microgrids- a guide for municipalities

45
www.trcsolutions.com April 2, 2014 Microgrids: A Guide for Municipalities

Upload: trc-companies-inc

Post on 26-May-2015

456 views

Category:

Engineering


6 download

DESCRIPTION

Since 2013, the Connecticut Department of Energy and Environmental Protection’s (DEEP) microgrid program has awarded $18 million to 9 projects statewide. This presentation was part of a free educational webinar series to help Connecticut municipalities and other interested parties better understand the technical aspects of microgrids in order to prepare a more thorough response to DEEP's 2014 Request for Proposals.

TRANSCRIPT

Page 1: Microgrids- A Guide for Municipalities

www.trcsolutions.com

April 2, 2014

Microgrids: A Guide for Municipalities

Page 2: Microgrids- A Guide for Municipalities

2

Speakers:

Bill MoranSenior Electrical EngineerTRC Companies, Inc.

Joseph DebsProject Manager, Distributed ResourcesConnecticut Light and Power Co.

Page 3: Microgrids- A Guide for Municipalities

3

Overview

Microgrid development – where to start

Interconnection

Load management

Generation sources

Microgrid controls and operation

Page 4: Microgrids- A Guide for Municipalities

4

Microgrid Development – Site selection

Multiple critical facilities

Physical location – within reasonable walking distance

Widely spaced facilities with numerous non‐critical sites interspersed will greatly increase cost of microgrid

Widely spaced facilities with numerous non‐critical sites between will greatly increase cost of microgrid

Are all microgrid facilities within a campus, or will power have to cross public roads?

What does the Microgrid look like?

Page 5: Microgrids- A Guide for Municipalities

5

Page 6: Microgrids- A Guide for Municipalities

6

Page 7: Microgrids- A Guide for Municipalities

7

Page 8: Microgrids- A Guide for Municipalities

8

Microgrid Development – Site selection

Meet with EDU/MEU

Questions to ask:‐ Are all of the Critical Facilities now served from the same feeder circuit?

‐ What is the primary service voltage?

‐ How difficult (expensive) will it be to isolate these facilities from the rest of the grid?

‐ What portions of the proposed microgrid would be constructed owed and operated by the EDU/MEU?

‐ Will other customers be affected?

‐ What are the historical electrical demand loads for the critical facilities?

Page 9: Microgrids- A Guide for Municipalities

9

Microgrid Development –Select Engineer/Developer

Qualifications needed:

Prior experience in designing, building microgrid or distributed generation projects

Experienced working with EDU/MEU

Must work closely with host facility and other project stakeholders

Well capitalized

Page 10: Microgrids- A Guide for Municipalities

10

Microgrid Development –Identify Critical Facility Load

Sources of information: Facility “demand load” information provided by EDU/MEU Check utility bills for “kW demand “

Consider load management: Are all facility loads essential, or can some be shed during 

emergency conditions? Do all peak loads occur under the same time or weather 

conditions? Can some loads be time‐shifted, i.e deferred to off peak 

times (example: water heating, dishwashing etc.)

Page 11: Microgrids- A Guide for Municipalities

11

Selection of Generation Sources

Efficiency Environment Fuel Source

‐ Non‐interruptible OR‐ 2 week supply

Load following ability Voltage and frequency source

‐ Most inverter based sources not grid independent. Location within microgrid

‐ Central within microgrid preferable‐ Single location preferable to scattered generators‐ Noise and environmental concerns‐ Thermal and other efficiency concerns.

Total generation capacity 120% of critical facility load.

Page 12: Microgrids- A Guide for Municipalities

CT landscape and PA 12‐148

"Microgrid" means a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and that connects and disconnects from such grid to enable it to operate in both grid‐connected or island mode.

12

Page 13: Microgrids- A Guide for Municipalities

CT Interconnection Rules

Collaborated efforts over the past 10 years on lessons learned

CL&P & UI follow the same process and technical guidelines

Guidelines approved by Public Utility Regulatory Authority (PURA)

Guidelines are based on the Federal Energy Regulatory Commission (FERC) Small Generator Interconnection Process(SGIP) model

13

Page 14: Microgrids- A Guide for Municipalities

Types of Microgrid

Type 1: Campus Style Microgrid

In this configuration the electrical distribution infrastructure is owned and operated by a single or multiple entities (owner / operator) and does not include islanding of any of the Electrical Distribution Company assets. 

– The generator has the ability to island with no interface with the utility Electrical Distribution Company

14

Page 15: Microgrids- A Guide for Municipalities

Campus style Microgrid

CB

Page 16: Microgrids- A Guide for Municipalities

Type of Microgrid

Type 2: Microgrid with Utility Owned Distribution Facilities: In this configuration a portion of the Electrical Distribution Company assets along with selected loads are intentionally interconnected with dedicated generation supplying the loads.

