microbes in heavy metal remediation ijeb 41(9) 935-944

Upload: julianrosengren

Post on 01-Mar-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    1/10

    Indian Journal of Experimental Biology

    Vol. 41 , September 2003,

    pp

    . 935-944

    Microbes in heavy metal remediation

    P Rajendran, J Muthukrishnan & P Gunasekaran*

    Department of Microbial Technology, Madurai Kamraj University , Madurai 62521, India

    Heavy metal contamination due to natural and anthropogenic sources is a global environmental concern. Release of

    heavy metal without proper treatment poses a significant threat to public health because of its persistence, biomagnification

    and accu mulation in food chain. Non- biodegradability and sludge production are the two major constraints

    of

    metal

    treatment. Microbial metal bioremediation is an efficient strategy due to its low cost, high efficiency and ecofriendly nature.

    Recent advances have been made in understanding metal - microbe interaction and their app

    li

    cation for metal

    accumulation/detoxification. This article summarizes the potentials

    of

    microbes in metal remediation .

    Keywords: Bioremediation techniques, Heavy metal contamination, Metal bioremediation, Microbial metal bioremediation .

    Contamination

    of

    heavy metals in

    the environment

    is

    a major global

    concern because

    of their toxicity

    and

    threat to human life

    and environment

    l

    -

    2

    .

    Much

    research has been

    conducted

    on

    heavy

    metal

    contamination in soils from various

    anthropogenic

    sources such as industrial wastes

    3

    ,

    automobile

    ernissions

    4

    , mining activit/,

    and

    agricultural

    practices

    6

    . The

    group

    of heavy metals are

    about

    65

    and are defined in a

    number

    of criteria

    such

    as their

    cationic-hydroxide formation, specific gravity

    greater

    than 5

    glml

    complex

    formation, hard-soft acids

    and

    bases, and,

    more

    recently , aSSOCiatIOn with

    eutrophication and

    environmental

    toxicity .

    Roane and

    Pepper

    7 classified metals into three

    classes on the basis

    of

    their biological functions

    and

    effects: (1) the essential metals with

    known

    biological

    functions, (Na, K,

    Mg

    , Ca , V,

    Mn,

    Fe, Co, Ni, Cu, Zn,

    Mo, and

    W)

    ,

    (2)

    the toxic metal s (Ag,

    Cd

    ,

    Sn

    , Au,

    Hg, Ti , Pb, AI , and metalloids Ge,

    As

    ,

    Sb

    and Se) ,

    and

    (3) th

    e nonessential ,

    nontoxic

    metals with no

    known biological effects (Rb, Cs,

    Sr

    , and T).

    Ba

    sed

    on primary accumulation

    mechanisms

    in sediments,

    heavy metals are classified into five

    categories

    . (I)

    adsorptive and

    exchangeable, (2) bound

    to

    carbonate

    phases , (3)

    bound

    to reducible

    phases (Fe

    and

    Mn

    oxides),

    (4) bound

    to

    organic

    matter and su lfides,

    and

    (5) detrital

    or

    lattice metals

    8

    .

    Need for metal bioremediation

    Greater awareness

    of

    the ecological effects of toxic

    metals and their biomagnifications through

    food

    chain

    *

    Cor

    respondenl aUlhor :

    Phone: 0452-5456478; 452-458209

    Fax 0452-545 8478; 0452-459139

    Emai l pgun

    a@e

    lh.nel

    as well as highly

    publicized

    episodes

    such as mercury

    pollution in

    Minimata,

    Japan

    has

    prompted

    a

    demand

    for

    decontamination

    of

    heavy

    metals in the aquatic

    systems.

    However,

    essential metals are required for

    en

    zyme

    catalysis, nutrient transport, protein structure,

    charge

    neutraliziation

    and contro

    l

    of

    osmatic

    pressure

    9

    . Olson

    et al

    I

    reported incorporation

    of

    nickel in four microbial

    enzymes

    involved

    in

    ureolysis,

    hydrogen

    metabolism,

    methane

    biogenesis

    and

    acetogenesis . A

    number

    of heavy metals are

    required as rnicronutrient s to plants.

    They

    act as

    cofactors as part

    of

    prosthetic

    groups of enzymes

    which are

    involved

    in a wide variety of metabolic

    pathways.

    However

    , when they are

    prese

    nt in high

    levels, most heavy metals are toxic to plants

    I .

    Metal

    concentration

    has

    been

    linked to birth

    defects,

    cancer, skin lesions, retardation leading to

    disabilities, liver

    and

    kidney

    damage

    and a host

    of

    other maladies

    3

    The Center

    for

    Disease

    Control

    (CDC)'2 and the

    Agency

    for

    Toxic Sub

    stances and

    Disease Registry

    (ASTDR) 2 estimate

    that

    15-20 of

    U.S. children

    have

    lead levels

    greater

    than

    15 mgldl

    in

    blood

    , which

    is considered

    potentially toxic .

    Chan

    ges

    in trace

    element

    profile of the soil causes

    physiological and genetic

    changes

    in various life,

    such as plants, aquatic

    and

    benthic fauna, insec ts,

    earthw

    orms, fish , birds

    and mammals

    as

    evidenced

    by

    recent research work4.

    Tyagi et al

    3

    stated

    th

    at the

    concentration of heavy metals in industrial areas in

    India

    is

    much higher than the

    permis

    sible limit of

    World H

    ea

    lth

    Organization

    .

    They

    have

    also reported

    that the

    se

    metals in the

    ground water have

    caused

    various di seases in

    human

    beings and also disturb the

    metabolic functions. A

    brief li

    st of hea

    vy

    metals w ith

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    2/10

    936

    INDIAN J EXP BIOL, SEPTEMBER 2003

    their pathological ef fects, which pose health hazard to

    en

    vi

    ronment (Table

    I )

    1

    4.

    etal availability

    Sp

    os ito

    5

    ca tego ri

    se

    d metals as bioava il able

    (prec ipitated, non- s

    orb

    ed and mobile) and non

    bioavailable (precipitated , so rbed , and non-mobile)

    metals. In nature, metals a

    nd

    Il etalloids

    ex

    ist

    mo

    s

    tl

    y

    as ca tio ns,

    oxy

    anions, or

    both

    in

    aqueo ll

    s solution

    and

    mostl y as

    sa

    lts or

    oxides

    in

    cry

    stalline (min eral) form

    or as amorphous prec ipitates in so luble form

    7

    .

    ' 6

    . The

    mobility of metals as hydrated ionic sa lts is depe ndent

    on two factors

    1

    The meta llic e lement that is

    participating as positi

    ve

    ly charge d io ns (cations) and

    2.

    Th

    e one,

    which makes

    up n

    ega

    ti vely charged

    c

    omp

    onent o f the

    sa

    lt. The cati onic/ani onic

    so

    lubility

    rela ti onship is in T abl e 2 . Geochemica l fo

    rm

    s of

    heavy metals in soil a

    ff

    ect their

    so

    lubility ,

    which

    di r

    ect ly influen

    ce

    the ir bi

    oava

    il

    abili ty

    '

    7.

    Lena a

    nd

    Rao

    l8

    reported mobility and bio

    ava il

    ability

    of

    metals

    in so il s is in the order of Zn > Cu > Cd > Ni , based on

    their solubility and ge

    oc

    hemica l form s. Th e fate of

    tox ic meta ls

    in

    so

    il

    s depend s mainly on the initial

    chem ica l form of the metal

    eve

    n though the

    enviro

    nment

    al and edaphi c

    co

    nditions such as

    pH

    redox status, and

    so il

    orga nic matte r co ntent have

    signi fica nt influen

    ce

    '

    ' . Studi es of

    Sa

    uerbec k and

    Rietz

    20

    have indica ted the ex istence of different

    bindin g fo rms and stro ng ly p H depenent

    so

    lubility

    effec ts of the trace e lements. Soil ca tion exchan

    ge

    capaci ty

    (CEC)

    af fect metal bi

    oava

    il ibilty and it

    depends on orga

    ni

    c matter and cl ay co ntent of the

    so il. The tox ic ity of metals within

    so

    ils with hi gh

    CEC is l

    ow

    even at high total meta l

    co

    n

    ce

    ntra ti on and

    in

    co

    ntras t the toxic ity is vice -ve rsa in low CEC

    7

    .

