece 5

Page 7: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

15:00 Control of optical resonances and the near field around metallic nanoparticlesB. Hourahine, F. PapoffDepartment of Physics, SUPA, University of Strathclyde, UK

15:30Coffee around posters

16:00 Multi-scale modelling of hybrid molecule/metal nanostructuresK. Jhonston2, T. Rissanou1, V. Harmandaris1,2

1 Department of Applied Mathematics, University of Crete 2 Max Planck Institute for Polymer Research, Mainz, Germany

16:20 Spectroscopic signature of gold nanoparticles: a multi-scale simulationGeorgios Barmparis, George Kopidakis and Ioannis RemediakisDepartment of Materials Science and Technology, University of Crete

16:40Discussion

20:30Dinner

Wednesday, 03/10/2012

9:30Open discussion

10:30Posters

11:30Closing remarks

01-03 October 2012, Heraklion, Crete, Greece 6

Page 8: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

01-03 October 2012, Heraklion, Crete, Greece 7

Page 9: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Three­dimensional characterization of nanoparticles by electron tomography 

M.D. Rossell*, R. Erni Electron Microscopy Center, EMPA, Swiss Federal Laboratories for Materials 

Science & Technology, Dübendorf, Switzerland 

S. Van Aert, G. Van Tendeloo Electron Microscopy for Materials Research, EMAT, University of Antwerp, 

Antwerp, Belgium 

K.J. Batenburg IBBT­Vision Lab, University of Antwerp, Wilrijk, Belgium 

Electron   tomography   has   emerged   as   a   powerful   technique   to   address   fundamental questions in materials science. At present, the spatial resolution of conventional electron tomography reaches 1 nm3 and a large number of images (<100) are required to compute̴  accurate reconstructions. As an example, the detailed structure of LiFePO4 nanoparticles will be shown [1]. Recently, we have demonstrated a comprehensive approach for 3D atomic imaging. The approach   utilizes   a   combination   of   high­resolution   scanning   transmission   electron microscopy,   atom   counting   using   a   thorough   model­based   statistical   analysis   and   3D reconstruction by applying discrete tomography from only two projected images. This is demonstrated   using   nanosized   Ag   clusters   embedded   in   an   Al   matrix   [2].   This   new technique   reveals   great   potential   for   various   applications   regarding   the   atomic characterization of all kinds of complex nanometre­scale structured materials, particularly nanoparticles and nanocavities. 

Figure 1: Computed 3D reconstruction of an Ag nanocluster viewed along

 three different directions. 

References [1] D. Carriazo, M.D. Rossell, G. Zeng, I. Bileka, R. Erni & M. Niederberger, Small 8, 2231 (2012). [2] S. Van Aert, K.J. Batenburg, M.D. Rossell, R. Erni & G. Van Tendeloo, Nature 470, 374 (2011). [email protected]

01-03 October 2012, Heraklion, Crete, Greece 8

Page 10: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 9

Page 11: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Nanoparticles studied by X­ray microscopy with high spatial and spectral resolution

P. Guttmann*, K. Henzler, S. Werner, S. Rehbein, G. SchneiderHelmholtz­Zentrum Berlin für Materialen und Energie GmbH, Institute for Soft Matter and Functional  

Materials, Albert­Einstein­Str. 15, 12489 Berlin, Germany

The full­field transmission X­ray microscope (TXM) operating at the undulator beamline U41­SGM   at   the   electron   storage   ring   BESSY   II   of   Helmholtz­Zentrum   Berlin   (HZB) combines high spectral and spatial resolution [1]. The spectral resolution E/∆E is as high as 104 and the spatial resolution in 2D can reach up to 11 nm (half­pitch) [2]. Investigation of nanoparticles in the volume of e.g. cells can be done with a 3D resolution of 36 nm (half­pitch) [3]. As the field of view is in the range of 15­20 µm one image stack already visualize a large number of nanoparticles and contains therefore statistical information. We present examples of near edge X­ray absorption spectroscopy (NEXAFS) studies of different nanoparticles   like   TiO2  and   Fe   performed   with   the  HZB   TXM.  Nanoscale   tomography studies of nanoparticles in cells and their behavior as well as interactions with cells will be shown. This paves the way for a better understanding of the toxicologic effect of these nanoparticles   on   cells   and   can  be   helpful   for   the  development   of   drugs  delivered   by nanoparticles into cells.

References

[1] Guttmann P et al., Nature Photonics 6 (2012), 25­29 [2] Rehbein S et al., Optics Express 20 (2012), 5830­5839[3] Schneider G et al., Nature Methods 7 (2010), 985­987

* peter.guttmann@helmholtz­berlin.de

01-03 October 2012, Heraklion, Crete, Greece 10

Page 12: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 11

Page 13: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Samarium­CNT interaction: HEXPS and HTEM

A. A. El Mel, P. De Marco, R. Snyders and C. BittencourtChiPS – University of Mons – Belgium

J. GhijsenLISE ­ University of Namur ­ Belgium

S. Thiess, W. DrubeDeutschen Elektronen Synchrotron DESY, D­22603 Hamburg, Germany

X. Ke, G. Van TendelooEMAT –University of Antwerp – Belgium 

Reports have demonstrated that the metal­ CNT interaction is one of the key issues allowing the fabrication of highly efficient CNT­based devices. The choice of metal is established according to the application aimed for. In particular, lanthanides exhibit a wide variety of physical properties that can   be   tuned   by   inducing   small   changes   in   their   electronic   structure.   Among   the   studied lanthanides,   Sm   is   of   particular   interest   owing   to   its   potential   application   in   photonics,   in microelectronic industry and in catalysis. From a fundamental point of view, the interest arises in the two different isoenergetic states that may coexist: due to the gain in cohesive energy, Sm, which has a divalent 4f6(sd)2 configuration in the free atomic, hybridizes into a trivalent 4f5(sd)3 state in the bulk metal. However, the less coordinated Sm atoms at the surface – their cohesive energy is  smaller   ­   are   divalent.   Previous   studies   of   Samarium   overlayers   on   various   substrates   have concluded that Sm may be divalent, trivalent, or homogeneously mixed valent in interfaces. The nature of  the mixed valence,  i.e.,   if  it   is  heterogeneous (different valence at  different sites) or homogeneous   (non­integer   valence   at   a   given   site),   may   be   determined   by   analysing   the photoelectron peak generated by the photoelectrons emitted from atoms at the surface. 

