mike downer university of texas at austinfemtosec/presentations/downer... · 2010. 8. 18. ·...

38
These interesting properties originate at Si NC/SiO 2 interfaces. SHG has a reputation for being interface-specific Nonlinear Spectroscopy of Si Nanocrystals & Step-Edges Si nanostructures have properties & applications different from those of bulk Si Mike Downer University of Texas at Austin EPI-OPTICS 11 Erice, Sicily July 20, 2010 Observation of optical gain in Si nanocrystals embedded in SiO 2 Pavesi et al., Nature 408, 440 (2000) “Si lasers start to take shape” Walters et al, Nature Mat. 4,143 (2005). V gate > V e- injection V gate > V h+ injection Field-effect LED In vivo bio-sensing Erogbogbo et al, ACS Nano.2, 873 (2008) Live pancreatic cancer cells 17 µm amine-terminated micelle-encapsulated Si NC, a non-toxic al- ternative to CdSe NCs

Upload: others

Post on 10-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • These interesting properties originate at Si NC/SiO2 interfaces. SHG has a reputation for being interface-specific

    Nonlinear Spectroscopy of Si Nanocrystals & Step-Edges

    Si nanostructures have properties & applications different from those of bulk Si

    Mike DownerUniversity of Texas at Austin

    EPI-OPTICS 11Erice, SicilyJuly 20, 2010

    Observation of optical gain in Si nanocrystals embedded in SiO2Pavesi et al., Nature 408, 440 (2000)

    “Si lasers start to take shape”

    Walters et al, Nature Mat. 4,143 (2005).

    Vgate > Ve- injection

    Vgate > Vh+ injection

    Field-effect LED In vivo bio-sensing

    Erogbogbo et al, ACS Nano.2, 873 (2008)

    Live pancreatic cancer cells

    17 µm

    amine-terminatedmicelle-encapsulatedSi NC, a non-toxic al-ternative to CdSe NCs

  • These interesting properties originate at Si NC/SiO2 interfaces. SHG has a reputation for being interface-specific

    Nonlinear Spectroscopy of Si Nanocrystals & Step-Edges

    Si nanostructures have properties & applications different from those of bulk Si

    Mike DownerUniversity of Texas at Austin

    step-edges

    EPI-OPTICS 11Erice, SicilyJuly 20, 2010

    Observation of optical gain in Si nanocrystals embedded in SiO2Pavesi et al., Nature 408, 440 (2000)

    “Si lasers start to take shape”

    Walters et al, Nature Mat. 4,143 (2005).

    Vgate > Ve- injection

    Vgate > Vh+ injection

    Field-effect LED In vivo bio-sensing

    Erogbogbo et al, ACS Nano.2, 873 (2008)

    Live pancreatic cancer cells

    17 µm

    amine-terminatedmicelle-encapsulatedSi NC, a non-toxic al-ternative to CdSe NCs

    nanowire

    DNA bases adsorbed at vicinal SiMauricio et al., Nanoletters 3, 479 (2003)

    courtesy D. R. T. Zahn, TU-Chemnitz

    silicon stepped surfacesprovide templates for1D quantum wires,1

    molecular electronics,2atomic-scale memory,3quantum computers4

    & other nano-electronicstructures

    1McChesney, Nanotech. 13, 545 (02)2Kasemo, Surf. Sci. 500, 656 (02)3Bennewitz, Nanotech. 14, 499 (02)4Ladd, Phys. Rev. Lett. 89, 017901 (02)

  • Co-workers

    Si NCs Si step-edges Theory

    Pete Figliozzi

    PhD 2007

    Y. Jiang

    PhD 2002Liangfeng Sun

    PhD 2006

    Jinhee Kwon

    PhD 2006

    Bernardo MendozaCIO, León, México

    W. Luis MochanU. Nacional Autónoma

    Cuernavaca, MéxicoFinancial Support: • Robert Welch Foundation

    • U.S. National Science Foundation

    Adrian Wirth (MS 2007)

