metody opisu dyfuzji wielu składników,

116
Metody opisu dyfuzji wielu składników, unifikacja metody dyfuzji wzajemnej i termodynamiki procesów nieodwracalnych Marek Danielewski Interdisciplinary Centre for Materials Modeling AGH Univ. of Sci. & Technology, Cracow, Poland Będlewo, Czerwiec 2013

Upload: melody

Post on 30-Jan-2016

45 views

Category:

Documents


0 download

DESCRIPTION

Metody opisu dyfuzji wielu składników, unifikacja metody dyfuzji wzajemnej i termodynamiki procesów nieodwracalnych Marek Danielewski. Interdisciplinary Centre for Materials Modeling AGH Univ. o f Sci. & Technolog y , Cracow, Poland Będlewo, Czerwiec 2013. φ. φ. Quantum mechanics:. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Metody opisu dyfuzji wielu składników,

Metody opisu dyfuzji wielu składnikoacutew

unifikacja metody dyfuzji wzajemnej i

termodynamiki procesoacutew nieodwracalnych

Marek Danielewski

Interdisciplinary Centre for Materials Modeling

AGH Univ of Sci amp Technology Cracow Poland

Będlewo Czerwiec 2013

Diffusion equation (Fourier)

2

2

Fundamental or only numerology

t x

Diffusion equationsHeat

T t

Θ 2 T

x 2

Θ = α m2s-1

Diffusion of mass (1855)

t

Θ 2 x 2

Θ = D m2s-1

Diffusion equations

Hydrodynamics (noncompressible fluid)

υ t

Θ 2υ

x 2

Θ = ν m2s-1

Diffusion equations

Quantum mechanics

2

2t x φφ

2

i

m

2 2

2

i

m

i

2 1i

i

Quantum mechanics

2 2

22i

t m x

free particlehellip

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 2: Metody opisu dyfuzji wielu składników,

Diffusion equation (Fourier)

2

2

Fundamental or only numerology

t x

Diffusion equationsHeat

T t

Θ 2 T

x 2

Θ = α m2s-1

Diffusion of mass (1855)

t

Θ 2 x 2

Θ = D m2s-1

Diffusion equations

Hydrodynamics (noncompressible fluid)

υ t

Θ 2υ

x 2

Θ = ν m2s-1

Diffusion equations

Quantum mechanics

2

2t x φφ

2

i

m

2 2

2

i

m

i

2 1i

i

Quantum mechanics

2 2

22i

t m x

free particlehellip

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 3: Metody opisu dyfuzji wielu składników,

Diffusion equationsHeat

T t

Θ 2 T

x 2

Θ = α m2s-1

Diffusion of mass (1855)

t

Θ 2 x 2

Θ = D m2s-1

Diffusion equations

Hydrodynamics (noncompressible fluid)

υ t

Θ 2υ

x 2

Θ = ν m2s-1

Diffusion equations

Quantum mechanics

2

2t x φφ

2

i

m

2 2

2

i

m

i

2 1i

i

Quantum mechanics

2 2

22i

t m x

free particlehellip

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 4: Metody opisu dyfuzji wielu składników,

Diffusion of mass (1855)

t

Θ 2 x 2

Θ = D m2s-1

Diffusion equations

Hydrodynamics (noncompressible fluid)

υ t

Θ 2υ

x 2

Θ = ν m2s-1

Diffusion equations

Quantum mechanics

2

2t x φφ

2

i

m

2 2

2

i

m

i

2 1i

i

Quantum mechanics

2 2

22i

t m x

free particlehellip

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 5: Metody opisu dyfuzji wielu składników,

Hydrodynamics (noncompressible fluid)

υ t

Θ 2υ

x 2

Θ = ν m2s-1

Diffusion equations

Quantum mechanics

2

2t x φφ

2

i

m

2 2

2

i

m

i

2 1i

i

Quantum mechanics

2 2

22i

t m x

free particlehellip

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 6: Metody opisu dyfuzji wielu składników,