Here,   pristine   CNT   and   oxygen   functionalized   with   different   amount   of   Sm,   were   studied. Transmission electron microscopy showed the formation of Sm nanoparticles at the CNT surface (fig.1). The Sm­CNT interaction was investigated by photoelectron spectroscopy performed at the X­ray wiggler beamline BW2 of DORIS III (DESY, Hamburg) using a photon energy of 3.5 keV. It is  demonstrated   the  charge   transfer   from Sm atoms   to   the   first   layers  of  MWCNTs.  This   charge transfer induces a rigid band shift of all electronic states and an increase in the asymmetry of the C1s peak, i.e., in the metallic character of the CNT. The presence of the oxygen at the interface hampers the charge transfer. The Sm atoms are in the trivalent state. The effect of the evaporation of gold on the Sm/CNTs will be discussed based on the observation of the reduction of the C 1s intrinsic asymmetry.  

Figure 1: High­resolution TEM micrograph of pristine MWCNT decorated with Sm nanoparticles. The nominal evaporated amount of Sm was 5 Å.

01-03 October 2012, Heraklion, Crete, Greece 12

Page 14: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 13

Page 15: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Synthesis of Nanocatalysts within pH­responsive Polymeric Nanostructures

S. H. Anastasiadis1,2,* M. Kaliva,1,3 K. Chistodoulakis,1,3 M.A. Frysali,1,2, L. Papoutsakis1 and M. Vambakaki1,3  

1 Institute of Electronic Structure and Laser, Foundation for Research and Technology­Hellas, P.O. Box  1527, 711 10 Heraklion Crete, Greece

2 Department of Chemistry, University of Crete, 710 03 Heraklion Crete, Greece3 Department of Materials Science & Technology, University of Crete, 710 03 Heraklion Crete, Greece

Electrostatically   and   sterically   stabilized   polymer   microgel   particles   have   been   synthesized containing   either   amino   (poly(2­(diethylamino)ethyl   methacrylate),   PDEA)   or   carboxylic   acid (poly(acrylic   acid),   PAA;   poly(methacrylic   acid),   PMAA)   functional   groups.   The   pH­responsive PDEA, PAA and PMAA particles are used as nanoreactors for the synthesis of a large variety of metal nanoparticulate catalysts due to their functional amine and carboxylic acid groups; Pt, Pd, Ru and Ni nanoparticles have been synthesized [1,2]. Between the two polyacid systems, the more polar PAA microgels were designed as the nanocatalyst carrier system in aqueous reaction media while the less polar PMAA particles were prepared as the metal nanoparticle template for use in catalytic  reactions that take place in organic solvents.  The sterically and electrostatically stabilized microgel particles possess surface functional groups that can potentially interact with the microchannel walls of microfluidic catalytic reactors. Acknowledgements:  Part of this research was sponsored by the European Union (POLYCAT; grant agreement CP­IP 246095­2).

Figure 1: Schematic representation of the nanoparticle synthesis within a microgel

References

[1] D. Palioura, S. P. Armes, S. H. Anastasiadis and M. Vamvakaki, Langmuir 23, 5761­5768 (2007)

[2] E. Pavlopoulou, G. Portale, K. E. Christodoulakis, M. Vamvakaki, W. Bras and S. H. Anastasiadis, Macromolecules 43, 9828­9836 (2010).

* [email protected]

01-03 October 2012, Heraklion, Crete, Greece 14

Metal precursor

incorporation

Reduction

Page 16: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 15

Page 17: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Gold nanostructures: challenges and opportunities of wet synthesis

N. Lopez*, G. Novell­LeruthInstitute of Chemical Research of Catalonia, ICIQ, Avgda. Països Catalans, 16, 43007 

Tarragona, Spain 

Gold nanoparticles can be synthetized with a myriad structures ranging from octahedral objects to nanorods. By means of Density Functional Theory we have analyzed the role of the different steps in the synthesis and the synergetic effects of different ingredients in the wet synthesis.

Figure 1: Gold nanostructure representing a rod.

References

[1] G. Novell­Leruth, N. Lopez in preparation

* [email protected]

01-03 October 2012, Heraklion, Crete, Greece 16

Page 18: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 17

Page 19: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Hydrodechlorination of trichloroethylene over Pd­based nanostructures 

K. Honkala∗ J. Andersin Department of Chemistry, Nanoscience Center, P.O.Box 35 

40014 University of Jyväskylä, Finland 

Understanding the catalytic conversion of organic molecules is pivotal for accessing the overall picture of numerous industrially and environmentally important reactions. If one can selectively make or break a chosen bond,  it  will   increase gains of  wanted product molecules and reduce unwanted, often harmful, side products or waste. Density functional theory calculations are nowadays routinely employed to calculate adsorption and activation energies  over   catalytic  materials.   In   this  presentation  I  will  discuss  our   recent  density functional theory studies on the conversion of simple hydrocarbons over transition metal surfaces and nanostructures. In  particular,   I  will   focus  on   the  hydrodechlorination  of   trichloroethene  over  Pd­based materials.   Experimentally,   Pd   covered   Au   nanoparticles   have   been   found   to   be   more efficient in converting trichloroethene to ethane than pure Pd. The precise structure of these nanoparticles is not known. We performed density functional theory calculations [1] to   explore   possible   structures.   Our   results   show   that   trichloroethene   adsorption   is endothermic over Au, almost thermoneutral on PdAu alloy, and exothermic on Pd overlayer structures on Au [2]. The variation of adsorption energy can be tentatively assigned to be due to the ligand and coordination effects. Our results show that in all cases C­Cl bond breakings take place more readily than C­H bond formations, and that TCE dechlorinates fully producing ­CCH precursors for the hydrogenations. The reaction pathway through radical­like   species   provides   a   possible   explanation   to   the   experimental   product distributions that show a nominal amount of lesser chlorinated species in the presence of excess hydrogen [3]. 

Figure 1: The calculated hydrodechlorination pathway for trichloroethylene over Pd. 

References [1] J.Enkovaara et al. J. Phys.: Condens. Matter 22 253202 (2010). [2] J. Andersin and K. Honkala PCCP 13 1386 (2011). [3] J. Andersin. P. Parkkinen and K. Honkala J. Catal.290 118 (2012). 

