microalgae technology for bioenergy, …...microalgae technology for bioenergy, biosequestration,...

12
Discussion Paper, Division of Research and Development, December 2009 Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions Microalgae biofuel can provide energy security for the resources industry

Upload: others

Post on 07-Aug-2020

8 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Discussion Paper, Division of Research and Development, December 2009

Microalgae technology for bioenergy,

biosequestration, and water use efficiency

in Western Australian mining regions

Microalgae biofuel can provide energy security for the resources industry

Page 2: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

" Base metals x Manganese ... Nickel 6 Bauxite-Alumina

• Coal • Diamonds

- Gold

• Petroleum

* Salt s Spongolite o Talc o Heavy Mineral Sands

+ Gypsum 10 Tin-Tantalum-Lith ium o Iron Ore

200km

Mutineer-Exeter Legendre Perseus-Athena .~ermes

North Rankin Angel

ECholYode~ Wanaea Hedland G~n Cossack Port

John Brookes Stag ' '1J~~cr r ~ Pardoe . Woollybun . • .. ~"t:ionsCapn OVarne

8arrowJ sland • Harnet " - Indee GriHm C·

. Vincent ~rest . NiH StyQarrow.9- Saladin . Woodie Woodie x [jjJ Y «Oil

Enfield OPannawomca Telfer Roller/Skate nslow Salt Cloud Break

Brockman 0 Marandoo o . . Paulsens 0 ~yandlqOOgll')a BHP

Tom Pric~rabu rdooO Va.ndlCoogma HI West AQgelas Mining Area C

ChannarO 0 Newman Hope Downs

+ Lake MacLeod Gypsum l ake Macl eod Sa~

• Plutonic

Si! OJack Hills Useless Loop Magellan • Jundee-Nimary

v Meekatharra--8luebird . ~ • Wiluna Bumakura • ...Mt Keith

T aliering Peak 0 Cosrnos ..... lein.ter

Sandstcn9- Agnew • uanot rOY eLawlers·

[jjJ Jaguar

'" Koolan Island

Argyle .

Blina/Lloyd Savannah ... • • Ellendale

Tanami-Coyote.

• Paddington . Golden Feather

Kundana East . Kanowna-Golden Mile . Golden Valley

Kambalda ... .. Coolgardie-- E arnllya HIli Redemption - J> ..... Mt Manger'

South Ka l Mines ... Silver LaKe l on

9Nickei

Watt e. am lanfranc~ , raml'"ays t.K b Ida Wannawa~ itet I srroe~ -

Higginsville . Lanfranchi Tramways

Central ... Emily Ann • Norseman

! SDkm I

Golden Grove Port Gregory Eremia [jjJ Murri n Murrin ... • Granny Smith

Gwalia-leonora· . Sunrise Dam Jin§eml8 Hovea.. Cliff ead . XyrisV Koolanooka

ongciti OThree Springs Beharra Spnngs Eneabba

Woodada

Koolyanobbing 0

Cooljarloo 0 Marvel Loch-­Southern Cross

Der.ark S da ood "/lar anup

Yoganup Ludlow

North Capel Tutunup

Huntly ale

niffin

esfarmers ®Greenbushes

Jangardup S Wqogenellup

SEE ENLARGEMENT

Fig. 1: Major Mineral and Petroleum Projects in Western Australia. Source: [1].

www.murdoch.edu.au

Page 3: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

Diverse, valuable products from microalgae

Page 4: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

Using renewable energy in microalgae production

Page 5: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

Applying excess groundwater from mining operations

Page 6: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

Microalgae production allows biosequestration at source

Page 7: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

RENEWABLE ENERGY ATLAS OF AUSTRALIA: Daily Solar Exposure - Annual Average

N

A ,-:::' .50",,=::500:-. __ ',.,000 _ Kilometres

www.environment.gov.au/renewablel atlas

o.partmml of U", b,irvnmml.

w.~. IIM"~~ •• d dot An,

Me-gaJouleslm'

----

-" -" _ 14

-" -" _17

-" -" 020 021 022 024

oc--.. _ ... (OopotMwo ..... ---,"""--' ~----o~ .. _ ... (Goooaor>to _ ... )2OCII --~- o':::::::=:lOt'ld ---" ___ tllIe_ ..