Quantum mechanics

2

2t x φφ

2

i

m

2 2

2

i

m

i

2 1i

i

Quantum mechanics

2 2

22i

t m x

free particlehellip

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 7: Metody opisu dyfuzji wielu składników,

Quantum mechanics

2 2

22i

t m x

free particlehellip

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 8: Metody opisu dyfuzji wielu składników,

Question

Why

2

i

m

Answerhellip P-K-C hypothesis

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 9: Metody opisu dyfuzji wielu składników,

Economyhellip

hellip diffusion equation

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 10: Metody opisu dyfuzji wielu składników,

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997

for a new method to determinehellip the value of derivatives

Robert C MertonHarvard University

Myron S ScholesLong Term Capital Management Greenwich CT USA

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 11: Metody opisu dyfuzji wielu składników,

Economy amp diffusionhellipButhellip money is not conserved

Merton amp Sholes Nobel price bdquohelped inrdquohellip

hellipgrand failure in 2008

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 12: Metody opisu dyfuzji wielu składników,

2

2t x

lt 10-35 - Planck scale- 10-35

nucleus - 10-16

atoms - 10-10

biology - 10-4

mechanics - 1 Earth - 107

cosmology ndash 1027

gt 1030

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 13: Metody opisu dyfuzji wielu składników,

Fundamental

2

2 t x

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 14: Metody opisu dyfuzji wielu składników,

Challengeseverywherehellip

Mechano-chemistry

Darken amp stressUniquenesshellip

Electro-chemistry

Nernst-Planck- Poisson + drift

AppliedReactive inter-diffusionhellipReal geometryhellip

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 15: Metody opisu dyfuzji wielu składników,

Nernst-Planck-Poisson Problem Nernst-Planck-Poisson Problem

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

grad

div dii i

di i jj

ch elj i ij

cc

t

B F

F

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

div i iiz cE F

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 16: Metody opisu dyfuzji wielu składników,

Nernst-Planck-Poisson Problem

1( ) 2( ~ 1900)

3(~ 1960) 4

i Nernst Planck

Simeacuteon DenisSimeacuteon Denis POISSON POISSON 1781 -18401781 -1840

Walther HermannWalther Hermann NERNST NERNST 1864-19411864-1941

MaxMax PLANCK PLANCK 1858-19471858-1947

Unsolved uniqueness quasi-stationary Problems multi-component ionic systemshellipUnsolved NPP + drifthellip

W Kucza (2009) convergehellip

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 17: Metody opisu dyfuzji wielu składników,

Nernst-PlanckNernst-Planck

di i jj

d di i iJ c

B F

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 18: Metody opisu dyfuzji wielu składników,

Flux is not limited to diffusionhellipFlux is not limited to diffusionhellip

d drifti i iJ J c

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 19: Metody opisu dyfuzji wielu składników,

Bi-velocity Wagner (1933) Darken (1948) Danielewski amp Holly (Cracow gt1994)

( ) iic c t x const

Showhellip

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 20: Metody opisu dyfuzji wielu składników,

( ) iic c t x const

No stresshellip

Ωi = Ω = const

R1hellip

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 21: Metody opisu dyfuzji wielu składników,

t

d D DD

dt Dt Dt

Material reference frame (Darken 1948)Lagrange substantial material etchellipderivative

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 22: Metody opisu dyfuzji wielu składników,

Internal reference frame (Darken 1948)Lagrange substantial materialhellip derivative

gradD

Dt t

or

material velocity = or

m

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 23: Metody opisu dyfuzji wielu składników,

gradM

MD

Dt t

local centre of composition

M iii

c

c

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 24: Metody opisu dyfuzji wielu składników,

gradm

mD

Dt t

local centre of mass

m iii

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 25: Metody opisu dyfuzji wielu składników,

gradD

Dt t

local volume velocity

1

r

i ii

i

c

c

None of them

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 26: Metody opisu dyfuzji wielu składników,