    Un

    de

    r ox idized or

    ae

    robic

    co

    ndition

    (+ 800

    to

    a

    mY )

    "metals

    are

    usua

    ll

    y found as

    so

    luble ca ti oni c fo rms

    (Cu

    2

    ,

    Cd

    2

    +, Pb

    2

    + Ca

    2

    +)

    and

    in redu ced or a nae robic

    conditions (0 to -400 mv) they are fo und as CuS ,

    PbS ,

    and

    CdC0

    3

    , prec ipitates

    7

    . At low soil pH the

    metal bioavailability increases du e to its free ionic

    spec i

    es and

    in contras t, high

    so

    il

    pH

    dec r

    eases

    du e to

    inso luble metal minera l ph os ph ate and

    ca

    rbonate

    form ation . However, in co ntrast to

    oth

    er

    met

    al

    bioavailabiliti es, at high pH range of 5-9, ni cke l may

    be adso rbed on iron and manga nese ox ides, o r fo rm

    compl

    ex

    es

    with

    inor

    ga nic li ga nds (

    OH

    -,

    S042-

    ,

    cr

    or

    NH

    3)21.

    etal microbe interaction

    Microbial interac ti ons with heavy me ta ls we re

    rev iewed by, Ehrlich

    ' 6

    and Bev eridge and D

    oy

    le

    22

    .

    Mi crobial interacti o ns with sma ll qu antiti es of meta ls

    or metalloids do not

    exe

    rt a maj or

    imp

    act on m

    eta

    l o r

    metalloid d istribution in the environment, whereas

    inter

    ac

    tions with lar

    ge

    r

    qu

    antiti

    es

    are re

    quir

    ed in

    ener

    gy met

    abo li sm, fo r

    in

    stan

    ce

    , to have no ti cea

    bl

    e

    impac t

    ' 6

    .

    How

    ever,

    du

    e to strong ionic na

    tur

    e metals

    Tab le 2 - Summary of cati on/ani on solu bi li lYre la tionshi p of

    metals

    Anions

    Catio ns

    So lu bil ity

    A

    ll

    ani ons

    Na ,

    K

    ,

    NH/

    Sol

    ub

    le

    NO

    ;-

    , NO 2 ' C

    2

    H

    3

    0

    2

    ,

    A ll metals

    Sol

    ub

    le

    Mn0 4, CIO , CIO

    CI- , Br- ,

    1-

    A

    ll

    metals except Solu ble

    Pb

    2

    +,

    Ag , Hg2

    SO A

    ll

    metals except Solub le

    Ba

    2

    , Sr2 , Pb

    2

    +

    0

    2

    -, S2-, OW

    A

    ll

    metals except

    In

    so lu ble

    Ca

    2

    +, Ba

    2

    +, Sr2+

    CO , PO , SO

    A

    ll me

    ta

    lli

    c sa

    lt

    s e

    xc

    ept Insol

    ub

    le

    BO j- , F , SiO j-

    Na

    +, K+, NH/

    Metal Use

    Tab le I - App

    li

    cation of heavy metals and their t

    ox

    ic effects

    Effect

    Hg

    Coal. vinyl chl orides. elect

    ri

    cal

    ba ll

    e

    ri

    es

    Pb

    A I

    Cd

    Cr

    Zn

    Co

    Se

    Ni

    Bc

    Pl as

    tic, pai

    nt

    , pipe,

    ba ll

    eries, gasolin e, auto exhaust

    Pesticides, coa l. deter

    ge nt

    s

    Ferti I ze r, pl astic, pigme

    nt

    Tanning,

    pa

    i

    nt s,

    pigme

    nl

    , fun gicide

    Fert

    il

    i

    ze

    r

    Vilamin B- J2

    Coal, sulf

    ur

    Electro plating

    Coal, rocket fuel

    Neurotoxic

    Live

    rcirrohosis, me

    ni al

    disturbance, cancer, ulcer

    an

    d hypoke

    rot os

    is

    Ki

    dn

    ey damage, i

    nju ry

    in cns and me

    nt

    al re

    ta

    rda

    ti

    on

    Nephritic, cancer and ulceration

    Vomitin g, renal damage and cra

    mp

    s

    Dia

    rrh

    oea. low blood pressure a

    nd

    pa ralysis

    Damage of li ver, kidney, spl een and nervo usness

    Teratogeni c, carc

    in

    ogenic, genotoxic and mu tagen

    Carcinogen, ac ute and chronic poison

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    3/10

    RAJ

    ENDRAN e al.: MICROBES IN HEAVY METAL REMEDIATION

    937

    bind to many ce llular

    li

    g

    and

    s and di splace nati ve

    essential metals fro m the ir no

    rm

    a l binding sites,

    whi ch are tox ic

    7

    . Eubac te

    ri

    a and

    ar

    c

    hae

    a are abl e to

    ox idize Mn (II), Fe (II), Co (Il l ), AsO ; , Sea or redu

    ce

    Mn (IV), Fe (Il l) Co (II ) AsO , SeO on a large

    sca

    le and

    co

    nserve ener

    gy

    in th

    ese

    r

    eac

    ti

    ons '7. So me

    microb es reduce ions such as Hg2+ or Ag+ to HgO and

    AgO respec

    ti

    ve ly,

    but

    do not co n

    se

    rve ener

    gy

    fro m

    these r

    eac

    ti on

    3

    . Prokaryo tes methylate meta l and

    meta

    ll

    oid compounds produ c ing co rr

    es

    ponding

    volatile metal d e

    ri va ti ves

    4

    . Th e bac teri a l ox idation of

    AsO ; to AsO - by a stra

    in

    o f

    Alcaligenes faeca lis

    and reduc

    ti

    on of

    CrO

    ;- to Cr (

    OH

    h by

    Pseudomonas

    j luo rescens LB 300 or Enterobacter doc e are examples

    of redox reac tions invo lving enzy ma ti c microbial

    detoxifica tion of harmful meta ls o r meta

    ll

    oids

    5

    .

    Microbes secrete in or

    ga

    ni c metabo

    li

    c products such

    as sulfide,

    ca

    rbonate o r ph

    os

    ph ate ions in the ir

    respiratory metabo

    li

    sm and with them prec ipitate tox ic

    metal ions as a form of non-e nzy matic detoxifi

    ca

    tion

    6

    .

    In nature mi crob

    es imm

    obili

    ze

    metals throu gh

    ce

    llul ar

    sequestration and acc umulation, or through extrace lliular

    . 7

    prec lplta

    tJOn

    - .

    Conventional method

    of

    heavy metal removal from

    soil and water

    Various me thods are ava il able fo r the remova l and

    manage ment of h

    eavy

    meta ls, which in vo lve tec hni ca l

    inputs. Current methods u

    se

    d for tr

    ea

    tin g

    so il

    s

    co ntamin ated with tox ic metal are 1) Land filling: the

    excava

    tion, transport and depos ition o f co ntamin ated

    so il in

    a permitted hazardous was te land ,

    2

    Fixa

    ti

    on:

    the che

    mi

    ca l pr

    ocess

    ing of so

    il

    to immobili ze the

    metals, usua lly fo llowed by trea tm ent o f the

    so

    il

    surface to e liminate penetration by water and 3

    Leachin

    g:

    us ing ac id

    so

    lutions as proprietary l

    eac

    hin g

    agent to desorb and leach meta ls fro m

    so il

    fo

    ll

    owed

    by the return of cl ea n

    so

    il res idue to site

    9

    .

    Approaches to redu ce heavy metal

    co

    ntamin ation

    in

    water include:

    1)

    precipita tion or fl occul a tion,

    foll owed by se

    dim

    e nta tion and di spo sa l of the

    resulting sludge, 2 ion exchange, 3 rever

    se

    os mos is,

    4

    microfiltra

    ti

    on,

    5

    e l

    ec

    trodi alys is and

    6

    eva

    poration . Apart from these, other methods like

    foa m flo atation, liquid me

    mbr

    ane te

    chniqu

    e,

    so

    lvent

    ex traction and crys talliza tio n ca n also be empl oyed .

    Bioremediation techniques

    Th

    e goal

    of

    microbi al remedi a

    ti

    on

    of

    h

    ea

    vy meta l

    contaminated so ils and

    sedim

    ents are to

    imm

    obili ze

    the metal in situ to redu ce metal bioava

    il

    ability and

    mobility or to remove the metal from the

    so

    il.

    P

    az

    irandeh et al.

    28

    described the metabolic path

    ways

    r

    es

    ulting in

    bioprece

    pit ation o f h

    ea

    vy metals or the ir

    biotransformation. Low cos t and higher efficiency at

    low metal co nce ntra tions make biotechno log ica l

    process ve ry attrac ti ve in compari

    so

    n to ph ysico

    chemica l methods for h

    eavy

    meta l remova l

    9

    . Metal

    remediation strat

    eg

    i

    es

    using microorga nisms ca n

    minimi

    ze

    the bi

    oava il

    ability and bio tox ic ity

    of

    h

    eavy

    metals

    3o

    .