– The generator will need to coordinate with the EDC

16

Page 17: Microgrids- A Guide for Municipalities

Microgrid with Utility Owned Distribution Facilities:

17

Page 18: Microgrids- A Guide for Municipalities

The Interconnection Process

Scope: ‐ Scoping Meeting‐ Review for grid connected mode(Normal Interconnection process) 

‐ Review of operational procedure (Joint Operation)‐ Review in Island mode will include Protection, voltage, frequency & short circuit impact 

‐ Design Electrical distribution system to support Microgrid‐ Design of communication system (SCADA)

Timelines: Depends on complexity of project

18

Page 19: Microgrids- A Guide for Municipalities

Review of operational procedure

A detailed Operation procedure is required and must consider the following:‐ Operation in grid connected mode‐ Operation in island mode‐ Reconnect to the grid (under direction of EDC)‐ Interlocks (Mechanical and Electrical)‐ Protective Functions in grid and Island mode

Refer to Attachment C for additional information 

19

Page 20: Microgrids- A Guide for Municipalities

Additional Considerations

Manual vs. Automatic operation  

Operation and Ownership of grid isolation device(s)

Electrical Distribution Company operating procedures

Maintenance

Cost of upgrades of EDC Facilities (development , installation and operation of Microgrid

Real time communication with EDC (SCADA) if needed

20

Page 21: Microgrids- A Guide for Municipalities

Basic Understanding

Understanding limitation and possible delays associated with restoration of normal power

Understanding that EDC role is to serve all customers needs including non Microgrid customers, Microgrid should not impact other customers

Upgrades material and practices must be consistent with EDC standard practices to facilitate restoration efforts in event of equipment failure

Define methodology to initiate an island mode  Define methodology to return to normal operation 

21

Page 22: Microgrids- A Guide for Municipalities

Successful Application Components

Application Guidelines Fee Complete Application Application Signature  Insurance Technical data sheets Number of inverters / Generation  Utility account and/or meter number Ownership

‐ Property ‐ Third party ownership of generator

22

Page 23: Microgrids- A Guide for Municipalities

Successful Application Components

Technical

Exhibit B of the Guidelines

Electrical One‐Line diagram with standard symbols and labels

Timely communication and data transfer

Receive contingent approval prior to construction

Disconnect switch 

Compliance with meter and service requirements

Detailed sequence of operation and test plan

Provide detailed relaying information

23

Page 24: Microgrids- A Guide for Municipalities

Typical One Line 

24

Page 25: Microgrids- A Guide for Municipalities

25

One‐Line Electrical Diagram

Must be prepared and stamped by a Connecticut Licensed Professional Engineer

Requirements specified in RFP Attachment C‐ ANSI/IEEE standard symbols‐ Point(s) of common coupling shown‐ Location and type of isolation switch shown‐ All protective relay functions shown‐ Transformer grounding shown‐ Transformer impedances shown‐ Meters and metering connections shown

Page 26: Microgrids- A Guide for Municipalities

Pillars of a Successful Interconnection 

Safety

Reliability Cost

SuccessfulInterconnection

26

Page 27: Microgrids- A Guide for Municipalities

27

Island Operation

Voltage control

System voltage must be maintained by generators

ANSI c84‐1

Motor starting

Multiple generator VAR load sharing. 

Transfer off/on grid.

‐ Voltage matching

‐ Synchronization

Page 28: Microgrids- A Guide for Municipalities

28

Island Operation

Control System Frequency

Frequency vs. load control.

‐ Grid Parallel: control generator load

‐ Islanded: control system frequency

‐ Isochronous

‐ Droop

‐ Isochronous load sharing

‐ Load following ability – ramp rate

‐ Parallel generator operation

‐ Effect of uncontrolled renewable sources

Page 29: Microgrids- A Guide for Municipalities

29

Characteristics of Different Generator Types

Synchronous‐ Voltage and current source‐ Grid parallel or independent 

Induction‐ Current source‐ No reactive power (VAR) capability‐ Can not operate grid independent

Inverter‐ Current source‐ Voltage source/self‐commutating‐ UL 1741 compliance

‐ Includes anti‐islanding provisions

Page 30: Microgrids- A Guide for Municipalities

30

Characteristics of Different Generator TypesPrime mover types

Diesel engine Gaseous fueled reciprocating (Otto cycle)

‐ Rich burn‐ Lean burn

Gas turbine Fuel cell Inverter – PV, Wind etc. Other

‐ Steam turbine‐ Hydro

Page 31: Microgrids- A Guide for Municipalities

31

Characteristics of Different Generator TypesRamp Rate (Load acceptance)

Load – unload speed

Diesel  ‐ 100% block load capable

Inverter with storage – block load capable

Gas turbine 100‐200 kW/second for MW size units

Fuel cells 3‐10 kW/second

Lean burn gas recip. 2‐3 kW/sec. (small units)

Rich burn gas recip.  ‐ near block load

‐ 50% ‐ 100% well tolerated depending on manufacturer

Page 32: Microgrids- A Guide for Municipalities

32

Page 33: Microgrids- A Guide for Municipalities

33

Ways to mitigate slow ramp rates

Load bank‐ Inefficient

Storage‐ Efficient‐ More effective use of generating capacity‐ Expensive‐ Can reduce spinning reserve requirements.