_____________________________________

[email protected]

01-03 October 2012, Heraklion, Crete, Greece 18

Page 20: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 19

Page 21: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Customised transition metal oxide nanoparticles for the controlled production of carbon nanostructures

Frank Dillon, Karl Mandel, Anakha Ajayan, Antal Koos, Nicole Grobert

Department of Materials, Parks Road, University of Oxford, Oxford, OX1 3PH [email protected]

Nanoparticles play an extremely important role in the growth of carbon nanotubes. The diameter,   chirality   and   structure   of   the   nanotubes   are   thought   to   be   dictated   by   the nanoparticle when the tubes are formed via chemical vapour deposition (CVD) techniques. This   work   describes   the   wet   chemical   synthesis   of   monodisperse   transition   metal nanoparticles of controlled size and the growth of carbon nanotubes from these particles using a CVD reactor. Monodisperse   magnetite   (Fe3O4)  1,   cobaltous   oxide   (CoO)  1  and   amorphous   nickel phosphide (NiP) 2 nanoparticles were synthesised using a fast (up to 50 times quicker than previously reported) and facile one­pot, one­step reaction. The Fe3O4 nanoparticles had a constant size between 5 to 7 nm independent of the reagents used. Size controlled cube shaped CoO particles in the range of 10–20 nm were formed and it was possible to create voids   in   these   particles   in   a   controlled   way.   The   NiP  nanoparticles   were   amorphous, contained ~ 30 at% P and their size was controlled between 7–21 nm. Carbon nanotubes were grown on these catalyst particles and their structures were compared. Structures of  the nanotubes differed between straight, bamboo­like or partly coiled depending on the nanoparticle system used, suggesting the possibility of selection of these structures.

TEM images of magnetite, cobalt­oxide and nickel­phosphide (from left to right).

1. K. Mandel, F. Dillon, A. A. Koos, Z. Aslam,   F. Cullen, A. Crossley, H. Bishop, N. Grobert. RSC Adv. 2, 3748­3752 (2012).

2. K. Mandel, F. Dillon, A. A. Koos, Z. Aslam, K. Jurkschat, F. Cullen, A. Crossley, H. Bishop, K. Moh, C. Cavelius, E. Arzt, N. Grobert. Chem. Commun. 47, 4108–4110 (2011). 

01-03 October 2012, Heraklion, Crete, Greece 20

Page 22: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 21

Page 23: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Catalysis of novel organic transformations by supported gold nanoparticles 

Manolis Stratakis Department of Chemistry, University of Crete, 71003 Iraklion, Greece 

Apart   from   being   superb   catalysts   in   aerobic   oxidative   processes,1  supported   gold nanoparticles (Au NPs) have recently found to exhibit novel and unprecedented catalytic properties   to   a   variety   of   other   organic   transformations.2  We   will   present   the   recent achievements in catalysis by gold nanoparticles supported on TiO2 from our research group in epoxide,3 alkyne,4 silane,5 and borohydride activation. 

Figure 1: Recent examples of organic transformations catalyzed by Au/TiO2 from our group. 

References [1] Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Chem. Rev. 2012, 112, 2467. [2] Stratakis, M.; Garcia, H. Chem. Rev. 2012, 112, 4469. [3] Raptis, C.; Garcia, H.; Stratakis, M. Angew. Chem., Int. Ed. 2009, 48, 3133. [4] a) Efe, C.; Lykakis, I. N.; Stratakis, M. Chem. Commun. 2011, 47, 803. b) Gryparis, C.; Efe, C.; Raptis, C.; Lykakis, I. N.; Stratakis, M. Org. Lett. 2012, 14, 2956. [5] a) Lykakis, I. N.; Psyllaki, A.; Stratakis, M. J. Am. Chem. Soc.  2011, 133, 10426. b) Psyllaki, A.; Lykakis, I. N.; Stratakis, M. Tetrahedron  2012, 68, in press. c) Gryparis, C.; Stratakis, M. Submitted to Chem. Commun. 2012. 

01-03 October 2012, Heraklion, Crete, Greece 22

Page 24: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 23

Page 25: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Structural Phase Transitions in FePt Nanoparticles: Chemical & Magnetic Consequences

L. Han, U. Wiedwald, and P. ZiemannInstitute of Solid State Physics, Ulm University, D­89081 ULM, FRG

Due to their high magneto crystalline anisotropy (MCA) energy, FePt nanoparticles (NP) in the face centered tetragonal (fct) phase promise to overcome the super  paramagnetic limit even at room temperature for particles as small as 3 nm. In that case FePt NPs could play a role   in   magnetic   data   storage   applications,   if   additional   requirements   like   their arrangement in highly ordered arrays as well as chemical stability can be accomplished. In the present contribution, the fabrication of hexagonally ordered arrays of FePt NPs will be   demonstrated   based   on   two   bottom­up   techniques:   Self­organization   of   precursor loaded micelles  or  Polystyrene (PS) colloids  [1,2].  The narrow size distribution of   the resulting NPs allows studying the size dependence of their MCA values as well as of their stability against oxidation.The experimental results indicate systematically lower MCA values for decreasing particle sizes. This decrease is accompanied by a decrease of the magnetic moments as revealed by XMCD. Both observations may be related to Pt surface segregation during the annealing process necessary to obtain the magnetically attractive fct phase. 

References

[1] Ulf Wiedwald, Luyang Han, Johannes Biskupek, Ute Kaiser, and Paul Ziemann, Beilstein J. Nanotechnol. 1, 24 (2010).[2] Achim Manzke, Alfred Plettl, Ulf Wiedwald, Luyang Han, Paul Ziemann, Eyk Schreiber, Ulrich   Ziener,  Nicolas   Vogel,   Katharina   Landfester,   Kai   Fauth,   Johannes   Biskupek,   Ute Kaiser, Chem. Mater. 24, 1048 (2012).

01-03 October 2012, Heraklion, Crete, Greece 24

Page 26: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 25

Page 27: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Enhanced performance in organic photovoltaic cells using surfactant free gold nanoparticles as additives

E. Stratakis, G. D. SpyropoulosInstitute of Electronic Structure and Laser (IESL), Foundation for Research and Technology­Hellas  (FORTH), Heraklion 711 10, Greece and Dept. of Materials Science and Technology, University of  

Crete, Heraklion 714 09, Greece.