    . Bios timulation, stimulation of viable nati ve

    microbi al popul atio n, bi

    oa

    ugum enta tion, artif ic ial

    introducti on o f viable popul a tio n, bioaccumul a tion

    use o f live ce

    ll

    s, and bi osorpti on, use of

    dead

    microbi al bio mass, are the

    cos

    t-ef fec ti ve inn

    ova ti

    ve

    bioremediati on t

    ec

    hno l

    og

    i

    es

    . Biolog ica l approac h for

    metal detox ifi

    ca ti

    on affords the potenti al for se lective

    removal of tox ic meta ls and operatio n fl ex ibility and

    easy

    adaptability for

    in situ

    a

    nd

    ex situ

    appli

    ca

    ti

    on in

    a ran

    ge

    of bio r

    eac

    tor confi gurati ons

    3o

    . In the past few

    decades, new metal t rea tment and recovery t

    ec

    hniq ues

    based on biosorptio n h

    ave

    bee n explored us in g both

    dead and living microbi al

    bi

    omass with remarkable

    e ffi c iency. Prokar

    yo

    tic and euk ar

    yo ti

    c mi

    cro

    bes are

    capable of accumul atin g metals by binding them as

    ca tions to the ce

    ll

    s

    urf

    ace in a pass i

    ve

    process

    .

    Microbes for metal remediation

    Th

    e mec hani sms by whi ch m

    eta

    l ions bind to the

    ce ll s

    ur

    face include e lec tros tati c interac tio ns, Van

    de

    r

    W

    aa

    ls forces, cova lent bonding, redox interactions,

    and ex trace llul ar

    pr

    ec ipita

    ti

    on, or c

    ombin

    a

    ti

    on o f

    these processes

    3

    .The nega tiv e ly charged groups

    (carbox y l, hy

    drox

    yl, and phos phoryl) o f the bacte ri al

    ce

    ll

    wa ll ad

    so

    rb metal ca tio ns, which are then retained

    by mineral nucl

    ea

    tio n

    33

    . Bi

    oso

    rpti on studi es o f U, Zn,

    Pb ,

    Cd

    , Ni ,

    Cu

    , Hg ,

    Th

    ,

    Zn

    ,

    Cs,

    Au, Ag,

    Sn

    and Mn,

    showed that the ex tent of so rptio n va ri es markedly

    with the metal as we ll as with the microorga ni

    sms

    (Tabl e

    3).

    Surf

    actants such as rha

    mnolipid

    produced by

    P aeruginosa

    show spec ific ity for certain meta ls uch

    as Cd and Pb . Hi gher molec

    ul

    ar weight (- 10

    6

    )

    bi

    oe

    mul sifiers such emul sa n,

    ca

    n also aid in me tal

    re

    mov

    al

    35

    . Studies of Sand

    et a f 36

    revea l

    ed

    that

    Thiob cilUu s f erroxidans

    and

    Leptospirillum

    fe rroxidans are ca pable of ox idiz in g iron and sulfur.

    Joe rge r et al 37 reported that metal acc umulat ing

    b

    ac

    te

    rium Pseudomonas stutzeri

    AG

    259

    is

    ca

    pab le

    of

    produ cing s il ve r b

    ase

    d single crys tals, whi ch ca n

    reduce the toxicity of metals.

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    4/10

    938

    INDI AN

    J

    EXP BIOl ,

    SE

    P

    TE

    MB ER 2003

    Mechanisms of metal tolerance

    Orga ni sms respond to heavy metal stress using

    di fferent defense sys tems (F ig. 1) such as exclusion,

    co

    mpartm enta

    li

    za

    ti

    on,

    fo

    rmation

    of co mple

    xes and

    sy nthes is of binding proteins like meta llothioneins

    (

    MT

    s) and phytochelatins (PCs). Ocha

    ri

    38

    has di vided

    ge

    neral tox ic ity mecha

    ni

    sm for metal ions into

    three

    categories, 1 bloc kin g the essentia l biolog ica l

    funct ional groups of biomolecul es

    es

    pec ia

    ll

    y

    pr

    oteins

    and enzy mes, 2. displ ac ing the

    esse

    nti al metal ion in

    biomolec ul es and 3. modi fying the ac

    ti

    ve

    conforma tion of bi

    om o

    lec ul es res ul tin g the loss of

    Table 3 - Example of microorgani sms that take

    up

    heavy metals

    Mi croorg

    an

    isms

    Zooglea spp .

    Citrobacter

    spp

    acillus spp

    Chlorella vulga ris

    Rhizopus arrh i

    l s

    sp rg

    illus

    nig

    r

    Elements

    Co

    Ni

    Cd

    U

    Cu

    Zn

    Au

    P

    Ag

    Hg

    Th

    Pr

    otein

    denaturation

    (Hg,

    Pb & Cd .

    Up

    take

    (

    dry wt)

    25

    13

    1

    70

    900

    15

    14

    10

    10

    54

    58

    19

    spec ific ac

    tI

    vIty. Mi

    croorga

    ni sms

    ca

    n affect h

    eavy

    metal

    co

    ncentra

    ti

    ons in the environment bec ause they

    ex hibit a stro ng ability for metal rem

    ova

    l from

    so lution ; thi s ca n be achi eved thro ugh either

    enzymati

    c or non-enzyma

    ti

    c mecha

    nj

    sms

    39

    .

    Avoidance,

    res triction of metal entry into the

    ce

    l

    l,

    eith

    er

    by

    re

    du

    ce

    d uptake/ac

    ti

    ve efflu x or by the fo rma

    ti

    on

    of

    co mpl exes outside the ce

    ll

    and sequ estra tion,

    reduc

    ti

    on

    of

    fr

    ee

    ions in the

    cy

    t

    oso

    l e ither by

    sy nthes is

    of liga

    nds to achieve intrace llu lar chela

    ti

    on

    or by co mpatmenta liza tion are the two majo r

    strateg ies of orga ni sms to

    pr

    otec t themselves against

    heavy metal tox icit o .

    Th

    e ge neral mec hani sms of

    metal toleran

    ce

    in microbes are sh

    ow

    n in

    Ta

    ble 4.

    Metallothioneine

    Meta

    ll

    othioneines, di

    scove

    red

    abo

    ut

    45 yea

    rs ago,

    pl

    aya ce

    ntra l ro le in heavy metal metabo li

    sm

    and in

    the man

    age

    ment

    of

    va

    ri

    ous forms

    of

    stres

    s.

    Meta

    ll

    othioneines (

    MT

    s) are low molecul ar we ight

    (6 -7 kDa), cystine- rich prote in s, di vided into thr

    ee

    di ffe rent cl asses on the bas is of their cystine co ntent

    and t u ~ t u Th

    e C

    ys-C

    ys,

    Cys

    -X-

    Cys

    and Cys-X

    X

    -C

    ys, mo ti fs (

    in

    which X denotes any amin o ac id)

    are charac t

    er

    istic and invari ant for meta

    ll

    othi one ine

    41

    .

    Studi es of Lichtl en and Schaf fner

    42

    show metal

    Inhibition of

    cell division

    (Pb. Cd. Hg & Ni)

    /

    MI

    C

    ROB

    ES

    uption

    ell membr

    a ne disr

    (Hg, Pb. Z

    n

    N

    i.

    Cu Cd)

    Inhibiti

    (Hg.

    on

    of

    enzyme

    acti

    vity ]

    Pb. Zn, Ni. Cu Cd)

    Tran

    sc

    ription inhibition

    (H

    g

    D

    N

    .

    RNA

    .

    rotein

    sy

    nt h

    es

    is

    t

    t

    DNA

    dama

    ge

    Translation

    inhibition

    (H

    g.

    Pb, Cd As) (H

    g,

    Pb Cd)

    Fig. I - Heavy metal toxicity mechani sms to microbes

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    5/10

    - 1

    RAJ

    END

    RAN

    l

    at :

    MICROB

    ES IN

    HEAVY

    METAL

    REMEDIATION

    939

    Table 4-Mechanism of metal tolerance in microorganisms

    Metal

    AsO; AsO/ Sb

    J

    +

    Cd

    2

    +-

    Zn

    2

    +

    Hg2

    Co

    2

    +& Ni2+

    Cr0

    42.

    Cd

    2+ Cd2+ Zn2+

    r

    2

    .

    Cu

    2

    +

    Toler

    an

    ce

    mechanism

    Anion efflux ATPase)

    Efflux

    AT

    P ase)

    R

    educ ti

    on

    Efflux

    Decreased

    uptake

    Cat io n effl ux

    Decreased uptake

    DNA

    damage.

    reg

    ul

    atory transcriptional factor-l (MTF-l ) was

    essenti al for basal a

    nd

    heavy metal induced

    tran

    sc

    ription

    of

    th e stress- responsi

    ve

    metallothi onein

    I and metallothi onein-II. Metallothionein like protein s

    have been isolated from th e Cyanobacterium,

    Syneococcus spp as well as Escherichia coli and

    Pseudomonas putida

    4

    ]

    Pl

    asmid-encoded energy

    dependent metal efflux systems in vo lvin g ATPases

    and chemiosmotic ion/ proton pumps are assoc iated to

    Ar, Cr and Cd resisstance in Staphylococcus au reus,

    Bacillus sublilis Listeria spp, E.co li A.eutrophus,

    P.pulida,

    some Cyanobacteria, fungi a

    nd

    algae

    7

    .