---~"" ~ .. -.,. ... c-... _ .. _ ThoC-",,"n<O _ _ .. _ .. .., _ .. _-,,­.. , ..... _ ... --~-~-. -~­_«AIN\~"'"

~-""--" _.~2001

-.E ___ ~fGCWW)

Fig. 3: Australian annual average daily solar exposure. Source: Renewable Energy Atlas of Australia.

RENEWABLE ENERGY ATLAS OF AUSTRALIA: Mean Annual Ra infall

N

A ,-,::'.50""=::500:-. __ ,,.,000 _ Kilometres

www.environment.gov.au/renewable/a tlas

AU5lra li.n Go"cr nmcnl

Ikpart ..... ' oflhe t:n.ironment. Wa' .... IIftir • • nd IkArb

Milt imetres

D 'IO D m D 'iSDSll 0 2120632

D 230 0 131

D 2IotD.· D JOO 1.113

D l52 _ -U50

0 ...

~-~ .. _ ... (o.o.:o.-..... E ___ ...

"'_12OOt --,,~ .. _ ... !Gooounte -,--O~ .. _ ... (_ .. -,--... _-_ .... ""_ .. ----"" _.- ..... ~ ... -.. -lhoc-_n<O _ _ .. _to"" _ .. __ .. -::.::=---"'....-~-.

~-"­_,E_\_01 ... ~_fIo<_"'''' _ . 0.-2001 -.E ____ !G()IrII<)

Fig. 4: Australian mean annual rainfall. Source: Renewable Energy Atlas of Australia.

www.murdoch.edu.au

Page 8: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

Amphora

Ettlia oleoabundans

Ankistrodesmus falcatus

Nannochloris

Synechococcus

Tribonema

Nannochloropsis

Pavlova lutheri

Pavlova salina

Nitzschia palea

Phaeodactylum tricornutum

Chlorella sorokiniana

Isochrysis galbana

Scenedesmus quadricauda

Porphyridium purpureum

o

Lipid productivity (mg.L·1 .day·1 ) (]l o o

o (]l o

I\) o o

I\) (]l o

w o o

w (]l o

Tetraselmis suecica ~=g,,===-------i

Monodopsis subterranea

Chlorella vulgaris

Scenedesmus obliquus

Chaetoceros muelleri

Chaetoceros calcitrans

Thalassiosira pseudonana

Skeletonema costa tum

Chlorella minutissima

Chlorella emersonii

Fig. 5: Species lipid productivity. (Average literature (dark grey). and calculated (light grey) values for biomass productivity - mg/Uday. Error bars show the min. and max. recorded lipid productivity for

literature values and propagation of error for calculated values). Source: [11].

www.murdoch.edu.au

Page 9: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

Microalgae production methods

In terms of production methods, there are essentially two competing technologies for

commercial algae production: open raceway ponds or closed photobioreactors. Closed

photobioreactors contain the water inside complex transparent piping systems. While more

controllable, efficient and resistant to contamination by other biological organisms, are capital

intensive [5]. (Fig. 6). Higher oil algal strains generally grown slower than low oil strains,

which when contamination occurs results in greater populations of low oil species [5] (Table

4). New laboratory-based process optimisation studies regarding trace minerals, and other

nutrients are showing promising results that incrementally enhance commercial system yield

and cost-effectiveness [18]. The ability to control yield in photobioreactors are a significant

advantage over ponds. However, open ponds are a low cost option. The productivity of pond

production is reduced by poor mixing, and contamination by other algal and microorganism

species that consume algae [6] [8]. While less controllable, adjustments to the pond depth, cell

densities, pond temperatures, dissolved oxygen concentration, and pH in pond water,

increases productivity markedly despite competition from other organisms [12] [11].

The suitability of algae production for mining bioenergy and biosequestration is primarily

dependent on the price of crude oil. At $US60 a barrel for crude, microalgal oil would be cost

competitive at $USO.4l1L, whilst at $US80 a barrel microalgal oil would compete at

$USO. 5 5fL (all pre-tax). Therefore, a reasonable medium-term target price for algal oil for

algal biodiesel cost competitiveness with petroleum diesel is $US0.48fL pre-tax. Chisti (2007)

undertook an economic analysis to compare the operating costs of a photobioreactor and

open pond. Assuming 30% oil content by weight, the cost of production for the

photobioreactor was estimated at $US9.83fL and the open pond was $US12.6fL [6]. (Table 5).