    Robert EhlertJunwei Wei

    Yongqiang An

    PhD UC-Boulder

    2004

  • Their elusive nano-interfaces make Si NCs

    interesting & challenging

    0.1961632725 nm

    0.47982092 nm

    surface atom fraction# surface atoms# atomsdiameter

    c-Si

    strained SiOx ?

    a-SiO2

    Radiative double bonds:Wolkin et al., Phys. Rev. Lett. 82, 197 (1999)

    Luppi & Ossicini, Phys. Rev. B 71 (2005)

    Transition layer(s):Daldosso et al., Phys. Rev. B 68, (2003)

    a-Si ?

    Si

    Si

    H

    O

    Si

    • Buried nano-interfaces inaccessible to many surface science probes

    and challenging to described theoretically (e.g. by DFT, Monte Carlo)

    • Here we use multiple complementary spectroscopies

    Bridge bonds:Sa’ar et al., Nano Lett. 5, 2443 (2005).

    Si

    SiO

    Dangling bonds

    (SE)

    (SHG)

    (XPS, Raman)(PL)

  • SH

    G i

    nte

    ns

    ity

    Ip

    p(2

    )

    azimuthal angle (degrees)

    0 180 360

    Si(001)/SiO2

    E2

    E1

    Erley & Daum, PRB 58, R1734 (1998)

    Surface & bulk contributions to SHG from planar surfaces

    are never separated with full rigor...J. E. Sipe et al., Phys. Rev. B 35, 1129 (1987)

    Si

    SiO2

    asymmetric interface

    electron response

    p

    t

    P(0)

    P( )

    P(2 )

    Fourier decomposition

    surf(2) :

    E

    E

    p-polarized interface dipole SHG

    bulk quadrupolar SHG

    ... but empirical separation is usually possible based on:

    1. azimuthal anisotropy 2. spectrum 3. sensitivity to interface

    modification

    I(2 ) = |a0 + b4sin4 |2

    bulksurface + bulk

    SiOx/Si interfacethermal

    oxide

    Second-h

    arm

    onic

    sig

    nal (a

    rb.

    units)

    thermal

    oxide +

    anneal in

    Ar

    native

    oxide

  • Similarly, nano-interface & bulk contributions to SHG from

    Si NCs are intertwined, and must be distinguished empiricallyMochan et al., Phys. Rev. B 68, 085318 (03)

    single nanoparticle:

    uniform nano-composite:

    Pb (r ) = E2 + E E

    Ps (r ) = ijk

    s (a,b, f )FjFk ,

    PNL

    = E E

    nNC[ e ( , ,a,b, f )

    m ( , ,a,b, f )

    q (a,b, f ) / 6]

    Ps

    From symmetry alone,

    assuming l

  • single 5 nm NC

    mμ1

    TEM Images

    • Multi-energy implant (35-500 keV) yields uniform NC density1

    Photoluminescenceexcitation @ 486 nm

    PL spectrum is unchanged throughout the

    excitation range 250 < < 500 nm

    500 600 700 800 900 10001100

    Int

    [a

    . u

    .]

    [nm]

    Ar + H2

    Ar

    L pez et al., Appl. Phys. Lett. 9, 1637 (2002)

    = 3nm

    Si ions

    • Samples annealed @ 1100 C / 1 hr in Ar or Ar + H2to precipitate NC formation2

    glass substrate

    One group of samples is prepared by Si ion implantation into SiO2C. W. White et al., NIM B 141, 228 (1998) - ORNL

    (simplifies optical analysis)

  • We also fabricate Si NC samples on a benchtopby thermolysis of hydrogen silsesquioxane (HSQ)

    • C. M. Hessel et al., Chem. Mater. 18, 6139 (2006); J. Phys. Chem. C 111, 6956 (2007)

  • XPS and Raman scatter document conversion of multiply-

    coordinated a-Si clusters into 4-fold-coordinated c-Si NCsKachurin et al., Semiconductors 36, 647 (2002)

    ____________ , Fiz. Tekh. Poluprov. 36, 685 (2002)

    Hessel, J. Chem. Phys. 112, 14247 (2008)

    after Si implant

    SiO2

    500 C

    650 C

    1000 C

    1150 C

    Si 2p

    Si(IV) Si(0)Si(II)Si(I)Si

    (III)

    After annealing at > 1000 C,

    negligible sub-oxide is

    detectable by XPS.

