microbial electrochemical technologies · microbial fuel cell (mfc) microbial electrolysis cell...

43
Solid State & Structural Chemistry Unit Indian Institute of Science, Bengaluru E-mail: [email protected] Aninda J. Bhattacharyya Microbial Electrochemical Technologies Clean and Renewable Energy Technologies via Chemical Route, JNCASR, Bengaluru: November 28, 2017

Upload: others

Post on 07-Jul-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Solid State & Structural Chemistry Unit

Indian Institute of Science, BengaluruE-mail: [email protected]

Aninda J. Bhattacharyya

Microbial Electrochemical Technologies

Clean and Renewable Energy Technologies via Chemical Route, JNCASR, Bengaluru: November 28, 2017

Page 2: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Humanity needs water…..

2

http://www.unwater.org/worldwaterday/learn/en/#sthash.phUCS0RQ.dpuf

@ the core of sustainable development

Page 3: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Managing water…

Water Energy

Environment/

Climate

3

➢Prevalent strategies, methods:

How effective are they?

Page 4: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

4

Cleaning water…Sewage systems

https://bwssb.gov.in/

Introduction to Microbiology: A Case History Approach

John L. Ingraham, Catherine A. Ingraham, 2004

Page 5: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

5

Treatment of organic rich wastewater consumes a lot

power (energy) cost-intensive, inefficient

❖ few tens of GW are spent in treating water

(sizeable fraction of total power produced in a large country)

can we derive anything useful from waste

(water) ? What can be the solutions

Instead of treating organic rich wastewater with energy

intensive methods…….

Bruce E. Logan, Penn State Univ.

Page 6: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

1. Harness energy from waste water

(reduce/eliminate energy waste arising from waste water treatment)

2. Waste biomass energy Produce useful chemicals

Benefits from Waste Water ?

Wastewater (domestic, industrial, animal) contain: tens of GW(power derived from agricultural practices can be up to several hundreds of GW)

Exploration route(s): Electrochemistry/ Electrochemical methods ?

6

Useless Useful

Page 7: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

7

Electricity

Waste Water

...Electrochemical reaction....

(biology/biological systems)

Page 8: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Generated power

Energy waste 25 W

can power a small device ?

Human food intake / day

8

Page 9: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

https://www.ncbi.nlm.nih.gov/books/NBK26882/figure/A290/?report=objectonly

Digestion of Food

Eat food

Respiratory

Enzymes

O2

Ox (-e-)

involves a series of redox steps

Red (+e-)

9

Page 10: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

10

Chemiosmosis (in bacteria)

Metabolism in Microorganisms

ADP ATP

Introduction to Microbiology: A Case History Approach

John L. Ingraham, Catherine A. Ingraham, 2004

Page 11: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

11

Electrochemical processes, energy, devices…………

(chemical) Redox Reaction

(Electricity)

Energy

Generation

Storage

Page 12: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

12

Electrochemistry……Electrochemical Devices

Luigi Galvani (1780)

Allessandro Volta

Early Battery (1800)

Pb-Acid Battery: Gaston Plante (1859)

H2/O2 Gas Battery William Grove (1838) (highlighted by Wilhelm Ostwald, 1896)

Coining of “Fuel Cell” : Charles Langer, Ludwig Mond (1889) (FC with air and coal gas)

H2-O2 FC: Francis Bacon (1932) ( 5 KW system, 1959)

Capacitors (GE, 1950s (GE)…. Supercapacitors: Conway (1999)

Li-ion battery: Sony (1991)

Laws of electrolysis: Faraday (1834)

Page 13: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Conductors

Ionic (i)/

Electronic (e)Mixed (Di, e)

Materials design

Structure Property ( Device function)

Electrochemical Energy Harvest and Storage

Page 14: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

(Electrochemical) Energy Generation & Storage Technologies:

Fuel Cells, EDLCs, Rechargeable Batteries

Primary Battery /

Fuel cell

Rechargeable

BatteryPseudo / EDL

Capacitor

Winter, Brodd, Chem. Rev. 2004, 104, 4245

-1 theo

OCV s OCV

n.FWh.kg =E ×C E

M

-1 theo

T sWh.kg =E ×C

Energy Charge transport in Electrodes, Electrolytes, Interfaces

(chemical composition, structure, physical state, cell configuration)

Page 15: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Nanocrystal (Quantum dot) sensitized solar cells

S2-

Sn2

-

Cd

S

S. Mazumdar Thesis, 2015

Page 16: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Ragone plot: E-Chem Devices

Ragone, D., "Review of Battery Systems for Electrically

Powered Vehicles," SAE Technical Paper 680453, 1968,

doi:10.4271/680453.

1 s

<1 s

1 h 10 h

Solar Energy

100 Wkg-1

( 100h)

Hydrogen >30000 Whkg-1

Combustion

Engine, Gas

TurbineFlywheels/ Pneumatics

1 s – 5 min

Human metabolism 10 Whkg-1 (1 Wkg-1);10h

Hydrocarbon fuel > 10000 Whkg-1

16

Page 17: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

17

Electrochemistry……Electrochemical Devices

Luigi Galvani (1780)

Allessandro Volta

Early Battery (1800)

Pb-Acid Battery: Gaston Plante (1859)

H2/O2 Gas Battery William Grove (1838) (highlighted by Wilhelm Ostwald, 1896)

Coining of “Fuel Cell” : Charles Langer, Ludwig Mond (1889) (FC with air and coal gas)

H2-O2 FC: Francis Bacon (1932) ( 5 KW system, 1959)

Capacitors (GE, 1950s (GE)…. Supercapacitors: Conway (1999)

Li-ion battery: Sony (1991)

Laws of electrolysis: Faraday (1834)

>1900: Microorganisms…liberation

of electrical energy

Page 18: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Microorganisms … Electrical Energy

18

1960s: NASA for space missions

1983: H.P. Bennetto et al (mediator based electron transfer)(Biochem. Soc. Trans 11 (1983), 451-453; Biotechnol. Bioengg. 25 (1983), 559-568)

Page 19: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

19

Bioelectrochemical Systems (BES): 21st Century

ISI Web of Science, Jan/2017

Santoro, Arbizzani, Erable, Ieropoulos J. Power Sour.