Fig. 6: Professor Borowitzka's helical tubular photobioreactor at Murdoch University. Source: [6].

www.murdoch.edu.au

Page 10: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

These costs are sensitive to economies of scale. With a 100-fold scale increase to 600 photobioreactor units, or SO ha of ponds, the algal oil photobioreactor and pond production price was projected to be $US1.40 and $US1.Sl (pre-tax), respectively. The recovery process comprises roughly half of this total algal oil cost [6].

Table 4: Oil content of some microalgae species. Source: [6].

Microalga

Botl)lOCOCCIiS bralillii

Chlorella sr. C,yplliecodillilll11 collll i;

Cylilldmrheca sr. Dwwliella prill/olec/a Isoch lysis sr. MOllal/al/llms salina N ail/lOch/oris sr. Nal1llOch/oropsis sr. Neochloris o/eoabwl(/alls Nil::schia sr. P/weoda cly /wl/ tricorn/llt llll

Schi::.ocliy lrilll1l sp. Telrase/mis slIeica

Oil content (% dry wt)

25- 75 28- 32 20 16- 37 23 25- 33 >20 20- 35 3 1- 68 35- 54 45-47 20-30 50- 77 15- 23

Table 5: Comparison of photobioreactor and pond production methods. Source: [6].

Variable Photobioreactor Raceway ponds fac ility

Annual biomass 100,000 100,000 production (kg)

Volumetric productivity 1.535 0.117 (kg 111- ' d- I)

Areal productivity 0.048 " 0.035 b

(kg 111- 2 d- I) 0.072 c

Biomass concentration 4.00 0.14 in broth (kg 111- ' )

Dilu tion mle (d- I ) 0.384 0.250 Area needed (m2

) 5681 7828 Oil yield ( Ill' ha - I) 136.9 d 99.4 d

58.7' 42.6 ' Annual CO2 183,333 183,333

consumption (kg) System geometry 132 para llel tubes/unit; 978 m2/pond; 12 III

80 111 long tubes; wide, 82 111 long, 0.06 III tube diameter 0.30 III deep

Number of units 6 8

a Based on faci lity area . b Based on actual pond area. C Based on projected arca of photobiorcactor wbcs. d Based on 70% by WI oil in biol11ass. e Based on 30% by wt oil in biomass.

www.murdoch.edu.au

Page 11: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

The future for algal bioenergy, biosequestration, and water use efficiency

Page 12: Microalgae technology for bioenergy, …...Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions These costs are sensitive

Microalgae technology for bioenergy, biosequestration, and water use efficiency in Western Australian mining regions

Di

References

1. Go\-emmenl of We-slern Austrilhil dnd DepilTlmem of MinE'S ilnd Pelroleum, Wt'SIMI AuStfollan ml/lerill ond pelro/eum 51eIDI;a d;gesr 2008{)9. 2009: Penh, WE'Stern Au~tra lia.

2. Ccntre for Intcrnational Economia, Westrrn AuslTa/ia bio/ur/$ raskfotcc tcporr: Appendix" - rhr ('(onamia of biome/s for Wt'Slem Australia. 2007, The Department of Industry and Rewurce5: Canberra.

3. AU511ahan Insiliule 01 Pelroleum. WE.'t.-'k ly dif'Se/ prKes reporl - IVf'E'k ffidmg 6 De>cember 2009. 2009 [C lled 13 De<:ember]: Available irom. bJlp:lIwww.ajo.(Qm.guioricingffamNlee):;Iy Dje}e! Prices Rewo him.

4. McHcnry. M. P .. Po/icy optiom when gi,.ing nrg<;tivc: (XliCrna!ities Ilhltkrl v"Jur: (/can cnrrgy policymaking and reslftlc!Uring lhe We-slern Australian energy seelor. Energy Policy, 2009. 31 : p. 1423·1431 .

5. Vasud~van, P.T. and M. Briggs, BioJle<.r.J proOu(iion - currenl )/ale or the art and c~ilE.'!"tgf"S. JouIT\al 01 Ind us lria l Microbiology and Biote<:hnoJogy, 20(}8. 35: p. 421·4:J0.

6. Chisti, Y .. EJ;odit'S~ from micro<Jigae. Biotechnology Advances, 2007 . 25(2007).

7. SheehDn. J., et DI .. A look back at the US Dep<jrtrnem of EnergY'5 aquatic Specif'5 program - biodie-sel from algae 1998 , Nal ional Renewable Energy Laboralory: Golden , USA.