( ) iic c t x const

If not

Then

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 27: Metody opisu dyfuzji wielu składników,

EOS Vegard law

( ) 0dii

J t x ( ) 0ii

J t x ( ) 0i ii

z FJ t x ( ) 0d drift

i iiJ t x c

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 28: Metody opisu dyfuzji wielu składników,

We need different approachhellip

Darken

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 29: Metody opisu dyfuzji wielu składników,

Bi-velocityhellip

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 30: Metody opisu dyfuzji wielu składników,

Lattice sites not conserved

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 31: Metody opisu dyfuzji wielu składników,

bdquobdquoZig-zag Roadrdquohellip Zig-zag Roadrdquohellip

to the targetto the target

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 32: Metody opisu dyfuzji wielu składników,

~250 ag onl o y mEuler

Oumlttinger (2005) bdquosomething is missingrdquo

19th century Cauchy Navier Lameacutehellip

Stephenson (1988) drift amp m

up to 2007 only m

Brenner (2006) Fluid Mechanics Revisitedhellip

Cracow (1994) vd amp drift

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 33: Metody opisu dyfuzji wielu składników,

Brenner in bdquoFluid Mechanics Revisitedrdquo (Physica A 2006)

1 Complemented volume fixed RF

2 Was polite to not notice

conflict between RFrsquos

hellip in our papers

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 34: Metody opisu dyfuzji wielu składników,

150 years of diffusion equation

Defects bdquoeverywhere amp alwaysrdquohellip (1918 Frenkel)

Nonstoichiometry is a rulehellip (1933 Schottky amp Wagner)

Lattice sites are not conserved (1948 Kirkendall amp Darken)

Diffusion velocityhellip (~1900 Nernst amp Planck)

Darken problem has a unique solution (2008 Holly Danielewski amp Krzyżański)

Darken problem is self-consistent with LIT (ActaMat 2010 Danielewski amp Wierzba)

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 35: Metody opisu dyfuzji wielu składników,

150 years of diffusion

Number of laws decreaseshellip

Complexity increaseshellip

Do we bdquostay withrdquo m ρυ q U only

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 36: Metody opisu dyfuzji wielu składników,

B100

A100

A(x)

o

ΛΛ

t= 0+

xxmλ1(0)

Dynamics amp diffusion

1 mx f t x

Does xm depend on time ie xm(t) or xm= constI law F = 0 xm = const

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 37: Metody opisu dyfuzji wielu składników,

B100

A100

t=0+

xxmλ1(0)

a)

Λ Λ

A(x)o

A(x)tgt0b)

xλ1(tgt0) xm

c) tA = const

xλ1(t) xm

λ1(0)

Dynamics amp diffusion

Yes

1

mx const

tf t x

1 mx f t x

Central problem

Eg diffusion anddeformation stressreactions

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 38: Metody opisu dyfuzji wielu składników,

Hopelesshellip fundamentals only

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 39: Metody opisu dyfuzji wielu składników,

1 1 mr rf k x k x k f x x

1 11

r m

i rii

f k x k xx mk f x x

k x

Eulerrsquos theorem f (x1 xrhellip) is called homogeneous of the m-th degree in the

variables x1hellip xr if

several identities follow eg

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 40: Metody opisu dyfuzji wielu składników,

1 i

r iip T N N

NN

1 r ii ip T N N N

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 41: Metody opisu dyfuzji wielu składników,

whole mixture 1

-th component

V

Vi i i

c

i c

Volume densities

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 42: Metody opisu dyfuzji wielu składników,

From Euler theorem

dd dd d

d d di iit t

tc x c x

t t t

1

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 43: Metody opisu dyfuzji wielu składników,

The molar volume is the nonconserved property Buthellip is transported by components velocity field

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 44: Metody opisu dyfuzji wielu składników,

Fundamentals II

The Liouville transport theorem

dd div d

di

i i

t t

i

ff fx x

t t

fi is a sufficiently smooth function (eg have first

derivative C1) and υi is defined on fi

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 45: Metody opisu dyfuzji wielu składników,