356 (2017), 225-244

Page 20: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Electrochemical Energy Generation: Fuel Cells

(Electrolyte, pH: acidic/alkaline, type of fuels, operating temperatures)

20

H2 + 1/2O2 H2O

Cell voltage: 1.23 V

Specific energy: 3660 Wh/kg

Page 21: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

21

Electricity

Benefits from Waste Water ?

...Electrochemical reaction....

(biology/biological systems)

Chemical Microbial Fuel Cells

Page 22: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Microbial Fuel Cells

22

Page 23: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Microbial Fuel Cells

➢ produces 0.5 V, (multiplied with current power)

(Theo: 1.2 V)

-0.3 V 0.2 V

23

Page 24: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

How does bacteria capture and process energy: How

does MFC work?

24

Page 25: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

❖Max Potential: -1.2 V

Potential diff. between

NADH and O2

❖ Early e- exit @ Vred < VrO2

less ATP production; deficit

potential w.r.t. O2 can be

used for electricity

generation

How do MFCs Work ?

25

Logan, Regan Environ. Sci. Tech. 356 (2006), 5172-5180

Page 26: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

H2 Production using MEC

Cathode: H2 production @ under

standard conditions and normal pH

0.41 V (theo.)

Anode (Acetate Oxidation) -0.28 V

Energy supplied from outside -0.13 V

Water splitting: -1.2 V

26

Bruce E. Logan, Penn State Univ.

Page 27: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

(without microbes)

CH4

CO2

27

Page 28: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Microbial Fuel Cell (MFC)

Microbial Electrolysis Cell (MEC)

Microbial Electrochemical Technologies

28Rabaey, Rozendal Nature Rev.: Microbiology 8 (2010), 706-716

Page 29: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Bioelectrochemical system-based bio-productionH2O2 Bio-plastic

Butanol Bioproduction

processes

29Rabaey, Rozendal Nature Rev.: Microbiology 8 (2010), 706-716

Santoro, Arbizzani, Erable, Ieropoulos J. Power Sour. 356 (2017), 225-244

Desalination cell

Page 30: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Technical Challenges

System Architecture

Materials

Microbiology

30

Mechanisms: ac-methods, spectroscopy, microscopy,

microbiology techniques (clone sequencing, pyrosequencing,…

Electrode potential, Power, Power Density, W/m2 (W/m3),

Coulombic Efficiency,…electrochemical methods

Page 31: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Technical Challenges: System Architecture

➢ Rint is critical for obtaining high power density (W.m-2)

P= 2 mW/m2 P= 40 mW/m2

➢ P EOCV

Eanode: independent of systems

Ecathode (oxidant, catholyte)

➢ Rint depends on the state of oxidant, type

Rint : dissolved O2 O2 (air), ferricyanide, MnO2

Air Cathode

Ferricyanide Catholyte

➢ Substrates (glucose, acetate), flow patterns,….

31Logan, Regan Environ. Sci. Tech. 356 (2006), 5172-5180

Rabaey, Rozendal Nature Rev.: Microbiology 8 (2010), 706-716

Page 32: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Technical Challenges: Electroactive components

32

Interactions: EA-Biofilm and Anode surface

electrical conductivity

corrosion resistance

high mechanical strength

surface area (biofilm)

biocompatibility (environment friendly)

low cost

Page 33: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

33Santoro, Arbizzani, Erable, Ieropoulos J. Power Sour. 356 (2017), 225-244

Technical Challenges: Anodes

Page 34: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

34

Anodes….Surface chemistry and morphology

Page 35: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

35

Technical Challenges: Cathode catalysts and Reaction

Mechanisms

➢ enzymes, microbes

➢ abiotic: (Pt-based, carbonaceous, Pt-group-free-materials-PGM)(4e

-) (2e

-) (4e

-/2e

-)

site specific interactions

Page 36: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Technical Challenges: Microbiology

Modes of Electron Transfer

from Bacteria to Electrodes

36

Page 37: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

➢species diversity including gram

+ve and -ve (electroactive)

micro-organisms

37Logan, Regan, Trends in

Microbiology, 2006

Page 38: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Technical Challenges: Microbiology (Substrates)

38

Kiely, Regan, Logan Curr Opinion Biotech 2011, 22, 378-385

Page 39: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

39https://en.wikipedia.org/wiki/EcoBot

Page 40: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

41

Summary

Scientific curiosity ?

▪ Microbes are accurate sensors of

their environment: versatile

devices

Page 41: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

42

Summary

Scientific curiosity ?

➢ MFCs/MESs: Platform technology for other technologies

▪ Technology out of waste: remote

area power applications,

sanitation, materials synthesis

▪ Design strategies for MFC, MEC, MES

(Key issues: Materials, Microorganisms, Performance, Costs)

Page 42: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

43

Summary

Scientific curiosity ?

➢ MFCs: Platform technology for other technologies

➢ Interdisciplinary research field

➢ Great Education Tool

Page 43: Microbial Electrochemical Technologies · Microbial Fuel Cell (MFC) Microbial Electrolysis Cell (MEC) Microbial Electrochemical Technologies 28 Rabaey, Rozendal Nature Rev.: Microbiology

Thank You…

44