Base load vs. peaking units‐ Slow ramping units operate at nearly constant load‐ Load following done by generators with rapid response 

capability‐ Example: base load fuel cells with diesels used for load 

following

Page 34: Microgrids- A Guide for Municipalities

34

Microgrid Controls

Operation when grid connected Frequency controlled by grid Voltage controlled by grid Reactive power (VAR) demand supplied by grid Distributed generation controlled to maintain desired power output 

(kW) Higher available fault current

Page 35: Microgrids- A Guide for Municipalities

35

Microgrid Controls

Islanded Operation System voltage and frequency controlled by microgrid generation All instantaneous load peaks must be carried by microgrid

generation All VAR demand must be met by microgrid generation

‐ Motor starting is a consideration‐ Elevators‐ Air conditioning equipment‐ Refrigeration/ industrial loads.

‐ Inverters have little ability to handle VAR demand‐ Synchronous generators best able to provide reserve VARs

Page 36: Microgrids- A Guide for Municipalities

36

Microgrid Controls

Islanded Operation Frequency must be controlled by generation Microgrid must be able to absorb swings in load Ramp rate of generators becomes an issue How is load shared among multiple generators? Isochronous vs. droop governing Lower available fault current

‐ Will likely require different settings for protective relays‐ Different short circuit coordination requirements‐ Potentially greater arc‐flash requirements

Page 37: Microgrids- A Guide for Municipalities

37

Microgrid Controls

Load management Spinning reserve 120% of facility load Load peak reduction

‐ Shedding of less critical loads‐ Load shifting‐ Load shedding response ‐ instantaneous (3‐5 cycles)

Contingency management Partial generator loss

‐ Must reduce load immediately to less than 100% of on‐line generation to avoid blackout

‐ Building EMS systems can not react fast enough to reduce load

Page 38: Microgrids- A Guide for Municipalities

38

Page 39: Microgrids- A Guide for Municipalities

39

Microgrid Controls

Transition control Grid Parallel to Island Operation

‐ Grid tie circuit breaker trips open‐ Excess load shed if spinning generators have less capacity than 

load. (high speed load shed)‐ All generators switch from load control to frequency control‐ All generators switch from power factor control to voltage 

control‐ Additional generation brought on‐line if needed.‐ Previously shed loads can be restored, if microgrid has full 

generation capacity

Page 40: Microgrids- A Guide for Municipalities

40

Microgrid Controls

Transition control Island Operation to Grid Parallel 

‐ Generators adjust to match grid voltage‐ Microgrid frequency and phase angle adjusted to match grid‐ Grid tie circuit breaker closed‐ Generators switch to load (output) control‐ Generators switch from voltage to power factor control‐ Excess generation can be shut down according to normal 

operating schedule‐ Any non‐critical loads shed during island operation can be 

restored

Page 41: Microgrids- A Guide for Municipalities

41

Page 42: Microgrids- A Guide for Municipalities

42

Page 43: Microgrids- A Guide for Municipalities

43

Conclusion

Microgrid Development

Identify Facilities to be served

Consult with EDC/MEU for feasibility

Identify Facility loads

Seek developer/engineer

Design

Design interconnection and physical layout of Microgrid

Select  and locate appropriate generation sources

Configure load management controls

Obtain Interconnection Agreement

Page 44: Microgrids- A Guide for Municipalities

44

Conclusion

Construction Purchase and install generation equipment EDC/MEU to construct system modifications to serve microgrid. Construct customer owned distribution and interconnection.

Testing and Commissioning Electrical testing Approval to energize Performance testing Environmental (air) testing Islanding demonstration

Operations Generation in operation Operations management in place Routine maintained scheduled. Annual reports 

Page 45: Microgrids- A Guide for Municipalities

Questions?Bill Moran, TRC Companies, Inc.P: 774‐235‐2602  | E: [email protected]

DEEP Microgrid program E: DEEP.Energy [email protected]

Joe Debs, Connecticut Light and Power Co.P: 860‐665‐5616 | E: [email protected]

Pat Healy, United Illuminating Co.P: (203) 926‐5257 | E: [email protected]