Liouville

Conservation of component (fi = ci)

div

dd d 0

d i

t

i i

t

icc x

tc x

t

div 0ii i

cc

t

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 46: Metody opisu dyfuzji wielu składników,

The Liouville theorem amp the Volume Continuity

dd div d

di ii

i i i i ii it t

cc x c x

t t

fi(tx) = bdquovolume densityrdquo = ci(tx) Ωi(tx)

ddiv d

d i i iit

c xt

1 1

div 0i i ii

constc

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 47: Metody opisu dyfuzji wielu składników,

div 0i i iic

The volume density conservation law orhellipequation of volume continuity at constantvolume

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 48: Metody opisu dyfuzji wielu składników,

Overall drift velocity

drift D T tr drift d

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 49: Metody opisu dyfuzji wielu składników,

Finally due to Liouvillethe bi-velocty method

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 50: Metody opisu dyfuzji wielu składników,

dVolume continuity div

d i i iic

t

Conservation of mass div 0 for 1 2ii i i r

t

Momentum conservation DivD

rD

g adi

extiii

Vt

D 1 grad d

D 3ivEnergy conservation

i

mi

i

q

i i ii i

up

tJ

I

drift di i

Entropy production divDD

i

ii

q

isp A

st

JT

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 51: Metody opisu dyfuzji wielu składników,

Entropy production divDD

i

ii

q

isp A

st

JT

1 1grad grad grad grad 0

ms d q di i i

i i i i i ii i i

pA u J

T T T T

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 52: Metody opisu dyfuzji wielu składników,

11 12

21 22

grad ln

gradM

L Lq T

L LJ

L-matrix is both as required by LITsymmetric and non - negative

Brenner 2009 Danielewski amp Wierzba 2010

bull Entropy production term is always positive

bull Bi-velecity method is consistent with LIT

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 53: Metody opisu dyfuzji wielu składników,

Conservation laws in material reference frame

Bi-velocity vs LIT

Diffusion stress reactionsamp more

Planck-Kleinert Crystal

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 54: Metody opisu dyfuzji wielu składników,

Reactions amp Interdiffusion Multiples

T= 150 180 200oC

t = 3h 30h 100h 7days 14dayshellip

Experiment

Cu-Sn-Ag Cu-Ag-Sn-Ni

Fabrication and vacuum annealing

020cm 300cm

350deg

Cu Ag Ni Sn

M Pawełkiewicz EMPA amp AGH

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 55: Metody opisu dyfuzji wielu składników,

International PhD School Switzerland ndash Poland

Fabrication Sectioning

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 56: Metody opisu dyfuzji wielu składników,

International PhD School Switzerland ndash Poland

after heat treatment t=4h and T=180 C

Sn

Cu

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 57: Metody opisu dyfuzji wielu składników,

Interdiffusion amp stress

mechano-chemistry

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 58: Metody opisu dyfuzji wielu składników,

InterdiffusionInterdiffusion

C o5 2 w t N i t= 0F e

5 1 w t N i

D iffu s io n co u p le

Ni-Cu Ni-Fe

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 59: Metody opisu dyfuzji wielu składników,

Model of InterdiffusionModel of Interdiffusion

tgt0

Diffusion couple

c(tx)

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 60: Metody opisu dyfuzji wielu składników,

DDiv grad

De p extV

t

B Wierzba 2008

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 61: Metody opisu dyfuzji wielu składników,

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Future

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 62: Metody opisu dyfuzji wielu składników,

Bi-velocity methodhellip at the Planck scale

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 63: Metody opisu dyfuzji wielu składników,

Oliver Heaviside (1850-1925)

bull Impedancebull Complex numbersbull Heaviside functionbull Maxwell reformulated

Mathematics is an experimental science and definitions do not come first but later on

I do not refuse my dinner simply because I do not understand the process of digestion

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 64: Metody opisu dyfuzji wielu składników,