    E.coli u

    se

    a two-component membrane bound ATPase

    compl ex, ArsA and ArsB respons

    ibl

    e for th e act

    iv

    e

    efflux of arsenite form

    th

    e cell.

    In

    contrast Gram

    positive bacteri a lack th e ArsA protei n

    44

    .

    Genetics of metal resistance

    Recent environment pollution with anthropogenic

    sources of metals has in creased the need for re search

    concerning microbial metal resistance as well as

    reme

    di

    a

    ti

    on. Large plasm

    d

    s (165-250 kb), encoded

    spec ific metal conferring resistance to a va riety of

    metals including

    Ag+,

    As0

    2

    , AsO/ , Cd

    2

    +, C0

    2

    +,

    CrO/

    Cu

    2

    +, Hg

    2+,

    Ni

    2

    +, Pb

    2

    +,

    Sb

    3

    +,

    Te0

    2

    .]

    , TI

    +, a

    nd

    Zn

    2

    +45. Metal resistance systems have been encoded

    by chromosomal genes in some organisms like,

    Bacillus.s

    pp (Hg- resistance) a

    nd E.coli.

    (A r-efflu

    x).

    Roane and Pepper

    7

    catego ri zed mechani sm of metal

    resistance as I) general and do not requ ire metal stress

    2) dependent on a spec ific metal for ac ti va tion and 3)

    general and are ac

    ti

    va ted by metal stress.

    The pl asm id -bo rn e cadA gene encodes a cadmium

    spec

    ifi

    c ATPase

    in

    severa l bac terial gener

    a,

    including

    Staphylococcus, Pseudomonas, Bacillus

    a

    nd

    E.

    coli.

    Schmid and Schegel

    46

    reported

    th

    e czc and nee

    operons are responsible for cadmium re sistance in

    Alcaligenes eutrophus CH34 (now renamed as

    Ralstonia eUlropha

    a

    nd

    in

    A. xy losoxidans,

    respectively. The genetic determina

    nt

    s for heavy

    metal re sistance in A.eutrophus CH34 are present in

    two pl as mids, pMOL 28 and pMOL 30. Nickel

    resistance is encoded by pMOL 28 (163 kb) which

    occur by an efflux pathw

    ay

    via cation proton-

    anti porter chemiosmotic system

    47

    . This removes the

    toxic metal , which is accumulated by th e uptake

    of

    essential divalent cations (e.g. Mg2+,

    Mn

    2

    + . Taghavi

    et al.

    48

    showed th at nickel resistance is inducible and

    is due to an energy-dependent effl

    ux

    system dri ven by

    chemiosmo

    ti

    c proton-antiporter system.

    Genetic engineering for metal. emediation

    Genetic engi nee rin g allows introduction of desired

    traits into ce

    ll

    s to metal clean up techniques, and th is

    appro

    ac

    h h

    as

    already been used to construct ce

    ll

    s for

    the

    bi

    oreme

    di at

    ion of mercur/

    9

    .

    Kri shnasamy and

    Wilson

    o

    constructed an E.coli strai n

    th

    at accumul ated

    Ni

    2+ by introducing the ni xA gene (cod in g for a

    ni cke l transport system) fro m Helicobacter pylori into

    E.

    coli

    1M

    109 that ex pressed a glutat

    hi

    one S-trans

    ferase pea metallothioneine fusion prote

    in

    . The

    recomb in ant E.coli strain accumulated four times

    more ni cke l

    th

    an the wild type. Bang et at.

    5

    eng in eered E.coli to produce sulphide by heterologous

    expression of th e thiosulphate reductase gene from

    Salmonella entenltca,

    which enhanced prote in

    synthesis leading

    to

    th e precipita

    ti

    on

    of

    cadmium

    sulphide. Metal resitant R. eUlropha isolate,

    eng in eered to produce meta

    ll

    othi onein accumul ated

    more Cd

    2

    +

    th

    an

    it

    s wild type co unter pa

    rt

    , and offered

    tobacco plants some pro tec tion form Cd

    2

    + when

    in oc

    ul

    ated into contamin ated so il

    52.

    Studies of

    Pazirand eh

    28

    showed periplasmic ex pression

    of

    a

    Neurospora crassa

    metalloth onein in E.

    coli

    generated

    ce lls

    th

    at were sup erior to bacteria with cytoplasmic

    meta llothi one in loca ti on in term s of metal ion

    adsorption. Kotriba el al.

    53

    engineered metal binding

    peptides that contain either hi stidines (GHHPHG)2

    (HP) or cystines (GCGCPCGCG) (CP) into LamB

    and expressed on th e surface of E.coli. Surface

    display of CP and HP in creased the bioaccumulation

    fo ur and two fo ld , respectively.

    54 d b'

    Samuelson el al. reporte recom 1n ant

    Staphylococcus xylosus

    and S.

    carnosus,

    h

    ad

    gained

    Ni

    2

    + a

    nd

    Cd

    2

    + binding capacity a

    nd

    suggested that

    th ey could be used in bioremediation of heavy metals.

    They eva

    lu

    ated surface

    di

    s

    pl

    ay systems for expression

    of tw o different polyhistidyl peptides, Hi s

    r

    Glu-His

    3

    a

    nd

    Hi s

    6

    , which had good metal binding acti vity. The

    ni cke l resistant bacteria from anthropogenica lly

    polluted biotypes and naturally ni ckel-ri ch so ils have

    been hybridi zed with various probes carrying cnr

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    6/10

    94

    0

    IN

    DI AN J

    EXP

    BI

    OL, SEPTEM

    BE

    R 2003

    from

    pl

    as

    mid

    pMOL28

    A. eutrophus

    C H34),

    nee

    from

    pTOM

    8

    A. xylosoxidans

    3 1A)

    nre

    fro m

    pTOM8 (A. xylosoxidans

    3 1

    A)

    and

    nre

    fro m

    Klebsiella oxytoea

    1

    5788. With

    res p

    ec

    t to the ir

    h

    ybr

    idiza

    ti

    on signals, the nicke l r

    es

    istant deter min ants

    of the stra in s co ul d be assigned to nr nee ty pe,

    enrlncc nre

    type

    Kl ebsiella oxytoca

    t

    ype

    and oth

    ers

    show in g no hybr idiza

    ti

    o n

    46

    . Bac teri al co mmunities in

    so il amended fo r many years w ith sewage slud ge that

    con

    ta in ed h

    eavy me

    tals we re

    assesse

    d us in g

    mol

    ec

    ul ar t

    oo

    ls such

    as

    , rRNA ana lys is, F ISH

    Fluoresence in situ hybridiza

    ti

    o n), clonin g and

    seque nc in g

    55

    .

    iosorption

    Biosorpti on, uti

    li

    za

    ti

    on of in ex pensive dead or

    li ve

    mi cro

    bi

    al biomass to

    seq

    ues te r metals from

    indu

    stria l

    effl uents has gained impo rtance in recent years due to

    their

    goo

    d pe r

    forma

    nce, l

    ow cos

    t, sp

    ec

    ific ity,

    minimu m s ludge genera ti on and amenabili ty fo r

    repeated use

    34

    .

    56

    .

    Several ac

    ti

    ve

    group

    s of ce

    ll

    MICRO E

    Pass ive mechanism

    Ex

    tra ce

    ll

    ular complexa tion

    Ci lrobaCler spp)

    Extra cellular po lymeric substance

    (S.aure lls)

    Po

    lysaccharides Z rallligera)

    Prot eins A. bisporous)

    Nucleic acid

    co nstituents like aceda

    mid

    o group of chitin , stru

    ct

    ural

    pol

    ysacc

    haride of fung i, a

    min

    e amin o and

    peptid

    og

    l

    ycosid

    es),

    su

    lfhydral and ca rboxy l

    gro

    ups in

    pro

    tein ,

    phos ph

    odi

    ester

    te icho ic ac id), phos phate,

    hydroxy l in polysaccharid es, partic ipate in

    biosorptio n

    57

    . The genera l microbial

    med

    iated h

    eavy

    meta l

    so

    rption m

    ec

    hani sms a re in the Fig. 2.

    Hernandez et ai. 2 iso lated th ree spec ies of bac teri a

    be longing to fa mil y Enterob

    ac

    ter iaceae, whi ch we re

    ca pable of

    accu

    mul atin g nicke l and va nad iu m.