    XPS Raman backscatter

    3 nm NC-Si3 nm NC-Si

    a-Si

    Si-Si bonds

    Anneal

    300 400 500 600

    c-Si

    Raman shift (cm-1)

    Ar 514.5 nm pump

    Similar measurements by

    previous investigators

  • Spectroscopic ellipsometry (SE) shows modified c-Si E1

    and E2 critical points after annealing

    as-implanted: • no E1,2 critical point features

    • consistent with small a-Si clusters

    after 1100 C anneal in Ar: • E1,2 peaks appear

    • E1 suppressed, blue-shifted

    • consistent with:

    - previous SE measurements [1,2]

    - ab initio calculations of optical

    properties of Si NCs in SiO2 [3]

    after 1100 C anneal in Ar + H2: • negligible further change

    • SE appears selectively sensitive to c-Si core of Si NCs

    • Measured 1,2 determine Fresnel factors used in SHG analysis

    2

    [1] En Naciri et al. J. Chem. Phys. 129, 184701 (2008)

    [2] Cen et al., Appl. Phys. Lett. 93, 023122 (2008)

    [3] Seino, Bechstedt, Kroll, Nanotech. 20, 135702 (2009) previous related SE results

    E1

    E2c-Si

    a-Si

  • PL excitation spectrum demonstrates that linear absorption

    occurs primarily in bulk c-Si cores, consistent with SE

    suppressed

    E1

    E2

    Photo-excited carriers cross-relax to interface states for PL

  • L Sun et al, Opt. Lett, 30, 2287 (2005)

    Figliozzi et al, Phy. Rev. Lett. 94, 047401 (2005)

    2

    2E...))(2(

    )2(

    +EEPg

    Single beam SHG XP2-SHG

    Jiang et al., Appl. Phys. Lett., 78, 766 (2001)

    nc silica

    ( ) ...)(6/)2(

    +EEnP qmebnc1E

    nm8002,1 =

    SH signalEEP )()2(

    2

    0

    1

    w

    2

    1

    Ar + H2

    Ar

    Three parameters needed to

    describe XP2-SHG response

    g

    NC = | NC|ei

    sample

    z-scan

    0 +1000-1000z-scan position (microns)

    0

    100

    SH

    G (

    co

    un

    ts/s

    ) • Ar

    • Ar + H2

    Cross-Polarized 2-beam SHG (XP2-SHG) enhances signal 100

    Conventional single-beam SHG is weak

    0-100 +1000

    104

    XP

    2-S

    HG

    (co

    un

    ts/s

    )z-scan position (microns)

    • Ar

    • Ar + H2single beam

    single beam

  • -h -h/2 h

    SH

    G I

    nte

    ntisty

    (a

    .u.)

    Position of beam overlaph/20-h -h/2 h

    SH

    G I

    nte

    ntisty

    (a

    .u.)

    Position of beam overlaph/20-h -h/2 h

    SH

    G I

    nte

    ntisty

    (a

    .u.)

    Position of beam overlaph/20

    Three independent z-scan measurements determine g, | NC| and

    -h -h/2 h

    SH

    G I

    nte

    ntisty

    (a

    .u.)