8. 1ll.I llt ley. M.I .. and IH; . I<.eda lj f:. ( 0 , mitigation i': r~ne· ... 'able oil from rhoto;ythetir. micra~s: a new apprai,a l. rv1iti gat ion and Adaptation Strat€'g ie <; for Global Chang€', 2006. 12 : p. 573·608 .

9. Am in. S., Re-vie-.... on b iofl.J~ 1 oil and 905 prodvction pran.'"sst'$ from microalgae. Energy Conversion ~nd Management. 2009. 50 : p. lB34· 1840.

10. Wyman. CI . and !l J. Goooman, Iliotecilnoloql' fo r production of fu~s. (~micals, and mMerials from bioma,s Applied BiocbemiSlty ilnd Biotechnology, 1993. 39(40): p. 41-59 .

11. Griffiths. M J. (,nc! S T.L Harrison. lipid prOOuctivi'-Y as a key cfuracterisrk: for choosbg illgal jpeoo for biodie-;el produCflon. Applied rvlicw biology and Biotechnology. 2009. 21 : p. 493·507.

17. Moheimani. N Rand M . Iklrowi\lko. Umils w productivity of rhe AI~ Pkurrxhrysi~ Ci';ttefae (r /a;Jwpphy/a) grow,' in OtJldoor I"acewcy ponds. Biotechnology ilnd Bioengineeling, 2006. 96(1): p. 27·36.

1 J. Van Vrenwyk. A M t . et 01. ledmical Hul/elin No 92- An inveOlOry a.,d oo.1tjirklTl W(\."ey of lhe Pilbara region. Western Auwd,o 2004 , Depilrtmeru of Agriculture: Perth, Western Australia .

14. Wang, B . et al , CO: bio-miligarion using microalgoe. Applied Mi<robiology and Biotechnology, 7008 79: p. 707-718.

1~. Chan. Y. AUWEdia to /au!l(h -.,.,'Orids largest" gret:¥l }/ime facility. 2009 lciled 14 Decemberl: Available from: hnp;{lwww busjncug re<:o comlbusjoos-QTe<:ofncw:J2253 1 1 5Imbd=encrgy· launch-world-Ijngo] .

16. MBD [ neTg)' Ltd. Ilomepage' building commercially and eflvironmen1dlly stlsl~inable so/ullom 10 cerbon capture and storage. 2009 [(l Ied 14 December]; Available lrom: hllp:IM'\vw.mbdener9I'.com .

1'1. X hneider. I). Grow your own? )\XXi lcited 14 IRCl'mberl; AVoi liJble from' httPiM'/ww,amcr icaose jcm jsJ orql jssucYDubfarQw-'1QUr-owD.

18. Xi<.l lig . W., et ;, 1., Higli ·tJ;:li) ity h:r lm;n(dtlo!! of miuwlgd ClllmeNd protothetoide:. ill /.Jior~<lltr.; r fo r miuo!.iio-Jiey;/ proooclion. App lied Miaobiology and Biolechnology, 2008. 78: p. 29-36.

19. Adv,mced l) iofue ls USA. (I~n a"'Jole biohwl proie<:t I~"d, world in productivity. )(XJ9 Icited 14 December l: Ava ilable r rom; h IIp:lIadva need bio r uelsu>a. . in r 0/[ lean-algae-bio r VI' l·pro jl?C l·l€,ads·world·in-pnx lu(1 ivi l y.

20. Hightower. M., t " e"fgy and wat!.'!" iswe> and cnal,'eng~5 - completing the energy sustainability puzz,'e, in iltUSt 09. 2009 , S~ndia National Laborato ries, New Mexico, USA: BrisbJne, Austra li a.

) 1. (h(lfcos!oet. c.. /I revil.'W of ~mbrane pr{Xe>5f'S and -, .. newable enerqie5 for ck-;ali!l<'lfion f)e<;aiinat ion. )009. 245' p. 214-231 .

22. Gregory, 5.J . et (II., (han~ i .... the chemistq and biota of Loke (areI" a large -;aIr lake impacted by hyperseUne dlsch.:rge from mn'lll1g oper<:/Jorn 111 Western Austrcllia. Hydrobiologlil , 2009. 626: p. 53·66.