    Bi oso

    rpti on for metal re mova l has

    bee

    n stud i

    ed

    ex tensi ve ly us in g va ri ous spec ies of li ve and

    inac

    ti

    va ted biomass of bacteri a, algae, fung i or

    yeas

    t1 57 T he tec

    hn

    ology invo lving su

    rface

    complexati o n, io n excha nge and mic ropreceip ita

    ti

    on

    is a

    po

    tenti al alte rna ti ve to current metal tr

    ea

    ting

    processes that ex tend the dura

    ti

    on of expos ure

    of

    the

    clea

    n up

    crews

    58

    . Research in the

    area

    of h

    eavy me

    tal

    rem

    ova

    l fro m

    was

    t

    ew a

    ter and

    sed

    iments has f

    oc

    used

    on the developm e

    nt

    of microbial materi als with

    increased

    af

    finity, ca pac ity and se l

    ec

    ti vity for t

    arge

    t

    Rhamnolipids

    (P.ae ru

    ginosa)

    Intra ce llular accumulation

    (Pseudomollas

    spp )

    Metal lo

    thi

    one in

    (Synechococcu .I spp)

    Precipita tion

    CilrobaCler spp)

    Efflux pump

    (A.e

    lllrophu

    s)

    Acti ve mechanism

    Ion exchange reactio n

    (S.pia lellSis)

    Complexatio n with oxygen and

    nitrogen ligands (P. p

    Ul

    ida)

    Destruction of comp lexing

    ligands Aci nclOiJacler spp )

    Vo latili za tion

    Fungal spp)

    Fi g. 2 - Mec hanism of mi crob ial metal to l

    erance

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    7/10

    RAJENDRAN

    el al : MI

    C

    ROB

    ES IN HEAVY METAL REMEDI ATl

    ON

    94 1

    metals

    ,54. Funga l bio mass is finding increas ing

    appli ca

    ti

    on in current biotechnolog ica l procedures for

    the cleanup of ni ckel-p olluted effluents and fo r the

    r

    ecove

    ry of metal ions

    I.

    Raje

    ndr

    an

    et a l 59

    reported

    A.niger

    mut

    ant M3

    ca

    pable of absorbin g 50% more

    ni

    ckel at 1.7

    m co

    n

    ce

    ntration than its parent strain .

    Th

    e waste fu

    nga

    l biomass from

    indu

    strial ferm enters

    may

    pr

    ove to be

    cos

    t

    ef

    fec ti ve metal

    bi

    osorpti ve

    age

    nts on a lar

    ge sca

    le

    6o

    . Fo u

    ver

    t and R OUX

    61

    studied

    the use of myce li a o f Mucor nicheri,

    s

    pergillus nige r

    and Pencillium chrysogenum fro m fermenters in the

    rem

    ova

    l of nickel, z in c, cadmium a

    nd

    lead by bio

    adsorption. Gadd

    31

    reported chemica l modifica

    ti

    on of

    bi omass mi ght crea te deri va ti ves with a ltered metal

    binding abilities a

    nd

    affinities. Pse

    ud

    omonads have

    been sh

    ow

    n to be

    ef

    ficient in h

    ea

    vy metal

    bi oaccumula tion fro m polluted effl uents in the

    imm obili zed state

    62

    .

    63

    .

    Immobilization for metal remediation

    Bi

    oso

    rpti on t

    ec hniqu

    e for metal remova l and

    accumulati on ca n be even w ith a low deg r

    ee

    of

    und erstanding of the metal

    bindin

    g m

    ec

    ha

    ni

    sms.

    H

    oweve

    r, a be tter

    und

    erstanding

    of

    the tec

    hniqu

    e will

    be use ful for e ffect ive and optimized applica

    ti

    on

    of

    the method

    64

    . Fr

    ee

    ce lls ca n prov ide

    va

    lu able

    in

    forma

    ti

    on in laborato ry ex perim enta

    ti

    o n but have

    li mi tations in industria l appli

    ca

    tions

    65

    .

    The use of

    free ly suspended microbial bio mass suffe rs with

    d isadvantages li ke sma ll partic le s ize , low mechani ca l

    strength and di fficult y in seques terin g biomass and

    effluent.

    Th

    e

    imm

    obilized bi

    oa

    d

    so

    rbent bi omass

    pac ked in sorpti on co

    lumn

    s, which are

    ef

    fec ti ve fo r

    co

    ntinuous rem

    ova

    l of h

    eavy

    metals ca n operate o n

    cycles co nsistin g

    of

    loading, regenera

    ti

    on and

    rinsing

    66

    . Ibanez and U metsu

    67

    h

    ave

    demonstrat

    ed

    the

    ability of

    pr

    otonated alg inate

    bea

    ds in the rem

    ova

    l

    of

    chromium , co

    pp

    er, zinc, nickel and cobalt ions

    from

    dilut

    e aqu

    eo

    us so lutions. Bio mass

    imm

    obili zed in a

    range

    of

    in ert mate ri als like, s il ica, polyacry lamide,

    po lymethane and polys ul fone h

    as

    bee n used in a

    va riety of bior

    eac

    to r

    co

    nfig

    ur

    a ti ons, inc luding

    rotating bi olog ica l co ntr ac tors, f ixed reac tors, trickl e

    filters, flu idi zed beds and air

    li

    ft bio r

    eac

    to rs

    65

    .

    Karna

    et aL

    68

    immobili zed

    Phormidium va lde rianum BD

    U

    3050 ] in pol

    yv

    in yl foa m and u

    se

    d for the remova l of

    C

    ?+ C 2+ C ?+ d N ?+ 63

    a- ,

    0 ,

    u- a n

    1- .

    As htana et a l reported

    that

    Ca

    -alg in ate

    imm

    ob iliz in g agent is ve ry

    effec

    ti ve

    in

    ni

    cke l bi

    oso

    rpti on and u

    se

    d in o r

    ga ni

    c sa lts like

    NaC I and Ca

    N03)2 fo r d

    eso

    rpti on

    of

    ni cke l fro m

    immobili zed mi cr

    ob

    ia l bi o mass. HC I and EDT A are

    the mos t

    ef f

    ic ient desorpti on agents for ni ckel

    rem

    ova

    I

    62

    ,68.

    Plant microbe interaction

    n

    metal remediation

    H

    eavy

    metal tox ic ity to plants ca n be redu

    ced

    by

    the use of pl ant growth promotin g bac te ri a, free -li ving

    so

    il bac teria that exert

    so

    me beneficial

    ef

    f

    ec

    ts on

    plant dev elopment

    wh

    en they are appli ed to

    seeds

    or

    inco rporated to

    see

    ds

    70

    .

    Plants

    ca

    n

    acce

    lerate

    bioremedia

    ti

    on in surface so ils by the ir abil ity to

    stimulate

    so

    il microo rganisms thro ugh the re lease of

    nutri ents fro m the

    so

    il a

    nd

    transpo rt of oxygen to the

    rhi zos phere

    Plant growth pro motin g bac te ri a that

    co ntain ACC dea min

    ase

    may

    ac

    t to in sure that the

    eth y lene leve l does

    not

    impa ir roo t gro wth and

    facilitate the form ation of large r roots, which enha nce

    seedling surviva l

    71

    Burd

    et a l

    72

    reported that a metal

    r

    es

    istant

    so

    il b

    ac

    terium Klu

    yvera

    ascorbata S

    UD

    165

    pr

    o moted the g

    rowth

    of

    ca

    nola

    Brassica campestris)

    in the presence of high co nce ntra

    ti

    o ns of nickel and

    the increase in gro

    wth

    rate is du e to the abi lity of the

    b

    ac

    te

    rium

    to lower the leve l of eth y lene stress in the

    see

    dlin

    gs

    . Th

    ey

    further i

    so

    lated s

    ider

    ophore ove r

    produ c in g

    mut

    ants, K

    ascorbata

    165/26 whi

    ch

    was

    able to prov ide suff ic ient ions for the grow th

    of

    Indian

    mu stard

    Br

    assica j uncea) and tomato Lycopersicon

    esculentum) in the presence of high co n

    ce

    ntrati ons of

    Ni, Pb , and Zn . Studies of

    Bu

    rd et aL 73 sugges t

    ed

    the

    bes t method to prevent plants fro m becomin g

    chl

    oro

    tic in the

    prese

    nce

    of

    high levels of heavy

    metals was to provide them with a siderophore

    pro

    du

    cing b

    ac

    te

    rium

    ,

    Kluyvera ascor

    ba

    ta

    SUD 165.

    Mycorrhi za l fung i also red uce metal tox ic ity to the ir

    ho

    st plant by

    bind

    ng heavy meta ls to their

    ce ll wa ll

    or sur rounding po lysaccharides. Binding sites within

    ce ll s of

    ec

    tomycorrhi za l fung i are meta llot hi onein

    like proteins, which h

    ave

    high cys tine co ntent and

    perhaps polyph

    os

    phate g ranul

    es

    Field applications

    Th e m

    os

    t

    imp

    ortant bio t

    ec

    hno l

    og

    i

    ca

    l ap pli

    catio

    n of

    meta l-microbe interac ti o n is in bio leachin g,

    bioremediat io n of po lluted s it

    es

    and minera li za ti on

    of

    polluting orgnin c matter

    l6

    l)

    ra

    nium

    is

    ext

    rac t

    ed

    fro m

    uranit e ore th rough biol

    eac

    hin g by indir

    ec

    t

    ac

    ti on

    with T.Jerroxidans . In thi s

    case,

    ferric iro n in aci dic

    so lution, w

    hi

    ch the or

    ga ni

    sm ge nerate when ox id iz in g

    pyrites FeS2), ox idi zes in so lu ble UO to so lu ble

    UO/+

    74

    . T he

    ex

    tr

    ac

    ti on of meta ls such as Co ,

    Mo

    , Ni,

    Pb , and Z n fro m sulfid ie o res by bi oleaching is

    tec hnbica lly feasible . Gen

    co

    r (So uth Africa) is cun 'ently

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    8/10

    942

    INDIAN J EXP BIOL, SEPTEMBER 2003

    developing tlie BioNIC process to recover nickel from

    low-grade sulfide ores

    75

    .

