metal solubility and speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++...

37
al Solubility and Speciati

Upload: mildred-mckinney

Post on 19-Dec-2015

259 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Metal Solubility and Speciation

Page 2: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

+

-

+

+

-

+

-

-

--

-

-

-

-

+

-

++

+

+ +

+

-+

+

+

+

Solvation and the Hydrogen Bond

Hydrogen bonds impart structure to water and ice.

Ice crystals

+

-

+

+

-

+

-

-

--

-

-

-

-

+

-

++

+

+ +

+

-+

+

+

+

Hydrogen bonds impart structure to water and ice.

Page 3: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Dielectric constant of water. Determined by creating an electrical field between two capacitor plates and measuring the voltage. The oriented dipoles create an internal field that opposes the external field. The dielectric constant is the ratio voltage in a vacuum over that in water.

The Dieletric Constant of Water

Page 4: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

200 400 600

5030

70

90

2010

5

4

2

L+VCp

Kba

r

T OC

Dielectric Constant () of Water

Page 5: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Simple ion solvation (hydration) Complex ion solvation (hydration)

Metal Speciation in Water

Page 6: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Gold-Bisulphide Complexation

Au SS

H

H

H

H

OH H

O

HH

O

H

H

O

H

H

O

H

H

O

-Formation of soluble aqueous metal species, e.g. Au(HS)2

-

Page 7: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Metal Speciation in Water Vapour

Rather than constituting widely dispersed molecules, water vapour comprises clusters of hydrogen-bonded water molecules.

Metal species, which are uncharged, dissolve in water vapour by attaching to clusters of water molecules via hydrogen-bonding.

Molecular dynamic simulation of solvation (hydration) in water vapour.

Page 8: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Potential Ligands for metal complexation

Page 9: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Ion-Pairing and Ligand availability

Dissociation constant of NaCl

Dissociation constant of HCl

Page 10: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Ionic (hard) Bonding

Transfer of electrons – electrostatic interaction

+_

Page 11: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Individual atoms with spherical electron clouds

Protons attract electron clouds and polarise each other

Covalent bond

Covalent (soft) bonding - polarisabilitySharing of electrons

Page 12: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Electronegativity and Chemical Bonding• Ionic bonding – maximise electronegativity difference• Covalent bonding – minimise eletronegativity difference

Page 13: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Pearson’s HSAB Principles and Aqueous Metal Complexes

Hard acids (large Z/r) bond with hard bases (ionic bonding) and soft acids (small Z/r) with soft bases (covalent bonding).

Hard Borderline Soft

Acids

Fe2+,Mn2+,Cu2+

Zn2+>Pb2+,Sn2+,As3+>Sb3+=Bi3+

H+, Na+>K+ Al3+>Ga3+

Y3+,REE3+ (Lu>La)Mo+6, W+6, U+6

Zr4+,Nb5+

Bases

F-,OH-,CO32- >HCO3

-

SO42- >HSO4

-

PO43-

Cl-

Au+>Ag+>Cu+ Hg2+>Cd2+

Pt2+>Pd2+

HS->H2SCN-,I->Br-

Pearson (1963)

Page 14: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Copper Speciation in Aqueous Liquid

1 m NaCl

1 m NaCl

Page 15: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Au/Ag Speciation in Aqueous Liquid

Page 16: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

1 m NaCl

1 m NaCl

Zinc Speciation in Aqueous Liquid

Page 17: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

10

8

6

4

2

100 200 300Temperature ºC

log

βn

β2

β4

β1

β3

Ruaya and Seward (1986)

Stability of Zinc Chloride Species

log βn = log aZnCln2-n – log aZn2+ -nlog aCl- Zn2+

+ nCl- = ZnCln2-n

e.g., Zn2+ + 2Cl- = ZnCl20; β2

-4

-4 -3 -2 -1 0 1

log Cl (mol/Kg)

80

604020

80

604020P

erce

nt Z

n sp

ecie

s Zn2+

ZnCl+

ZnCl20ZnCl+

ZnCl42-

ZnCl3-

ZnCl42-

ZnCl20

350 ºC

150 ºC

Page 18: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Molybdenum Speciation in Aqueous Liquid

Unlike most other metals, Mo, which occurs in hydrothermal fluids as Mo6+ is so hard that it reacts with water molecules to form covalently bonded, negatively charged molybdate species. The same is also true of W and U.

Minubayeva and Seward (2010 (2009)

Page 19: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Cu-Mo Zoning in Porphyry Systems

Mo

Cp

Aqueous fluid containing 2 m NaCl, 0.5 m KCl, 4000 ppm Cu and 1000 ppm Mo in equilibrium with K-feldspar, muscovite and quartz.

Page 20: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Gold speciation and transport

1.5 m NaClP = 1000 bar

0.5 m KClpH buffered by K-feldspar-muscovite

S = 0.01 m

A fO2 buffered by hematite-magnetite

B fO2 and fS2 buffered by Magnetite-pyrrhotite-pyrite

Williams-Jones et al. (2009)

Page 21: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

2 4 6 8 10 12

-3

-4

-6

-7

-8

-9

-2

-5

pH

mNaCl = 2 (12 Wt%)

mNaCl = 0.2 (1 Wt%)

mNaCl = 0.01

log

m Z

n to

tal

Zn-HS species

Zn-ClZn2+

2 4 6 8 10 12

-3

-4

-5

-6

-7

-8

-9

pH

mNaCl = 2 (12 Wt%)

mNaCl = 0.2 (1 Wt%)

mNaCl = 0.01

log

m Z

n to

tal

Zn-HS speciesZn2+

Zn-Cl

Tagirov and Seward (2010)

Relative Importance of Chloride and Bisulphide complexation

Page 22: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

350

300

250

200

150

100

50

1 2 3 4 5 6 7 8 9 10

Tem

pera

ture

ºC

pH

10 ppm100 ppm1000 ppm10000 ppm

Solubility of Sphalerite as a Function of Temperature and pH

2m NaCl0.01 mΣSSVP

(Based on data of Ruaya and Seward 1986; Tagirov and Seward, 2010)

Soluble

Insoluble

Page 23: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

A constraint on MVT Ore Formation

Although most researchers support a fluid mixing model for MVT deposits, some have proposed a single fluid model.