Planck-Kleinert Crystal

M Danielewski ldquoThe Planck-Kleinert Crystalrdquo Z Naturforsch 62a 564-568 (2007)

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 65: Metody opisu dyfuzji wielu składników,

httpwwwquantumunivieacatresearchc60Zeilinger soccer balls diffracthellip

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 66: Metody opisu dyfuzji wielu składników,

Soccer Balls Diffract

httpwwwquantumunivieacatresearchc60

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 67: Metody opisu dyfuzji wielu składników,

Professor Anton Zeilinger

Experiment amp theory for C60 and C70

C60F48 world record (108 atoms) in matter interferometry

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 68: Metody opisu dyfuzji wielu składników,

J Clerk Maxwell Phil Trans R Soc Lond 155 (1865) 459-512

Already onhellip

bdquoPlanck-Kleinert Crystalrdquo

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 69: Metody opisu dyfuzji wielu składników,

bdquoThe assumption therefore that gravitation arises fromthe action of the surrounding medium in the way pointedout leads to the conclusion that every part of this medium possesses when undisturbed an enormous intrinsic energy and that the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction As I am unable to understand in what way a medium can possess such properties I cannot go any further in this direction in searching for the cause of gravitationrdquo

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 70: Metody opisu dyfuzji wielu składników,

Physics Today [1] rarr ldquoThe persistence of etherrdquo

Statistical mechanics [2] rarr dimensions become large

quantum properties emerge

Quantum space [3] rarr analogous to crystal

Kleinert [4] rarr Einstein gravity from a defect model

[1] F Wilczek Phys Today 52 11 (1999) [2] J L Lebowitz Rev of Modern Phys 71 S347-S357 (1999) [3] M Bojowald Nature 436 920-921 (2005)[4] H Kleinert Ann Phys 44 117 (1987)

Vacuumhellip No [5]rarr ldquoThere is no information without

representationrdquo

[5] W Żurek Nature 453 (2008) 23

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 71: Metody opisu dyfuzji wielu składników,

Volume continuity div 0c

Conservation of mass div 0c

ct

DMomentum conservation Div grad

D m

mextV

t

DI law Grad div

D qJt

ddiv

d i i iic

t

div 0 for 1ii i

cc i r

t

DDiv grad

Di

extiii

Vt

D 1 grad div

D 3i

ii i i i qi i

p Jt

I

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 72: Metody opisu dyfuzji wielu składników,

The Planck-Kleinert Crystal rarr World Crystal (three-dimensional quasi-continuum)

- Frenkel disorder

- defects form solid solution - defects diffuse

- bdquoclassicalrdquo conservation laws

- volume continuity amp material reference frame

- double valued deformation field

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 73: Metody opisu dyfuzji wielu składników,

divt

DDiv

D m

m

t

DDiv

D

e

t

Volume continuity

Mass conservation

Navier-Lame+ diffusion

Energy conservation

Div 2 graddiv divgrad u uσ σ

P-KC single crystal bdquosuper idealrdquo enormous intrinsic energy bounded () etchellip

div 0c

m d

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 74: Metody opisu dyfuzji wielu składników,

Included the entropy production as a result of defect formation and diffusionhellip

L D Landau E M Lifshits ldquoFluid Mechanicsrdquo 2nd ed (Butterworth-Heinemann Oxford 1987)

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 75: Metody opisu dyfuzji wielu składników,

+ stationary travelingamp

their combinations

Processes

1 Transverse wave

2 Longitudinal wave

3 lattice deformation (Kleinert 2003)

4 Pi diffusion (mass)

5 Heat transferhellip

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 76: Metody opisu dyfuzji wielu składników,

Physical Quantity Unit Symbol for unit Value in SI units SI unit Reference

Lattice parameter Planck length lP 161624(12)10-35 m NIST

Poisson ratio in ideal fcc crystal 025 -Cauchy ampPoisson

Mass of particle Planck mass mP 217645(16)10-8 kg NIST

Frequency of the internal process

Inverse of the Planck time

fP = 1tP 185486(98)1043 s-1 NIST

Lameacute constant Energy density 185323719410114 kgm-1s-2 This work

Number of particles in unit cell 4 This work

National Institute of Standards and Technology Reference on Constants Units and Uncertainty httpphysicsnistgov (2006)