    Signet Technology Inc. and

    Signet engineering Pvt. Ltd . (Western Au stralia) are

    cUl ently developing a process to recover coba lt from

    py rite ore from the kares cobalt project in Uganda

    76

    .

    Various microbially reducible metals, especially ferric

    iron

    in

    com

    pl

    exed form

    to

    keep

    it

    soluble at circum

    neutral pH, can be used as terminal electron acceptors

    in in situ

    anaerobic bioreme

    di

    ation

    of

    s ites polluted

    w

    ith tox ic organi cs

    . It is po ssible to bi oremedi ate in

    situ s ites polluted with chromate or dichromate [Cr

    (Vl)]

    by

    stimulating th e reduction of

    th

    e Cr V I) to Cr

    (Ill ) by bacte ri a

    25

    . Fun gi can conve rt oxidized

    selenium

    to

    volatite-methylated selenides for escape

    into th e atmosphere, a removal by volatilization

    78

    Beseker

    79

    reported Pe

    ni

    cillium fu.niculasul1l was ab le

    to ex trac t more than 50 Ni and 75 Zn from test

    so

    lu

    tions containing

    100

    mg

    rt of

    metal at pH

    6.6

    and

    6.

    5

    respectively. A potent algal bioso rbent Alga

    Sorb

    T

    .

    Y

    developed using a fresh water alga Ch Iare lla

    v

    u.lgar

    is

    and AMT-BIOCLAIMTM (MRA ) developed

    us

    in

    g

    Bac illus bi

    omass are used to treat wastewater

    and me tal recovery respec ti ve l/

    6

    .

    Future prospects

    Microbes can significantly affect

    th

    e di stribution of

    metals in th e environment , since th ey have deve loped

    mea ns to use

    th

    em for their benef

    it.

    This

    cl

    ea rl y ho lds

    promise for effecti ve, eco nomi cal and eco-friendl y

    metal bioremediation technology for indus

    tri

    al

    ex pl oitation and pollution free enviro

    nm

    e

    nt.

    A good

    a

    nd

    efficie

    nt

    metal biosorbent can re

    pl

    ace the

    comm ercial ion exchange res in s that have been used

    conventionally for metal removal. However, th e bas ic

    knowledge of microbi al metal bi oremediation

    mec hanism is

    in

    evitable for the deve lo

    pm

    ent

    of

    commercia

    ll

    y via

    bl

    e potent bioso

    rb

    ent. Although

    se

    vera l

    mi

    crobi al metal bioremedi at ion approaches

    are establi shed to combat heavy metal polluti on from

    anthropoge

    ni

    c and natural sources, none is ye t in wide

    spread use. Innovative, economica

    ll

    y

    fea

    s

    ibl

    e and

    novel biomass regenerati on and conversion of th e

    recovered metal into usa

    bl

    e form are th e best options

    to attract more usage

    of

    bi oso rb ents. It is time to

    II1ttlate

    more comprehensive interdisciplinary

    approach between biotechnologists and metallurgists

    to bring lab sca le

    bi

    oreme

    di

    ation process to land scale

    tec hn ology that will be acceptabl e for industr iali sts.

    cknowledgement

    On e of th e authors CPR) is indebted to UGC, New

    Delhi fo r

    th

    e awa rd of Teacher fe llows hip for doctoral

    studies and to the Management

    of

    Vivekananda

    College, Thiruvedagam, Madurai for deputation under

    F.I.P. program.

    References

    I Ceribasi I H & Yeti s U, Bi osorption

    of

    Ni (ii ) and Pb (ii) by

    Phan

    aerochae

    te c

    hr

    ysospo

    riul1I

    from a binary metal sty stem

    kin e

    ti

    cs, Wate r

    SA ,24

    I 2 00 I) 15.

    2 Hernandez A, Mellado R P Martinez

    J

    L, Mct

    al

    accumul

    at

    ion

    and

    va

    nadi um -

    in

    duced multidrug resistance by environmclllal

    isolatcs of Escherichia herdrna llni and Elllerobacter cloacae.

    Appl

    Enviro

    ll

    Microbiol. 64

    (1998) 43 1

    7.

    3 Tyagi P, Buddhi D, Chod hary R Saw heny

    RL

    ,

    De

    gradati on

    of

    ground wa ter quality due to heavy metals

    in

    indus

    tri

    al arc as

    of

    In

    dia- A review

    lJ

    EP, 20 ( 1999) 174.

    4 Mudakavi J P Narayana B V, Toxic heavy metal

    contamin ation of th e so il and biota: Part II- Environm ent al

    i

    mp

    li cati ons, IJEP, 18 (2) ( 1997) 108.

    5

    Eis

    lcr R, Nickel hazards to

    fi

    sh wild life an d in ve rtebrates: A

    sy

    noptic r

    ev

    iew, in

    COlllaminalll haz

    ard

    reviews, 1-35, Patllxtent

    Wild

    Li f

    e Research Ce

    ntre,

    Lau re

    L

    Mat ) land. 2000, I.

    6 Co

    lb

    ou

    rn

    P Thronton , Lead pollution

    in

    agricul

    lUr

    al

    so

    il

    s,

    Soil Sci. 29 ( 1978) 5 13.

    7 Roane T M Pepper I L, Microorganisms and me

    tal

    pollution, in

    Ellvirollmelltal Microbiolog

    y, cdited by Maier R

    M, Pepp er I L Ge

    rb

    a. C B (Academic Press,

    Lo

    ndon,

    NW

    I

    7BY.U K) 2000, 55.

    8

    Salol11on

    s W Fors

    tn

    er

    U, Tr

    acc mctal analysis on polluted

    sediment

    s.

    Pa

    rt 2.

    Ev aluation

    of

    envi ronmental

    im

    pact,

    Ell viron Techllol Lett, I ( 1980) 517.

    9 Lippard S

    J,

    Mctals in medicinc,

    in

    Bioinorgallic chemistry,

    edi ted by Bertini . Gray H B, Lippard S J & Valantine J S.

    (Pub. Viva Book Pvt, New De

    lhi

    ) 1998 , 506.

    10 Ol son

    J

    W, Mehta N S Maicr R

    J,

    Requ irement of ni ckel

    mctabo

    li

    sm prote

    in

    s HypA a

    nd

    HypB for full activity

    of

    both

    hydrogenase a

    nd

    urcase

    in

    Heli

    cob

    acter pylori. Mol

    Microbiol,

    39

    2

    00 I) 176.

    II

    Va

    n Assche F Chys ters, Effccts

    or

    m

    et

    al s on enzyme

    activity

    in pl

    ant

    s,

    Plant Cell Environ, 13 ( 1990) 195.

    12 Mai er

    R,

    Lip

    id

    lather removes metal

    s,

    Environ Heal Per.

    10

    8

    (2000) 320.

    13 ATSD R- 200 I, CERCLA

    Pri

    or

    it

    y Li st of Hazardous

    Substances, cI http:

    //

    WWW.atsdr. c

    c/

    c.

    gov

    /C/ist.htllll) .

    14 Trivedi R P Gundap Raj. A slUdy of industri al water

    pollution, In

    Encyclopa edia

    oj

    env

    ir

    ollmelltal scien

    ces

    (Akas

    hd

    eep Pu blish

    in

    g House, New Delhi ), 1992, 185.

    15

    Spos

    it

    o F G, The chemi stry of soils.

    in

    Ellvironlll elltal

    Microb iology , ed

    it

    ed by Maicr R M, Pepper I L Ger

    bil

    C B,

    (Academic pres

    s,

    London , NW I 7BY.U K) 2000, 406.

    16

    Ehrlich H L, Microbes a

    nd

    metals,

    App

    l Microbiol

    Bio tec

    hn

    ol, 48 ( 1997) 687.

    17 Xian

    X,

    EITect of chemi cal fo rm s of cad miulll z

    inc

    and lead in

    polluted so

    il

    s a

    nd

    th

    eir uptake

    by

    cabbage

    pl

    ants,

    Plallt Soi l,

    3 ( 1989) 257.

    18 Lena Q M Rao G N, Heavy metals

    in

    th e environme

    nt

    ,

    Ellviron Qual. 26 ( 1997) 264.

    19 Kri shnamurthi G S R, Speciat ion

    of

    heavy meta ls: An

    approach for remed iation

    of

    contaminated so

    il

    s,

    Remediation engineering

    oj cO

    lltamillat ec

    so

    ils . edited by

    Wi se D L, Trantalo D J, Cichon E

    J,

    Inyang H I

    Stottm eister U (Marcel Dekker

    In

    c New York ) 2000, 709.

