microelettronica ii - unirc.itmicroelettronica ii 08/09 power will be a major problem 5kw 18kw 1.5kw...

31
EE141 1 Microelettronica II 08/09 Mi Mi cr cr oelettronica oelettronica II II J. M. Rabaey, "Digital integrated circuits: a design perspective", Second Edition, ed. Prentice Hall, 2003.

Upload: others

Post on 09-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

EE1411

Microelettronica II 08/09

MiMicrcroelettronicaoelettronica IIII

J. M. Rabaey, "Digital integrated circuits: a design perspective",Second Edition, ed. PrenticeHall, 2003.

EE1412

Microelettronica II 08/09

IntroductionIntroduction

Why is designing digital ICs different today than it was before?

Will it change in future?

EE1413

Microelettronica II 08/09

The First ComputerThe First Computer

The BabbageDifference Engine(1832)25,000 partscost: £17,470

EE1414

Microelettronica II 08/09

ENIAC ENIAC -- The first electronic computer (1946)The first electronic computer (1946)

EE1415

Microelettronica II 08/09

The Transistor RevolutionThe Transistor Revolution

First transistorBell Labs, 1948

EE1416

Microelettronica II 08/09

The First Integrated Circuits The First Integrated Circuits

Bipolar logic1960’s

ECL 3-input GateMotorola 1966

EE1417

Microelettronica II 08/09

Intel 4004 MicroIntel 4004 Micro--ProcessorProcessor

19711000 transistors1 MHz operation

EE1418

Microelettronica II 08/09

Intel Pentium (IV) microprocessorIntel Pentium (IV) microprocessor

200042 M transistors1.7 GHz clock-rate

EE1419

Microelettronica II 08/09

MooreMoore’’s Laws Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.

He made a prediction that semiconductor technology will double its effectiveness every 18 months

EE14110

Microelettronica II 08/09

MooreMoore’’s Laws Law16151413121110

9876543210

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

LOG

2 OF

THE

NU

MB

ER O

FC

OM

PON

ENTS

PER

INTE

GR

ATE

D F

UN

CTI

ON

Electronics, April 19, 1965.

EE14111

Microelettronica II 08/09

Trends in logic IC ComplexityTrends in logic IC Complexity

EE14112

Microelettronica II 08/09

Trends in Memory ComplexityTrends in Memory Complexity

EE14113

Microelettronica II 08/09

MooreMoore’’s law in Microprocessorss law in Microprocessors

400480088080

8085 8086286

386486 Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tran

sist

ors

(MT)

2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

EE14114

Microelettronica II 08/09

MooreMoore’’s Laws Law

(data from Intel)

EE14115

Microelettronica II 08/09

FrequencyFrequency

P6Pentium ® proc

48638628680868085

8080800840040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Freq

uenc

y (M

hz)

Lead Microprocessors frequency doubles every 2 yearsLead Microprocessors frequency doubles every 2 years

Doubles every2 years

EE14116

Microelettronica II 08/09

Die Size GrowthDie Size Growth

40048008

80808085

8086286

386486 Pentium ® procP6

1

10

100

1970 1980 1990 2000 2010Year

Die

siz

e (m

m)

~7% growth per year~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s LawDie size grows by 14% to satisfy Moore’s Law

EE14117

Microelettronica II 08/09

Power DissipationPower Dissipation

P6Pentium ® proc

486386

2868086

808580808008

4004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Pow

er (W

atts

)

Lead Microprocessors power continues to increaseLead Microprocessors power continues to increase

EE14118

Microelettronica II 08/09

Power will be a major problemPower will be a major problem

5KW 18KW

1.5KW 500W

4004800880808085

8086286

386486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Pow

er (W

atts

)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

Courtesy, Intel

EE14119

Microelettronica II 08/09

Power densityPower density

400480088080

8085

8086

286 386486

Pentium® procP6

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Pow

er D

ensi

ty (W

/cm

2)

Hot Plate

Power density too high to keep junctions at low tempPower density too high to keep junctions at low temp

EE14120

Microelettronica II 08/09

Not Only MicroprocessorsNot Only Microprocessors

Digital Cellular Market(Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M Analog Baseband

Digital Baseband(DSP + MCU)

PowerManagement

Small Signal RF

PowerRF

(data from Texas Instruments)(data from Texas Instruments)

CellPhone

EE14121

Microelettronica II 08/09

Why Scaling?Why Scaling?Technology shrinks by 0.7/generationWith every generation can integrate 2x more functions per chip; chip cost does not increase significantlyCost of a function decreases by 2xBut …

How to design chips with more and more functions?Design engineering population does not double every two years…

Hence, a need for more efficient design methodsExploit different levels of abstraction

EE14122

Microelettronica II 08/09

Design Abstraction LevelsDesign Abstraction Levels

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

EE14123

Microelettronica II 08/09

Design MetricsDesign Metrics

How to evaluate performance of a digital circuit (gate, block, …)?

CostReliabilityScalabilitySpeed (delay, operating frequency) Power dissipationEnergy to perform a function

EE14124

Microelettronica II 08/09

Cost of Integrated CircuitsCost of Integrated Circuits

NRE (non-recurrent engineering) costsdesign time and effort, mask generationone-time cost factor

Recurrent costssilicon processing, packaging, testproportional to volumeproportional to chip area

EE14125

Microelettronica II 08/09

NRE Cost is IncreasingNRE Cost is Increasing

EE14126

Microelettronica II 08/09

Cost per TransistorCost per Transistor

0.00000010.0000001

0.0000010.000001

0.000010.00001

0.00010.0001

0.0010.001

0.010.01

0.10.111

19821982 19851985 19881988 19911991 19941994 19971997 20002000 20032003 20062006 20092009 20122012

cost: cost: ¢¢--perper--transistortransistor

Fabrication capital cost per transistor (Moore’s law)

EE14127

Microelettronica II 08/09

Die CostDie Cost

Single die

Wafer

Going up to 12” (30cm)

EE14128

Microelettronica II 08/09

YieldYield%100

per wafer chips ofnumber Totalper wafer chips good of No.

×=Y

yield Dieper wafer DiescostWafer cost Die×

=

( )area die2

diameterwafer area die

diameter/2wafer per wafer Dies2

××π

−×π

=

EE14129

Microelettronica II 08/09

DefectsDefects

α−⎟⎠⎞

⎜⎝⎛

α×

+=area dieareaunit per defects1yield die

α is approximately 3

4area) (die cost die f=

EE14130

Microelettronica II 08/09

Some Examples (1994)Some Examples (1994)

$4179%402961.5$15000.803Pentium

$27213%482561.6$17000.703Super Sparc

$14919%532341.2$15000.703DEC Alpha

$7327%661961.0$13000.803HP PA 7100

$5328%1151211.3$17000.804Power PC 601

$1254%181811.0$12000.803486 DX2

$471%360431.0$9000.902386DX

Die cost

YieldDies/wafer

Area mm2

Def./ cm2

Wafer cost

Line width

Metal layers

Chip

EE14131

Microelettronica II 08/09

ReliabilityReliability――Noise in Digital Integrated CircuitsNoise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and groundnoise

v(t) VDD