E. KymakisCenter of Materials Technology and Photonics & Electrical Engineering Department,  

Technological Educational Institute (TEI) of Crete, Heraklion 71003, Greece

Metallic  nanoparticles   formed  by  ablation   in   liquids  with  pico­   and   femtosecond   laser pulses are attractive candidates as additives in the active layer of OPV devices. Such NPs are free of surfactants and passivation layers that are inevitably present on the surface of the   chemically   synthesized   NPs.   In   this   work,   surfactant   free   Au   NPs   with   various concentrations  are embedded  in   the poly(3 hexylthiophene)  (P3HT):phenyl C61 butyric‐ ‐ ‐  acid methyl ester ­ (PCBM) active layer of OPV devices for  enhanced device performance. An improvement in power conversion efficiency by 40% compared to the pristine device without   NPs,   was   achieved.   Notable,   the   spectral   ranges   of   both   the   enhanced   light absorption and quantum efficiency comply with the individual LSPR region of the Au NPs used.   The   efficiency   is   postulated   to   be   enhanced   by   exploiting   increased   absorption around  the small  diameter  NPs  integrated  into  the active  layer  as  well  as   strong  light scattering   from   the   large  diameter  NPs   and   clusters,   both   effects   stemming   from  the excitation of the LSP waves at the NP/photoactive layer interface. Moreover, it was recently demonstrated by our group that the incorporation of NPs in the photoactive layer does not only lead to an increase in the performance but gives rise to enhanced structural stability of the   blend.   Therefore,   the   performance   enhancement   can   be   also   attributed   to   the improvement of the photoactive layer morphology due to the presence of NPs.

Figure 1: Current­Voltage characteristics of laser synthesized, surfactant free, Au nanoparticles doped organic photovoltaic cells

01-03 October 2012, Heraklion, Crete, Greece 26

Page 28: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 27

Page 29: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Current Analytical Strategies for Detecting Trace Amounts of Nanoparticles in the Environment

S.A. Pergantis*, E.A. KapelliosEnvironmental Chemical Processes Laboratory, Department of Chemistry, University of Crete,  

Voutes Campus, Heraklion 71003, Crete, Greece 

The continuous development of an increasing number of engineered nanoparticles (ENP), with unique optical, electrical and chemical properties, for the purpose of incorporating them   into   a   wide   range   of   industrial,   medical   and   agricultural   products,   is   a   strong indicator for their increased introduction into the environment. Such an eventuality is now causing alarm, both to public and scientists, mainly because of the potential impact of ENP on   the   environment,   ecosystems   and   human   health.   In   fact,   the   US   Environmental Protection   Agency   (EPA)   has   highlighted   this   as   a   major   research   priority   in   their “Nanomaterial Research Strategy”report.[1] In this report the importance of developing analytical methods for the determination of nanomaterials in environmental and biological matrices has been clearly stated and highlighted as Key Scientific Question no. 1.

In this presentation we will describe our recent efforts on the development of advanced analytical techniques for detecting ultra­trace amounts of metal­containing ENP in complex environmental matrices. More specifically, the development and use of single particle (SP) detection of NP using inductively coupled plasma mass spectrometry (ICP­MS), with and without  a   separation   technique,  will   be  discussed.[2­3]  Apart   from  its   extremely  high sensitivity   and  selectivity   the  SP­ICP­MS approach also  offers   tremendous  potential   for rapid   screening   of   environmental   samples,   with   minimum   sample   preparation requirements.   The   use   of   separation   techniques   such   as   hydrodynamic   liquid chromatography and ion mobility spectrometry in combination with SP­ICP­MS will also be presented.

References

[1] U.S. Environmental Protection Agency, Office of Research and Development, “Nanomaterial Research Strategy”. EPA 620/K­09/011, 2009.[2] S. A. Pergantis, T. L. Jones­Lepp, E. M. Heithmar, Anal. Chem. 84 (15), 6454 (2012).[3] E. A. Kapellios and S. A. Pergantis, J. Anal. At. Spectrom. 27, 21, (2012).

* [email protected]

01-03 October 2012, Heraklion, Crete, Greece 28

Page 30: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 29

Page 31: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Dopant segregation in silicon nanoparticles 

Alexandra Carvalho∗ Department of Physics, I3N, University of Aveiro, Aveiro, Portugal 

Mark J. Rayson, Sven Öberg Department of Engineering Sciences and Mathematics, 

Luleå University of Technology, Luleå Sweden 

Patrick R. Briddon School of Electrical, Electronic and Computer Engineering, 

University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom 

Silicon   nanoparticles   can   be   doped   n­type   or   p­type   using   phosphorus   and   boron, respectively   [1,2].   However,   the   doping   of   nanoparticles   suffers   from   difficulties   not present in the bulk material, such as quantum confinement, screening by image charges and   segregation.   We   have   used   first­principles   calculations   to   understand   how   the energetics of group­III and group­V dopants in silicon nanocrystals is changed by surface oxidation. This was done by comparing the radial dependence of the dopant formation energies   for   silicon   nanocrystals   with   hydride­   and   silanol­   terminated   surface   and nanoparticles surrounded by an oxide shell. We show that the oxidation of the surface affects drastically the equilibrium distribution of dopants for donors   and   for   acceptors.   In   the   nanocrystals   with   hydride­terminated   surface,   most dopants   avoid   bonding  with  oxygen.   In  SiO2   ­doped  nanocrystals,   phosphorus   prefers positions in the silicon core. 

Figure 1: Formation energy of positively charged substitutional phosphorus in a 1.5 nm diameter nanoparticle covered by a  2 nm­thick amorphous SiO2 shell. ∼

References [1] A. R. Stegner et al., Phys. Rev. B 80, 165326 (2009). [2] X. D. Pi et al., Appl. Phys. Lett. 92, 123102 (2008). 

_________________ ∗ [email protected]

01-03 October 2012, Heraklion, Crete, Greece 30

Page 32: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 31

Page 33: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Atomistic simulations of nanocrystal/amorphous composite materials

Georgios KopidakisDepartment of Materials Science and Technology, University of Crete

Heraklion, Crete, Greece

Mixed phase nanocrystal/amorphous and nanocrystalline materials exhibit properties which are often substantially different from conventional bulk crystalline, polycrystalline and amorphous solids. We present results of atomistic simulations of systems consisting of nanoparticles in amorphous hosts using   empirical   and   semi­empirical   models,   with   particular   emphasis   on   the   calculation   of structural,   mechanical,   and   optoelectronic   properties   which   connect   atomic   structure   with experiment.  The properties of carbon­based nanostructured materials  are examined  in order to identify   spectroscopic   signatures   and   simple   characterization   methods.   A   class   of   interesting systems is diamond nanoparticles (n­D) embedded in amorphous carbon (a­C) matrices. In this case,   optoelectronic   properties   are   dominated   by   a­C   and   the   presence   of   n­D   cannot   be experimentally inferred solely from them [1,2]. However, molecular dynamics simulations point to some   distinct   features   of   the   vibrational   spectra   of   n­D/a­C   which   could   be   observed   in experiments. The dependence of mechanical properties on the size of the nanocrystals in the mixed phase is also addressed. Ultra­nanocrystalline diamond (UNCD), consisting of n­D grains separated by thin a­C boundaries, is of particular interest in this context. We find a universal scaling law for  mechanical properties as a function of average grain size which applies to very different materials,  such as UNCD and nanocrystalline metals, and which is explained by simple theoretical arguments [3,4]. Some other aspects of computational approaches which are complementary to experiments for the detection and characterization of nanoparticles in solids are discussed.                