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    9/10

    RA1ENDRAN et al. : MICROBES IN HEAVY METAL REMEDIATION

    943

    20 Sauerback D R Rietz E Soil chemical eva

    lu

    ation of

    different ex tractants for heavy metals in soil

    s,

    in Comm:

    Europe Communiites Repo rt EUR 8022. En viron. E Org

    In

    org Contam Sewage Sludge , CA 99: 193726 (1983) 147.

    21 Ri chter 0 R Theis R L. Nickel speciation in a soil/water

    system,

    in

    Nickel in environment, ed ited by Nri gu, J 0, (New

    York, Chichester, Bri sba

    nc

    e, Toro

    nt

    o, Jo

    hn

    Willey sons)

    1980, 189 .

    22 Beveridge T J Doyle R, Metal ions and bac teri a, in

    Microbes and metals, Mini-review by Ehrlich H L, App l.

    Microbiol Biotechnol, 48 (1997) , 687.

    23 Summers A P & Sugarman L I, Cell

    fre

    e mercury ( II )

    reducing ac

    ti

    vi ty

    in

    a plasmid-bearin g stra

    in

    of Escg heriachia

    coli ,

    1.

    Bacteriol,

    11

    9 ( 1974) 24

    2.

    24

    Summers A P Si

    ve

    r S, Mi crobi al transfo

    rm

    ations

    of

    metals,

    Annu Rev Microbiol, 32 ( 1978) 637.

    25

    Wang Y T Shen H,

    Ba

    cterial reduction of hexavalent

    chromium,

    In

    d Microbiol 14 ( 1995) 159.

    26 Mc

    as

    kie L D, Dean A L R, C heth am A K, Jakeman R J B &

    Skarnu lis A J, Cadmum accumul ation by Citrobacter spp: the

    chemi cal nature of the ac cumul ated metal prccipitate and its

    loca

    ti

    on

    in

    bacterial ce

    ll

    s. C en M icrobio / 133 (1987) 539.

    27 Ferris F G, Schultze S, Wriller T C, Fyte W S & Beveridge T

    J, Metal interac

    ti

    ons with microbial

    bi

    ofilms in ac idi c and

    neutral

    pH

    environments,

    App/ Envrion Microbiol, 55

    ( 1989)

    1249 .

    28 Pazira

    nd

    eh M, Wclls B M Ryan R L, Development of

    bacter ial

    ba se

    d heavy metal biosorbcnts: enhanced uptake of

    cadmium a

    nd

    mercury by Escherichia co li expressing a metal

    binding motiff, App l Environ Microb iol,

    6

    ( 1998) 4068.

    29 Gadd G M, Mi cro

    bi

    al control of heavy metal pollution, in

    Microbial control of poilution edited by Fry J C, Gadd, G M,

    Herbert R A, Jones C W & Watson-Gra

    ik

    bridge, (LA.

    Cambridge Univers

    it

    y Press) 1992 59.

    30 Ll oyd J R & Lo vley D R,

    Mi

    crobi al detoxification

    of

    metals

    and

    radio

    nu

    clides,

    Curr Opi Biotech,

    12 (2001 ) 253.

    3 1 Gad d G M, Bi oremedial potenti al of metal mobiliza

    ti

    on and

    immobili za

    ti

    on,

    C

    Lirr

    Opi Biot

    ec

    hno l,

    (2000) 27 1.

    32 Blanco A. Immobili za

    ti

    on of nonviab le cya nobacteri a and

    th eir use for heavy metal adsorption from wa ter in

    En vironmental biotechnology

    and

    cleall er bioprocesses,

    edited by Oluguin E J, Sanchez He rn and ez E (Philadelphia,

    Taylor A

    mp

    , Francis) 2000, 135.

    33 Wa se J Forster C, in Bioso rbellls for metals ions, (Bri stol)

    1997,

    1.

    34 Alexa

    nd

    er M, Bi oremedia

    ti

    on of metal a

    nd

    other pollutant

    s,

    in

    Biodegradation and bio re

    lll

    ediation, Second edi tion,

    (Academi c Press, New York ) 1999, 377.

    35 Torrens J L, Herman D C & Miller-Mai er R M, Biosur fac tants

    (rhomphnolipid) sorption a

    nd

    impac t on rh omphnoli pid

    fa

    cilitated frmoval

    of

    cadmi

    um

    from

    va

    rious soils under

    sa

    turat

    ed

    low cond

    iti

    on

    s,

    Enviroll Sci Tec hll o

    l,

    32 ( 1998)

    776.

    36 Sand W, Ro

    hd

    e K, Sabotke B Zenn eck C, Eva

    lu

    a

    ti

    on

    of

    LeptospirillLl Ill f erroxidalls for leaching. Appl En viron

    Microb iol, 58 (1992) 85.

    37

    Joerge r T K, Joerger R, Olsson E & Granqvi st C G, Bac te

    ri

    a

    as

    workers

    in

    th e li v

    in

    g factory: metal accumulatin g-bacteri a

    and

    th

    eir potenti al fo r materi al sc icnce, Tibtech 19 2 00 I)

    15

    .

    38

    Ochi ai

    E,

    Bioinorganic chemi str

    y: An

    introduct ion

    A li

    gn and

    Bac on, Boston) 1997, I.

    39 Nealson K H Ro sson R A Maye

    rs

    C R, Microbial reduc

    ti

    on

    of manga nese and iron: New approaches to carbon cycling,

    App Environ M icrob iol, 58 (1992) 439.

    40 Tomsetl A B, Sewe ll A K, Jones S J, Miranda J R Thurman

    D A, Metal binding proteins and metal regulated gene

    expression in hi gher plant

    s, In

    In ducible plant proteins, So

    c.

    Exp. BioI. Sem. Series, edited by Wary J L, (Cambridge

    University Press. New York) 1992,

    I.

    .

    41 Mej are Bullow L, Metal- Binding proteins a

    nd

    peptides

    in

    bioremediati on a

    nd ph

    ytoremediation

    of

    heavy metals, Tre

    nd

    s

    Biotech, 19 (2001 ) 73.

    42 Lichtlen P Schaffner W,

    PUllin

    g

    it

    s

    fin

    gers on stressful

    situ ation

    s:

    th e heavy metal regulatory tran

    sc

    ription factor

    MTF- I, Bioessays

    23 2

    00 I) 10 IO.

    43 Gupta A, Mo

    rb

    y A P, Turner J.

    S,

    Whitton B A & Rob

    in so

    n

    N J, Deletion within the meta

    ll

    o

    thi

    one

    in

    locus' of Cadmium

    tolerant Synechococcus PCC 630 1 involving a highl y iterated

    palindrome (HIPI ), Mo Microbiol 7, ( 1993) 189. .

    44 Cervantes C,

    Ji

    G, Rimirex J L & Silva S, Resistance to

    arsenic comp ounds in mi croorga

    ni

    sms, FEM S Microbial R ev .

    15

    (1994) 355 .

    45 Silv er S Phung LT, Ba cterial heavy metal re sistance: New

    surpri ses,

    Anl1 Rev

    Mi

    crob iol.

    50 (

    19

    96) 753 .

    46 Schmidt T & Schl ege l

    H

    G, Combined nickel-coba lt-cadmium

    resistances encoded by th e ncc locus of Alcaligenes

    xy losoxidalls 31A, Bacteriol, 176 (1994) 7045 .

    47 Mergeay M, Toward s an understanding of the ge netics of

    ba cteri al metal re sistance, Tibtech, 9 (199 1) 24.

    48 Tagha vi S , Delanghe

    H,

    Lodewyckx C, Mergeay M Lelli e

    D V, Nickel - resistance- based minitransposons: new tools fo r

    genetic manipulati on of enviro nm ental bacteria, Appl Ell viron

    Microbiol, 67 (200 1) 1015.

    49 Chen S & Wilson D

    B,

    Construction and chracte

    ri

    za

    ti

    on of

    Escherchia coli genetically engineered for bi oremediation of

    Hg2+ contaminated environment s, Appl Environ Microbiol, 63

    (1997) 2442.

    50 Kri s

    hn

    aswamy R Wilson D B, Construction and

    characterization of an E. coli strain ge ne

    ti

    ca lly engineered for

    Ni

    II

    )

    bioaccumulation ,

    Appl En viron Microbiol,

    66

    2

    000)

    5386.

    5 1 Bang S W, Clark

    D

    S & Keasl

    in

    g, J

    D,

    Eng

    in

    erring hydrogen

    sulfide produc

    ti

    on and cadmium removal by expression of the

    thi

    osulfate reduc

    ta

    se gene (

    ph

    s ABC)

    fr

    om Sa

    lm

    one ll a

    enteri ca serovar typhimurium

    in

    Escherichia col i. Appl

    Envion Microbiol, 66 (2000) 3939.