The physical constants (ideal regular fcc lattice)

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 77: Metody opisu dyfuzji wielu składników,

Rem

Imm

Re Imm m mi

The energy of volume deformation field

The energy of the torsion field

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 78: Metody opisu dyfuzji wielu składników,

divt

DDiv

D

e

t

Mass conservation

Energyconservation

Volume continuity div 0d

Gravity

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 79: Metody opisu dyfuzji wielu składników,

[defects] asymp const at T= const

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 80: Metody opisu dyfuzji wielu składników,

in Planck-Kleinert crystal

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 81: Metody opisu dyfuzji wielu składników,

div m dP P e

already Newtonhellip

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 82: Metody opisu dyfuzji wielu składników,

Redivgrad 4mMG

2where P PG l c m

Simeacuteon-Denis Poisson

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 83: Metody opisu dyfuzji wielu składników,

116674189 10G NIST data G = 66742(10) bull 10-11

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 84: Metody opisu dyfuzji wielu składników,

4 The ldquodark energyrdquo rarr energy of the DIPPrsquos

1 The Diffusing Interstitial Planck Particles (DIPPrsquos) = WIMPrsquos

2 DIPPrsquos create the gravitational interaction between matter

3 The ldquodark matterrdquo rarr DIPPrsquos

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 85: Metody opisu dyfuzji wielu składników,

Remark 1 Planck length = Schwarzschild radius

2 P WIMP gravitonm m m m Higg s boson

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 86: Metody opisu dyfuzji wielu składników,

Electromagnetism

Zero diffusion

So far

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 87: Metody opisu dyfuzji wielu składników,

042223

Dgraddiv divgrad

DL L

P PP Pm f m ft

σ σNavier-Lame

amp no diffusion

Only transverse wave

1) 0d

2) ρ = ρ0 const

3) div 0

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 88: Metody opisu dyfuzji wielu składników,

3 3

2

2 = 8 grad 8 grad divdiv

P P

P P

L Ll lm mt

xx + x

2

2

2 2 = rot rotLc ct

x

x + x

Transverse waves in P-KC

Equivalent form

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 89: Metody opisu dyfuzji wielu składników,

2

3 1

2

2 = rotr

8

ot1

km299 792 s

P PLc l

t

m

c

xx

Equation of the transverse wave

299 792 5 (NIST)

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 90: Metody opisu dyfuzji wielu składników,

= rotrotm Lt

x

B

t

0

B

t

rotE

mB

22

rot rotLP

P

ff

x

20

1 L

Pf

2rotPfE x

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 91: Metody opisu dyfuzji wielu składników,

Full set Maxwell eqs in vacuum

analogous simple transformations

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 92: Metody opisu dyfuzji wielu składników,

divt

DDiv

D

e

t

Mass conservation

EnergyConservation

andhellip

Quantum mechanics

Re Imm m mi

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 93: Metody opisu dyfuzji wielu składników,

Imm

Im Imgrad grad d m mM M M MJ B eB

The energy flux

1 The process that governs de Broglie waves is the fast internal process 2 We analyze the case when the driving force of the transport (the collective Planck mass movement ie the movement of a complex of

particles showing an energy E and mass M = E c-2) is controlled by the imaginary part of mechanical potential

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 94: Metody opisu dyfuzji wielu składników,

Im

div

gradd mM M

ee

t

J eB

Imdiv grad mM

eB e

t

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 95: Metody opisu dyfuzji wielu składników,

Im

0Re Im 0

div grad

exp 22

mM

m m

M P P

eB e

t

e i

B m M B

Re Im Re ImIm2 2

exp 2 div exp 2 gradm m m m

mP Pi im B

t c M c

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 96: Metody opisu dyfuzji wielu składników,