    Position of beam overlaph/20

    glass

    0z

    1E

    2E

    2

    L. Sun et al., Optics Lett. 30, 2287 (2005)

    Measurements (scans):

    1 substrate

    2 NC @ exit

    3 NC @ entrance

    • The peaks result from relaxation of phase mismatch when boundaries of the sample fall

    within the 2-beam overlap region

    • SHG signal growth in the glass is affected by phase mismatch

    • An analogous enhancement underlies 3rd harmonic microscopy with focused beamsBarad, Appl. Phys. Lett. 70, 922 (1997)

    • Peak heights are asymmetric because of linear absorption of SH light by NCs and

    interference of SHG signals generated by NCs and silica

    h/2-h/2

  • ( )040.0159.0

    060.05217.1

    ±=

    ±=g

    nc

    ( )020.0241.0

    064.0743.1

    ±=

    ±=

    g

    nc

    = 630 nm

    glass nc@ent nc@exit fit nc@ent fit nc@exit fit glass

    SH

    In

    ten

    sity [

    a.u

    .]

    0 hh/2-hDeviation of beam overlap from sample center

    -h/2

    SH

    In

    ten

    sity [

    a.u

    .]

    glass nc@ent nc@exit fit nc@ent fit nc@exit fit glass

    0 hh/2-hDeviation of beam overlap from sample center

    -h/2

    = 540 nm

    Examples at 2 wavelengths illustrate extraction

    of fitting parameters | nc|/ g and

    SE determined Fresnel factors used in this analysis

  • SHG spectra lack E1,2 critical point resonances

    • Kramers-Kronig

    consistencybetween | NC|/| g|

    and

    HH

    E1 E23 nm Si NCs

    in SiO2

    as-implanted:

    like a-Si

    SHG spectrum

    of a-Si:

    Erley & Daum,

    Phys. Rev. B 58,

    R1734 (1998)

  • SHG spectra lack E1,2 critical point resonances

    • annealed in Ar:

    enhanced NC near known

    SiOx resonances

    • annealed in Ar/H2:

    minimal H-effect

    consistent with

    previous SHG

    Erley & Daum,

    PRB 58, 1743 (1998)

    SHG spectrum of

    thermally oxidized

    planar Si(001) after

    anneal in Ar

    Second-harmonic photon energy (eV)

    SH

    reflection c

    oeffic

    ient

    p-in/

    p-out

    s-in/p-out

    SHG spectrum of

    Si(111)-(1x1)-H

    during oxidation

    3.5 eV

    Bergfeld, PRL 93,

    097402 (2004)

    O

    HH

    E1 E23 nm Si NCs

    in SiO2

  • E1 (3.4 eV) and 3.8 eV resonances appear in SHG spectra of 5 nm diameter Si NCs

    E 1

    E1 E2

    3.8

    eV

    !NC

    (3nm )= 7e18 cm

    "3

    !NC(5nm )

    = 3e18 cm"3

  • SHG per NC is >10× stronger from 5 nm NCSthan from 3 nm NCs

    Ideal single particle SHG scaling: (5/3)6 = 21 [Dadap, PRL (1999)]

    × 7/3

  • Spectroscopic XP2-SHG is sensitive to nc-Si/SiO2 interfacial

    features* not observed by other spectroscopies

    that appear in recent MD simulationsDjurabekova & Nordlund, “Atomistic simulation of the interface structure of

    Si NCs embedded in amorphous silica,” Phys. Rev. B 77, 115325 (2008)

    2 nm

    S-SHG validates &

    guides simulations

    of the nc-Si/SiO2

    interface

    *elevated PE/atom a-Si shell

    ~ 10% undercoordinated bonds,

    Si=O bonds also present

    d = 1.3 nm NC

    a-Si interior

    d[nm] =

    1.3

    2.4

    3.6

    r/r0

    PE

    /ato

    m (

    eV

    )