    52 Vall

    s,

    M, Atri an, S, Loven

    o,

    V D & and Fernandez L A,

    Engi neerin g a mouse meta

    ll

    othionum on th e cell s

    ur

    face of

    Ralsatonia elllropha CH34 for immobilization of heavy

    metals in soil , Nat Biotecilllol, 18 (2000) 66 1.

    53 Kotrba P, Posis il P, Lorenzo V D Ruml T,

    Enh

    anced

    metalloprote in of E.coli ce lls due to surface di s

    pl

    ay of beta

    a

    nd

    alpha-domain s of mammalian meta ll o

    thi

    onein as a fusion

    to Lam B prote

    in

    , Receptor Sigllal Transduct Res, 19 (1999)

    703.

    S4

    Samuelson P, Wern eru s H, Svedberg M Stahl S,

    Sta

    ph

    ylococcal surface di spl ay

    of

    metal-bind

    in

    g polyhistydiyl

    peptides, Appl Ellviron Microbiol, 66 (2000) 1092.

    55 Watanabe K, Mi croorganis ms relevant to bioremediat ion.

    Curr OpiB io Tec

    h,12 2001)237.

    S6

    Ahuja V,

    Vo

    hra, P K, Kas hyap D R Tewari R,

    Ad

    sorp

    ti

    on

    of heavy metals (

    Pb

    2

    + and Cd

    2

    +

    by free a

    nd

    imm

    obi li ze

    d

    biomass of Acil/( [obacter

    allit/ {/III

    S

    Il

    M, 4 1 (200 I) 279.

  • 7/26/2019 Microbes in Heavy Metal Remediation IJEB 41(9) 935-944

    10/10

    94

    4

    INDIAN

    J

    EXP BIOL, SEPTEMBER

    2003

    57 Va sud evan p, Padmava th y V, Tewa ri N Dhingra SC,

    Bi

    osorption of heavy metal ions.

    J

    Sci

    In

    dus Res,

    60 (200 I)

    120.

    5S Ei izabc th K M Anuradha, T V R, Bi osorpti on of hexava le

    nt

    chromium by non-pathogeni c bacteri al ce

    ll

    preparations,

    40 (2000) 26

    3.

    59

    Rajendran P, Ashokkumar B, Muthukrishn an

    G

    un

    asekaran P, Toxic

    it

    y assessme

    nt

    of

    ni

    ckel us

    in

    g

    Aspergillus n iger

    a

    nd it

    s removal

    rr

    om an indus

    tri

    al efflue

    nt

    ,

    App

    l B i

    oc

    hem Biolechnol 102 (2002) 20 I .

    60 Vo lesky

    B,

    Detox ification of metal- bea

    rin

    g e

    fflu

    ents:

    bi

    osorpti on

    for the next century,

    Hydromelallurgy,

    59 (200 I) 2 16.

    6 1 Fo ur

    est E Roux J C, Heavy metal bioso

    rp

    tion

    by

    fun gal

    my cc

    li

    al by products: mechani sms and in nuence of pH , Ap p

    l

    Microbiol Biolechnol. 37 ( 1992) 399.

    62 Ramteke P W, Bi osorption of Ni ckel (II )

    by

    Pseudomollas

    sllil

    ze

    ri.

    J

    En viron Bioi. 2 1 (2000) 2 19 . .

    63 Asth ana R K, Cha

    tt

    erjee S Sin gh P,

    In

    ve stiga tions on ni ckel

    biosorption and

    it

    s remobilization,

    Proc Bioche

    lll. I ( 1995 )

    729 .

    64

    Volcs

    ky

    B, Bi osorpti on for

    th

    e next century,

    Illle

    rn

    c

    ui

    onal

    Bio

    lll

    eiall

    urgy

    Symp

    os

    ium.

    E

    I.

    Esco ri al, Spa in ,

    ( 1999) 20.

    65 Gadd G M White C, Mi crobi al treatm ent of me

    tal

    polluti on- A wo rk ing biotechn ology? T1B TECH. II (1993)

    353.

    66 Gupta R. Ahuj a P, Kh an S, S

    ax

    ena R K Mohapatra H,

    Microbial biosorbc nt s: Mee tin g cha

    ll

    enges of heavy metal

    pollu tion in a

    qu

    cous solution,

    C

    ur l

    Sci.

    78 (2000) 967.

    67

    Ibanez J P Umctsu V, Po tential

    of pr

    otonated algin ate

    beads for hea

    vy

    metals uptake,

    H

    yd

    ro

    lll

    eia

    llurgy

    , 64 (2)

    (2002) 89.

    68

    Kama R R, Uma L, Subramani an G Mohan P M.

    Bio sorpti on of t

    ox

    ic mctal ions by a

    lk

    a

    l

    ex

    tr

    ac ted biomass of

    marin e Cya nobacterium.Pho rJll idiUl II

    I a

    lderialllllli BD U

    3050 I. Wo

    rld

    J

    Microb iol Biolech. IS

    ( 1999) 353.

    69

    Kl o

    pp

    er J W,

    Li

    fshitz R Zablotowicz R M, Frcc

    li

    vin g

    bacte

    ri

    al inocul a for enh ancin g crop productivit

    y, Trellds

    Biolechnol. 7 ( 1989) 39.

    70 Wenze l W W, Manipulatin g

    rhi

    zos

    ph

    ere chemistry to cont rol

    metal and organi c co ntamin ant av ailab ility and implicat ions to

    Phytoremedi ation. in 2nd Im

    ernalional co

    nf

    ere

    ll

    ce O

    l.

    conlaminenls

    ill so

    il en v

    ir

    onlllent in

    Ih

    e Auslra lia - Paciji c

    regio

    n. New De lh i,

    (1999) 12.

    7 1 Glick B R, Pen

    ro

    se B R

    Li

    J, A model fo r the lowcri ng o f

    pl ant eth ylene concentrations by pl ant growth pro mo

    tin

    g

    bac te

    ri

    a, J

    Th

    eor Bioi.

    190 (1998) 63.

    72

    Burd G I, Di

    xo

    n G Glick B

    R,

    A pl a

    nt

    grow

    th

    -p

    ro

    moti ng

    Rhizobaclerium th

    at decreases

    ni

    ckel t

    ox

    ici

    ty

    in see

    dl

    in gs,

    Appl En vi ron M icrobiol. 64 ( 1998) 3663.

    73

    Burd G J,

    Di xo

    n D Gli ck B R,

    Pl

    a

    nt

    growth-promo

    li

    ng

    bac teria th at decrease heavy metal toxicity in pl ant s, Call

    J

    Microbiol. 46 (2000) 245.

    74

    Mc

    Cready R G L Gould W D, Bi oleachin g or

    ur

    a

    niu

    m, in

    Microbia m ineral rec

    ove

    ry,

    edited by Ehrli

    ch

    H L Brierley

    C L, M cGraw-Hili , New York ) 1990, 107.

    75 Dew D W Miller D M, The BIONIC process. Bi oleaching

    or min e

    ral

    s sul fide concentrates for recovery or nickel, in

    Co

    nf

    erence proceedin gs. Internalio

    ll

    al Bioh

    yd

    romela

    ll

    r

    gy

    Symposillm IB

    S97

    BIOMINE97,

    (Aust

    ra li

    an Mi neral

    Fo

    rm

    a

    ti

    on

    Gl

    eenside, So

    uth Au

    stra

    li

    a)

    1997, M. 7.1 .1 .

    76

    Briggs A P Milla

    rd

    M, Coba

    lt

    recovery us

    in

    g ba cte

    ri

    al

    leac

    hin

    g

    at th

    e Kasese

    Pr

    oject Ugand

    a,

    in

    COllferellce

    pro

    cee

    dings. Inlernalional Biohydromelallr

    gy

    SY

    IIIPosiulII

    .

    IBS97.BIOMI

    NE9

    7 (Australian Mineral Form ati on.

    Gl

    eenside, South Austra

    li

    a) 1997 , M. 2.4. 1.

    77 Lovely D R, Di simul atory metal redu cti on, Anl1u Rev

    Microbiol , 47 ( 1993) 263.

    78 Frank enberger W T

    Ka

    rl

    son U, Di ssipa tion

    of

    soil seleni um

    by mi crobial vo latili zation, in

    Bi

    oge

    oche

    mis

    tr

    y

    of

    lra ce

    I Ilela ls.

    edited by DC Adriano Lewis,

    B

    oca Ration. Fla)

    1992, 365.

    79 Bo

    secker K,

    Bi

    osorpti on of heavy metals by r

    il

    ame

    nl

    ous

    fun gi, in

    Biohy

    dro lll

    e

    ial ur

    gical leclllw logies. Vol-II.The

    min eral

    s.

    mela /s and malerials sociely.

    edit

    ed by

    To

    rm

    a, A E,

    Apel M L

    Bri

    erley C L (Warrend ale, Pal 1993, 55.