                                          n­D/a­C [1]                                   UNCD [3]                          nanocrystalline Cu [4]  

A. G. Kopidakis, I.N. Remediakis, M.G. Fyta, and P.C. Kelires, “Atomic and Electronic Structure of  Crystalline­Amorphous  Carbon   Interfaces”,  Diamond  and  Related  Materials,  16,   1875 (2007).

B. G. Vantarakis, C. Mathioudakis, G. Kopidakis, C.Z. Wang, K.M. Ho, and P.C. Kelires, “Interfa­cial  Disorder  and Optoelectronic  Properties of Diamond Nanocrystals”,  Phys.  Rev. B,  80, 045307 (2009).

C. I.N. Remediakis, G. Kopidakis, and P.C. Kelires, “Softening of Ultra­Nanocrystalline Diamond at Low Grain Sizes”, Acta Materialia, 56, 5340 (2008).

D. N.V. Galanis, I.N. Remediakis, and G. Kopidakis, “Mechanical Response of Nanocrystalline Cu from Atomistic Simulations”, Phys. Status Solidi C, 7, 1372 (2010).

01-03 October 2012, Heraklion, Crete, Greece 32

Page 34: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 33

Page 35: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Biomacromolecule Mediated Ag@Au Core­Shell Nanoparticles and their Performance as SERS Labels

Mustafa Çulha, Burak Ça layan, Ali Yasin Sonay and Mehmet Kahramanğ

The   bimetallic   core­shell   noparticles   are   unique   nanostructures   with   their   tunable plasmonic   properties   and   they   can   be   used   in   a   range   of   applications   from   sensing, biomedical  and  cellular   imaging,   to   construction  of  novel  photonic  devices.  Previously reported structures are either alloys or bimetallic structures composed of Ag and Au metals. However,  novel  approaches  are  necessary   to   fully  benefit   from their  unique plasmonic properties. In order to generate novel structures, we employ biomacromolecules such as oligonucleotides, peptides and carbohydrates to functionalize AuNPs along with a Raman active molecule before coating with Ag or Au metallic shell. The presence of chemically attached biomacromolecules serves as not only generating nanometer size gaps around the Raman active molecules but also increases the compatibility of metals with the underlying metal  surface. The influence of chemical structure the biomacromolecules on the SERS performance of the nanoparticles systematically was investigated. For example, peptides designed only negatively and positively charged with different lengths were investigated. The other parameters such as shell thickness and core size were also explored for optimal SERS performance. The results show that the synthesized core­shell structures are much more SERS active than Ag and Au alone and they can be used for detection of variety of  molecules  and perhaps   in  other   types  of  applications   such as  biomedical   imaging  and photothermal therapy as well. We believe that engineering such molecular structures into the nanoparticles may open new venues for the construction of novel plasmonic structures. 

01-03 October 2012, Heraklion, Crete, Greece 34

Page 36: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 35

Page 37: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Control of optical resonances and the near field around metallic nanoparticles 

B. Hourahine∗ ,F. Papoff Department of Physics, SUPA University of Strathclyde John 

Anderson Building 107 Rottenrow Glasgow G4 0NG UK

Optical resonances of nanostructures are normally assumed to be either bright or dark, with a simple   correspondence   between   spectra   and   resonant   features,   however   this   picture   can   be qualitatively misleading. By using the concept of the principal optical modes[1] of nanoparticles, we demonstrate that it is possible to move, change line shapes or even remove optical resonances entirely  in the spectra of  metal  nanoparticles  (Fig.  1).  With a modest  degree of  phase control between two or more different incident sources of light, it also becomes possible to radically change the optical near field around nanoparticles and nanostructures(Fig. 2). This provides control over the location and type of optical hot spots, while also providing a direct far­field indication of what is happening at the nano­scale. 

Figure 1: Optical scattering spectra of gold rod­shaped particle (480 nm length, 40 nm diameter). The ’natural’ spectra for this structure, when illuminated from the side, shows a Fano­like resonance (red­trace,  with asymmetric   line shape).  By adding an additional   field,  either  the mode which provides most of the scattering intensity, or the dark mode causing this asymmetric resonance is removed (blue and black lines respectively). Spectra over a wider range is shown inset. 

Figure 2: Cartoon of the near field of a small gold disc (120 nm diameter, 20 nm thickness). A) Illuminated axially, showing two clear hot spots along the direction of the electric field of the light.  B)   Illuminated with  an additional   light   source,  converting   the  strong   field   regions   into  a   ring around the particle. 

References [1] F. Papoff and B. Hourahine, Optics Express, 19 21432–21444 (2011)       http://dx.doi.org/10.1364/OE.19.021432 . 

_________________________________ ∗[email protected]

01-03 October 2012, Heraklion, Crete, Greece 36

Page 38: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 37

Page 39: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Multiscale modelling of hybrid molecule/metal nanostructures 

K. Jhonston2, T. Rissanou1, V. Harmandaris1,2,* 

1. Department of Applied Mathematics, University of Crete 2. Max Planck Institute for Polymer Research, Mainz, Germany 

Hybrid   molecule/metal   interfaces   are   encountered   in   many   technologies   involving adhesives, coatings, lubricants, and composite materials. In such systems the interaction between the adsorbed molecules and the metal surfaces control the overall performance of the multiphase material system. Here we present a hierarchical multiscale approach that involves   different   levels   of   description   in   order   to   study   complex   multiphase nanocomposite   systems.   Our   approach   combines   quantum   calculations   as   well   as microscopic  (atomistic)  and mesoscopic  (coarsegrained) dynamic simulations [13].  Our primary goal is to study the effect of metal confinement on the structural and dynamical properties  of   liquid   systems,   for  a   variety  of  materials.  The   consistent   combination  of different   levels   of   description   allows   us   to   quantitatively   model   hybrid   complex liquid/metal   systems.   As   an   example   we   model   the   benzene/gold   and   the polystyrene(PS)/gold(Au) systems. In Figure 1 we observe typical snapshot of the molecular simulations of PS/Au interfacial systems [2]. 

Figure 1: Hierarchcial multiscale simulation of polymer/metal interfacial systems (polystyrene/gold). Snapshots of various films 

References [1]   Harmandaris,   V.   et   al.  Macromolecules,  39,   6708   (2006);  40,   7026   (2007).  Soft Matter, 208, 2109 (2009). [2] Johnson K. and Harmandaris, V. J. Phys. Chem. C., 115, 14707 (2011); Soft Matter, 8, 6320 (2012). [3] Rissanou, T. and Harmandaris, V, submitted. 