Re Im Re ImIm2 2

2Re Im

exp 2 div exp 2 grad

exp

m m m mmP P

m m

i im B

t c M c

i c

2

2Imdiv grad mP Pm B

t M

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 97: Metody opisu dyfuzji wielu składników,

2

div grad 2P Pm B c

Mi E

t

22 P Ph m B c

div4

grad i Et

h

M

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 98: Metody opisu dyfuzji wielu składników,

The physical constants at the Planck scale and

four time scalesPhysical Quantity Value in SI units SI unit Reference

Volume of PC cell 4222 002 82810-105 m3 This work ampNIST

Planck density 2062 008 6621097 kg m-3 This work amp NIST

Young modulus 4633 092 98610114 kg m-1s-2 This work

Planck mass mobility 5391 213 98210-44 s This work

Defects self-diffusion coefficient 2422 685 81610-27 m2s-1 This work

Planck constant6626 069 31110-34

6626 069 3(11)10-34 kg m2 s-1 This workNIST

Gravitational constant66742(10)10-11

667417610-11 m3 kg-1 s-2 NISTThis work

Speed of longitudinal wave 519 255 240 m s-1 This work

Speed of transverse wave299 792 153299 792 458

m s-1 This workNIST

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 99: Metody opisu dyfuzji wielu składników,

Physical reality at the Planck scale

bull Faster than light velocity of longitudinal wavehellip Kleinert fine-tuning to make all ldquosound speedsrdquo equal orhellip

consider

bull The different velocities are related to specific force field rarr a real quantities that mark different time-scales

bull The Diffusing Interstitial Planck Particles (DIPPrsquos) rarr gravity

bull The collective behavior of the Planck particles rarr the particle Schroumldinger equation follows

3L c

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 100: Metody opisu dyfuzji wielu składników,

bull Transverse wave equiv electromagnetic wave

bull DIPPrsquos rarr Dark Matter rarr Dark Energy

bull Waves involving temperature equiv ldquothe second soundrdquo described by Landau and Lifschitz etchellip

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 101: Metody opisu dyfuzji wielu składników,

Conclusions

Fluxes rarr Nernst-Planck formulae

Collective behavior rarr standing wave (rdquoparticlerdquo)

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 102: Metody opisu dyfuzji wielu składników,

Conclusions

Multi-phase and

multi-component

Today in R1

Tomorrowhellip R3

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 103: Metody opisu dyfuzji wielu składników,

Future

bull new experimental methods

bullnew processes to predict

bull all methods developed in math and physics will be usefull

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 104: Metody opisu dyfuzji wielu składników,

Forthcoming

elec

tro-mechano-chemistry

d

i i

eli

chi

miB

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 105: Metody opisu dyfuzji wielu składników,

Planck-Kleinert Crystal straightforward

vs

Remark

Complexity of diffusion processes in multicomponenthellip systems

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 106: Metody opisu dyfuzji wielu składników,

E N D

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 107: Metody opisu dyfuzji wielu składników,

Fundamentals I

Euler - the volume amp molar volume

1 1 r rkn kn T p k n n T p

hellip homogeneous of the 1st degree in the variables n1hellip nr

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125
Page 108: Metody opisu dyfuzji wielu składników,

The volume and molar volume

Ni = cic is molar ratio

1 1 r rkn kn T p k n n T p

1 1 r rN N T p k n n T p

hellip homogeneous of the 1st degree in the variables N1hellip Nr

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
  • Slide 98
  • Slide 99
  • Slide 100
  • Slide 101
  • Slide 102
  • Slide 103
  • Slide 104
  • Slide 106
  • Slide 108
  • Slide 109
  • Slide 110
  • Slide 111
  • Slide 112
  • Slide 113
  • Slide 114
  • Slide 115
  • Slide 116
  • Slide 117
  • Slide 118
  • Slide 119
  • Slide 120
  • Slide 121
  • Slide 124
  • Slide 125