Our modelling shows that sphalerite will precipitate even in the presence of vanishingly small concentrations of H2S. Ore metals and reduced sulphur must be transported separately.

Metalliferous brine containing 15 wt.% NaCl and 1000 ppm Zn

Page 24: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Dashed lines (Haas et al., 1995), theoretical extrapolations from ambient temperature.

Solid lines (Migdisov et al., 2009) experimental determinations.

Note 1: REE fluoride complexes three orders of magnitude more stable than REE chloride complexesNote 2: Above 150 oC LREE complexes more stable than HREE complexes.

REE Fluoride and Chloride Complexes

Migdisov et al. (2009)

Page 25: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Modelling REE Mineral Solubility in a F-Bearing Brine

10 wt.% NaCl, 500 ppm F, 200 ppm Nd

The REE are transported dominantly as chloride complexes despite the greater stability of REE fluoride complexes, because HF is a weak acid and REE fluoride is relatively insoluble. Migdisov and Williams-Jones (2014)

Page 26: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Hydrothermal Fractionation of the REE

LREE are mobilised (as chloride complexes) relative to the HREE; REE are deposited as monazite.

Fluid contains 10 wt.%NaCl, 500 ppm F, and 50 ppm of each REE. Rock contains 100 ppm P.

Williams-Jones et al. (2012)

Page 27: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

The Stability of REE-Sulphate Complexes

The stability of the REESO4

+ complexes is independent of atomic number.

The species REE(SO4)2

- are more stable stable than REESO4

+ .

Log

β1

Log

β2

250C

250C

Migdisov and Williams-Jones (2008)

Page 28: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Nd Speciation and solubility in a Cl-F-SO4-bearing Fluid

Log

m

pH

Nd Speciation and solubility in a fluid containing 10 wt.% NaCl, 500 ppm F, 2 wt.% Na2SO4 and 200 ppm Nd.

Ore-forming concentrations (> 1ppm Nd) are transported as NdCl2+

Page 29: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Log

m

pH

Nd Speciation and solubility in a Cl-F-SO4-bearing Fluid

At 400C NdCl2+ predominates to a pH of 3.5. Between this pH and a pH of 7.5 Nd(SO4)2

- predominates but is only able to transport ore-bearing concentrations (>1 ppm) at pH <5

Page 30: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Fluid/Rock Interaction as a Precipitation Mechanism for Sulphate-Complexed REE

As little as 230 mg per Kg of apatite is needed to precipitate all the Nd as Monazite-(Nd) (NdPO4).

Migdisov and Williams-Jones (2014)

Page 31: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Simplified Model for the Hydrothermal Transport and Deposition of REE

Mixing of magmatic and external fluids Fluid/rock interaction

REE Mineral Deposition

Mobilisation of REE as acidic REE-Cl complexes; weakly acidic REE-SO4 complexes at high T.

Chloride transport: Deposition of REE minerals, due to increasing pH, decreasing temperature and high activity of a depositional ligand.

Sulphate transport: Deposition of REE minerals due to interaction with a depositional ligand.

Page 32: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

The effect of solvation make heavy metals volatile

HydrationReaction

Vapour transport - what did Krauskopf Ignore?

Cl

Au+

ClAu

Page 33: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Vapour Transport of CopperSolvation by clusters of water molecules at high water fugacity can can raise the solubility of copper as simple chlorides or sulphides to ore-forming concentrations.

Migdisov et al. (2014)

Page 34: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

The Solubility of Chalcopyrite in Water Vapour

Increasing PH2O promotes hydration (and solubility) and increasing temperature inhibits hydration.

Page 35: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

Solubility of Gold in HCl-H2O VapourDependence of Au solubility on fHCl of ~1 indicates formation of AuCl

Dependence of Au solubility on fH2O indicates hydration

Hurtig and Williams-Jones (2014)

Page 36: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

HS Epithermal Au Ore Formation

Vapour-dominated hydrothermal plume rises from magma, transporting Au and depositing it as temperature drops below 400C.

Hurtig and Williams-Jones (2014)

Page 37: Metal Solubility and Speciation. ++ -- ++ ++ -- ++ -- -- -- -- -- -- -- -- ++ -- ++ ++ ++ ++ ++ ++ -- ++

References

Williams-Jones, A.E., and Migdisov, A., 2014, Experimental contraints on . The transport and deposition of metals in ore-forming hydrothermal systems. Society of Economic Geologists, Special Publication 18, pp 77-95.

Eugster, H.P., 1986, Minerals in hot water. American Mineralogist, v.71, 655-673.

Crerar, D., Wood, S.M., Brantley, S., and Bocarsly, A., 1985, Chemical controls on solubility of ore-forming minerals in hydrothermal solutions. Canadian Mineralogist, v. 23, p. 333-352

Seward, T.M., and Barnes, H.L., 1997, Metal transport by hydrothermal fluids in Geochemistry of Hydrothermal Ore Deposits H.L. Barnes (ed), p. 235-285. John Wiley and Sons Inc.