_____________________* [email protected]

01-03 October 2012, Heraklion, Crete, Greece 38

Page 40: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 39

Page 41: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Environment­dependent shape and properties of gold nanoparticles: a first principles study 

G. D. Barmparis* and I. N. Remediakis Department of Materials Science and Technology 

University of Crete, 71003 Heraclion, Crete, Greece 

       We perform density functional theory (DFT) simulations to calculate the surface and interface energies of clean and covered gold surfaces, respectively. We then use the results together with the Wulff−Kaishew theorem in order to predict the equilibrium shape of large gold nanoparticles, that are inaccessible by direct atomistic simulations, in various chemical   environments.   We   consider   various   environments,   such   as   CO   gas   and alkanethiolates.  The  interface tension of  a metal   in equilibrium with a gas  is   found to depend on the surface tension, the adsorption energy and the coverage of adsorbates. For this reason the investigation of the adsorption energy of the molecules of the environment on gold surfaces is also needed.       For gold nanoparticles in inert gas we find (111) faces to dominate the shape at small diameters, followed by (100) ones. For large nanoparticles, other faces with higher Miller indexes may appear. CO oxidation is the most promising application of Au­based catalysts. Interestingly, when Au nanoparticles are exposed to CO gas the equilibrium shape contains a lot more high­index faces, resulting to a more rounded shape. Our observations agree with recent experimental findings.          In order to study the shape of gold nanoparticles in alkanethiolate environment, we study the dissociative chemisorption of dimethyl disulfide (CH3 S−SCH3 ) on fourteen different Au(hkl), discussing trends on adsorption energies, bond lengths and bond angles. Methanethiolate (CH3 S−) prefers adsorption on bridge sites on all surfaces considered; hollow and on top sites are highly unfavourable. Gold nanoparticles change their shape upon adsorption of thiolates towards shapes of higher sphericity and higher concentration of step­edge atoms.      Finally, we discuss the spectroscopic properties of equilibrium­shaped nanoparticles. The energy  levels  are   found  to  depend not  only  on  the  nanoparticle   size,  but  also  on  the nanoparticle shape. Thus, the electronic density of states can be used as an indirect probe of the size and shape of Au nanoparticles. 

__________________________ ∗[email protected]

01-03 October 2012, Heraklion, Crete, Greece 40

Page 42: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 41

Page 43: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

POSTERS

01-03 October 2012, Heraklion, Crete, Greece 42

Page 44: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

Posters

Shape changes of Au nanoparticles in reactive environment Georgios Barmparis and Ioannis N. RemediakisDepartment of Materials Science and Technology, University of Crete, Heraklion, Crete, GreeceImmobilization of Polymer Microgels Containing Metal Nanocatalysts onto Inorganic SurfacesM.A. Frysali,1,2 M. Kaliva,1,3 L. Papoutsakis,1 M. Vambakaki1,3 and S. H. Anastasiadis1,2

1 Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece2 Department of Chemistry, University of Crete, Heraklion Crete, Greece3 Department of Materials Science & Technology, University of Crete Heraklion Crete, GreeceComputational Study of Carbon – based Nanostructured MaterialsAristea Maniadaki and Georgios KopidakisDepartment of Materials Science and Technology, University of Crete, Heraklion, Crete, GreeceHybrid carbon/metal nanocomposite materialsC. Mathioudakis 1 , P.C. Kelires1, G. Vantarakis2

1Research Unit for Nanostructured Materials Systems, Department of Mechanical and Materials Science Engineering, Cyprus University of Technology, Limassol, Cyprus2Department of Materials Science and Technology, University of Crete, Heraklion, Crete, GreeceTransition metal nanoparticles for hydrogen storageGeorge Psofogiannakis and George FroudakisDepartment of Chemistry, University of Crete, GreeceEffect of Graphene on Polystyrene and Poly(Methyl Methacrylate) Structural and dynamical PropertiesAnastassia N. Rissanou1,2 and Vagelis Harmandaris1,2

1 Department of Applied Mathematics, University of Crete, Heraklion, Crete, Greece. 2Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Greece. In Situ Hierarchical Formation of Giant Amphiphile Bionanoreactors K. Velonia 1 , E. Daskalaki2

1Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece2Department of Chemistry, University of Crete, Heraklion, Crete, Greece

01-03 October 2012, Heraklion, Crete, Greece 43

Page 45: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Shape changes of Au nanoparticles in reactiveenvironment

G. D. Barmparis* and I. N. RemediakisDepartment of Materials Science and Technology

University of Crete, 71003 Heraclion, Crete, Greece

       Although gold is known to be noble, Au nanoparticles show extreme chemical activity and are widely used in catalysts. Coated Au nanoparticles show unique optical properties and are used in a variety of applications. Properties of Au nanoparticles depend not only on their size, but also on their shape.      In the present work, we predict the shape of Au nanoparticles in different environments (inert   gas,  CO and   thiolates)  based  on   first­principles   simulations.  We employ  density functional theory (DFT) as implemented in the open­source Dacapo and GPAW packages. We calculate the surface tension of clean and covered Au(hkl) surfaces with h, k, l < 4 and use the results together with Wulff’s theorem to predict equilibrium shapes.           For nanoparticles in inert gas atmosphere, we found two different shapes: truncated octahedra for sizes up to about 16 nm and more complicated ones containing five faces for larger particles. CO gas favours almost spherical particles. Thiolate­covered nanoparticles have surprisingly symmetric shapes.        This work was supported by IESL/FORTH, a HPC­EUROPA2 project (project number: hpce3116)   with   the   support   of   the   European  Commission   Capacities   Area   ­  Research Infrastructures Initiative, COST action MP0901 (NanoTP) and the University of Crete.

_________________________*[email protected]

01-03 October 2012, Heraklion, Crete, Greece 44

Page 46: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 45

Page 47: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Immobilization of Polymer Microgels Containing Metal Nanocatalysts onto Inorganic Surfaces

M.A. Frysali,1,2* M. Kaliva,1,3 L. Papoutsakis,1 M. Vambakaki1,3 and S. H. Anastasiadis1,2

1 Institute of Electronic Structure and Laser, Foundation for Research and Technology­Hellas,  P.O. Box 1527, 711 10 Heraklion Crete, Greece

2 Department of Chemistry, University of Crete, 710 03 Heraklion Crete, Greece3 Department of Materials Science & Technology, University of Crete, Heraklion Crete, Greece

This study is concerned with the attachment of electrostatically and sterically stabilized polymer microgel   particles   based   on   poly(acrylic   acid),   PAA,   and   poly(methacrylic   acid),   PMAA,   onto inorganic   surfaces.    The  microgels  were  prepared  by  emulsion   radical  polymerization  [1]  and characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM), which verified   their   spherical   shape   and   uniform   size   distribution.   These   microgels   are   utilized   as nanoreactors   for   the   synthesis   of   metal   nanoparticles   to   be   utilized   as   nanocatalysts;   the nanoparticles were characterized by Transmission Electron Microscopy (TEM). The attachment of the microgel particles onto the various surfaces,  which can potentially be used as the walls  of microfluidic reactors,  was investigated by SEM and Atomic Force Microscopy (AFM) [2]; glass, silicon and alumina were used as substrates. The durability of the microgel particles attached onto the   surfaces  against  hydration and  flow  forces  was   tested utilizing  repeated  immersion of   the surfaces into water undergoing mechanically­generated hydrodynamic flow. Acknowledgements: Part of this research was sponsored by the European Union (POLYCAT; grant agreement CP­IP 246095­2).

 Figure 1: SEM of PAA nanoparticles

References

[1] D. Palioura, S. P. Armes, S. H. Anastasiadis and M. Vamvakaki, Langmuir 23, 5761­5768 (2007).[2] H. Chen, L. Hu, X. Fang and L. Wu, Adv. Funct. Mater. 22, 1229­1235 (2012).

* [email protected]   

01-03 October 2012, Heraklion, Crete, Greece 46

Page 48: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 47

Page 49: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Computational study of carbon­based nanostructured materials

Aristea E. Maniadaki and Georgios KopidakisDepartment of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece

Modern  methods   in  materials   synthesis   take  advantage  of   the   ability   of   carbon atoms to form bonds with different hybridizations and result in a variety of allotropic forms of carbon. Carbon­based nanostructures exhibit fundamental interest and have promising applications. Among these nanostructures, the mixed phase of amorphous carbon (a­C) and diamond  nanoparticles   (n­D)  has  been   less   characterized,  with  many  of   its   properties remaining unexplored. We perform atomistic simulations with empirical potentials in order to  create   several   samples  of  a­C/n­D nanocomposites  with  different  n­D sizes  and a­C densities.   We   analyze   the   structure,   stability,   and   mechanical   properties   of   these nanocomposite   materials   and  our   results   compare  well  with   experiment   and  previous simulations.   Furthermore,   we   study   their   dynamical   properties   to   find   that   some pronounced features of their vibrational spectra may be observed in experiments.   

01-03 October 2012, Heraklion, Crete, Greece 48

Page 50: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 49

Page 51: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Hybrid carbon/metal nanocomposite materials

C. Mathioudakis*, P.C. KeliresResearch Unit for Nanostructured Materials Systems, Department of Mechanical and Materials  Science Engineering, Cyprus University of Technology, P.O. Box 50329, 3603 Limassol, Cyprus

G. VantarakisDepartment of Materials Science and Technology, University of Crete, P.O. Box 2208, 710 03  

Heraklion, Crete, Greece

We study hybrid carbon/metal nanocomposite materials. These multimaterials consist of Diamond­like Carbon (DLC) matrices with  inculsions of metals (e.g.  Ti).  The produced nanostructured and nanocomposite thin films can be used as protective coatings and solid lubricants.   In   addition,  new  nanostructured   selective   coatings  can  be   applied   in   solar thermal energy devices.

The physical properties of DLC change by the insertion of metal nanoparticles. We calculate the elastic properties as a function of the structural parameters and show their variation. In order to study large systems, we use the semi­empirical Modified Embedded Atom Method (MEAM). Our calculations on the mechanical response of DLC/metal nanocomposites agree well with ab initio results, carried out using Density Functional Theory (DFT).

* [email protected]   

01-03 October 2012, Heraklion, Crete, Greece 50

Page 52: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 51

Page 53: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Transition metal nanoparticles for hydrogen storage

George Psofogiannakis and George FroudakisDepartment of Chemistry, University of Crete. Greece

It has been observed in several experiments that the hydrogen storage capacity of high ­surface area sorbents (graphitic carbons, nanotubes, Metal­Organic Frameworks) is enhanced   when   small   quantities   of   transition   metal   nanoparticles   are   doped   in   the material. The drastic change of the H2 adsorption profile is often attributed to the alleged “spillover”   mechanism.   Based   on   this,   hydrogen   is   bound   in   atomic   form   within   the material.   The   role   of   the   metal   nanoparticles   consists   of   catalyzing   the   process   by dissociating the H2 molecules and mediating the transport of H atoms to the sorbent. 

  We   have   computationally   studied,   via   Density   Functional   Theory,   the thermodynamics and kinetics of elementary steps of the spillover process and identified the plausibility and of the mechanism and the effect of the surface chemistry of the sorbent,  including the role of the metal nanoparticles, and the role of surface chemical functional groups and defects.  Based on the results,  new sorbents for enhanced hydrogen storage capacity have been proposed. Furthermore, we propose ways of chemical functionalization of graphitic carbon materials that can assist drastically the spillover process. 

01-03 October 2012, Heraklion, Crete, Greece 52

Page 54: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 53

Page 55: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

EFFECT OF GRAPHENE ON POLYSTYRENE AND POLY(METHYL METHACRYLATE) 

STRUCTURAL AND DYNAMICAL PROPERTIES 

Anastassia N. Rissanou1,2 and Vagelis Harmandaris1,2 1 Department of Applied Mathematics, University of Crete, GR 71409, Heraklion, Crete, Greece. 2Institute of Applied and Computational Mathematics, Foundation for Research and Technology 

Hellas, GR­700 13 Heraklion, Greece. E­mail: [email protected] 

Graphene   nanocomposites   have   remarkable   physical   properties   with   important   applications   in many different areas. Here we present a hierarchical simulation methodology in order to study complex multi­phase graphene based polymer nanocomposite systems. Our primary goal is to study the effect of the graphene layers on the structural and dynamical properties of polymer systems. In more detail,  we study hybrid polymer/graphene  interfacial  systems (here polystyrene/graphene and poly(methyl methacrylate)/graphene) through a multi­scale modeling approach that consists of two stages: In the first one we perform detailed atomistic molecular dynamics (MD) simulations of polymer chains confined between two parallel graphene layers (1). Various properties are being studied related to: (a) Density profile: The time­averaged molecular density profiles,  (z), as a function of the distanceρ  from the metal surfaces (z­direction) of the model films are calculated. (b) Structural  characteristics:  Molecular orientation tendencies  induced by the confinement are being   studied   by   calculating   the   second   rank   order   parameter   and   the   polymer   chain’s conformation tensor. (c) Mobility aspects: We study the dynamics of polymer chains, both in the level of the monomer and the chain center­of­mass, by monitoring the evolution of the mean square displacements as well as through time auto­correlation functions of a vector along the molecule. All above properties are examined, as a function of the distance from the substrate for a series of film widths, ranging from [2.85­14] nm. Finally, the properties of the macromolecular chains are being compared to the properties of the corresponding bulk systems at the same temperature. The second stage of our work involves the extension of the proposed methodology to mesoscopic description using proper coarse­grained (CG) models. To achieve this, a methodology to develop CG models   from the atomistic  description,  proper  for  bulk polymeric   systems,  will  be  extended  to hybrid nanocomposite mater (2). This approach allows us to extend simulations in much longer systems  and   for  much   longer   times.  Recently   this  approach has  been  combined  with  ab­initio density   functional   theory   calculations   in  order   to  derive  accurate   classical   force   fields   for   the molecule/surface interaction from first principles (3). 

References 

1. Harmandaris, V., Daoulas, K., Mavrantzas, V., “Detailed Atomistic Simulation of a Polymer Melt/Solid Interface: Structure, Density, and Conformation of a Thin Film of Polyethylene Melt Adsorbed on Graphite”, Macromolecules, 38, 5780, (2005). 

2. Harmandaris,  V. et al.,  “Hierarchical Modeling of Polystyrene: From Atomistic to Coarse­Grained Simulations”,  Macromolecules,  39,  6708 (2006);  40,  7026 (2007).  Soft  Matter, 208, 2109 (2009). 

3. Johnson K. and Harmandaris, V. J. Phys. Chem. C., 115, 14707 (2011); submitted. 

01-03 October 2012, Heraklion, Crete, Greece 54

Page 56: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 55

Page 57: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

In Situ Hierarchical Formation of Giant Amphiphile Bionanoreactors 

K. Velonia*, Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece

E. DaskalakiDepartment of Chemistry, University of Crete, Heraklion, Crete, Greece

Amphiphilic protein­polymer chimeras –Giant Amphiphiles­ are designed to mimic the hierarchical self­assembly displayed in biological and synthetic material systems over a range of lengths. During the   last   years   we   synthesized   several   such   protein­polymer   amphiphilic   bioconjugates   using different synthetic approaches varying from the direct coupling of end­functionalized polymers to proteins,   to   the  grafting  of   polymers  from  protein   macroinitiators.[1,2,3]    Interestingly,  Giant Amphiphiles  have shown to assemble into well­defined, functional superstructures suitable for a variety of materials applications.   Two different synthetic approaches, the Atom Transfer Radical Polymerization (ATRP) [2] and the Ring Opening Polymerization (ROP) [3] grafting of a series of monomers  from  protein biomacroinitiators will be comparatively presented (Figure 1). It will be shown  that   these  methods  drastically   improve   synthetic  yields  and allow studying  of   the   self­assembling   behaviour   and   functionality   of  Giant   Amphiphiles  in   unprecedented   detail.   More importantly the “grafting from” in situ,  formation of multifunctional nanoreactors with interesting catalytic properties and the synthesis of a novel series of biocompatible and degradable giant soaps will be presented. 

Figure 1: General scheme for the hierarchical formation of Bionanoreactors

References

[1] Velonia, Rowan and Nolte J. Am. Chem. Soc. 124, 4224 (2002); Le Droumaguet, Mantovani, Haddleton and Velonia  J. Mater. Chem. 17, 1916 (2007).  [2] Le Droumaguet and Velonia, K.  Angew. K. Chem., Int. Ed. 47, 6263 (2008); Daskalaki, Le Droumaguet, Gérard and Velonia, Chem. Commun. 48, 1586 (2012).[3] Daskalaki, Liamas, Al Tabchi, Dacros and Velonia K. Submitted.

* [email protected]

01-03 October 2012, Heraklion, Crete, Greece 56

Page 58: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 57

Page 59: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

01-03 October 2012, Heraklion, Crete, Greece 58

Page 60: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Notes

01-03 October 2012, Heraklion, Crete, Greece 59

Page 61: Metal nanoparticles for advanced materials: From theory to practicetheory.materials.uoc.gr/nanoparticles2012/nanoTP_bookOfabstracts.… · Metal nanoparticles for advanced materials:

Metal nanoparticles for advanced materials: From theory to practice

Participant ListName E­mail Country Page

Anastasiadis Spiros H. [email protected] Greece 14

Barmparis Georgios [email protected] Greece 40,44

Bittencourt Carla  [email protected] Belgium 12

Carvalho Alexandra [email protected] Portugal 30

Culha Mustafa [email protected] Turkey 34

Daskalaki Eleftheria [email protected] Greece 56

Davelou Daphne [email protected] Greece ­

Dillon Frank [email protected]  United Kingdom 20

Frysali Melina A. [email protected] Greece 46

Guttmann Peter peter.guttmann@helmholtz­berlin.de Germany 10

Harmandaris Vagelis [email protected] Greece 38

Honkala Karolina [email protected] Finland 18

Hourahine Ben [email protected] United Kingdom 36

Kopidakis Georgios [email protected] Greece 32

Kotsopoulou Giota [email protected] Greece ­

Koutsouroumpi Eirini [email protected] Greece ­

Lopez Nuria [email protected] Spain 16

Maniadaki Aristea [email protected] Greece 48

Markoulaki Vasiliki [email protected] Greece ­

Mathioudakis Christos [email protected] Cyprus 50

Melissinake Vasileia [email protected] Greece ­

Pergantis Spiros  [email protected] Greece 28

Procaccia Itamar [email protected] Israel ­

Psofogiannakis George [email protected] Greece 52

Remediakis Ioannis [email protected] Greece ­

Rissanou Anastasia  [email protected] Greece 54

Rossell Marta [email protected] Switzerland 8

Stamatiadis Stamatis [email protected] Greece ­

Stratakis Emmanouel [email protected] Greece 26

Stratakis Manolis [email protected] Greece 22

Vantarakis Georgios [email protected] Greece ­

Velonia Kelly [email protected] Greece 56

Whelan Caroline [email protected] Belgium ­

Ziemann Paul Paul.ziemann@uni­ulm.de Germany 24

01-03 October 2012, Heraklion, Crete, Greece 60