    ~ 10% suboxide*

    a-Si

    c-Si

  • Conclusions about Si embedded nanocrystals

    < 2 nm

    3 nm

    5 nm

    > 8 nm

    XP2-SHG SE/PLE Raman XPS

    emergent 3.8 eV resonance

    featurelessspectrum

    featurelessbackground

    strong 3.8 eV

    resonance

    E1 resonance

    broadfeaturelessspectrum

    residual bkgd

    E1 and E2resonances

    E1 and E2resonances

    broad 480 cm-1

    peak

    sharp 520 cm-1peak

    480 cm-1 tail

    480 cm-1 tail

    sharp 520 cm-1

    peak

    SiO2

    SiOx

    • interface region stabilizes and thins with increasing dNC

    a-Si

    c-Si

  • Stepped (vicinal) Si surfaces are attractive

    templates for nanofabrication

    Non-invasive in-situ sensors that provide atomic-scale

    information over the dimensions of a wafer are needed

    investigation of step-enhanced

    chemical reactions

    atomic wires suitable for

    transport

    “lithography” by self

    assembly of nanostructures

  • Optical metrology bridges the nano-scale & wafer-scale

    STM

    nano-patterned surface

    nano-scale probe wafer-scale nanomanufacturing

    optical

    metrology

    r ||r

    r

    r= 2

    r r||r + r||

    Aspnes & Studna, PRL 54, 1956 (1985)

    Reflectance

    Anisotropy

    Spectroscopy

    Si(001):6o

    step-edges

    Ein Ein

    r Ein r Ein

    r/r

    [10

    -3]

    Photon energy (eV)1 2 3 4 5

    2

    -2

    0

    RAS cleanH2 @ steps

    cyclopentene

    Si(001):6o

    180 270 360900

    H2

    SH

    G i

    nte

    ns

    ity

    (a

    rb.u

    .)

    0

    azimuthal angle (deg)

    1

    2

    steps

    [110]

    2cyclo-

    pentene

    clean

    SHG @

    780 nm

  • We combine SHG & RAS probes of

    stepped Si(001) surfaces in UHV

    monochromator

    + PMT

    QMSsample

    gas inlet valve

    PEM

    Xenon lamp(1.5 to 5 eV)

    tun

    ab

    le

    fs-

    sou

    rce

    B.S.

    quartz

    PM

    T

    BG39

    analyzer

    strain free

    window

    analyzer

    polarizer

    SHG ports

    Coherent MIRA

    Ti:Sapphire oscillator

    710-900nm

    NOPA

    520nm-780nm

    PMT

    RAS

    SHG

    • RAS & SHG track contam-

    ination non-invasively

    • completely reversible

  • We have studied 3 very different surface chemical reactionson Si(001):6o

    1) H2

    2) H2 + atomic H

    3) H2 + C5H8 (cyclopentene)C5H8

    DB step

    terrace dangling bonds

    step dangling bondsstep rebonds

    terrace dimers

    back bonds

    upperterrace

    lowerterrace

    • ~ 1000 L H2 @ 150 C• bonds selectively to step-edge db’s• Dürr et al., Phys. Rev. B 63, 121315 (2001)

    • ~ 106 L H2 (saturation dose) • passivates step AND terrace db’s, leaving steps and dimers intact• atomic H can react with step rebonds and/or terrace dimers. Which happens first?

    ?

    ?

    • C5H8 bonds by 2+2 cycloaddition to terrace dimers, forming crystalline organic monolayer• step-adsorbed H may help modify & control C5H8 adsorption

  • H2H2 H2 H2

    H2

    H2

    SHG/RAS Case Study #1: Dissociative adsorption of H2 at DB steps of Si(001):6o

    M. Durr, U. Höfer et al., Phys. Rev B. 63, 121315 (2001)

    cleanSi(001):6o

  • In the absence of first principles theory, Simplified Bond

    Hyperpolarizability Model (SBHM) provides

    SHG - RAS interpretation at the molecular bond levelPowell et al., Phys. Rev. B 65, 205320 (2002)

    pj(2 )

    = j|| b̂j (b̂j Ein )

    2

    b̂j = bond unit vector

    j||= axial hyperpolarizability

    • A chemical bond is the basic polarizable unit

    Ej2

    =eikr

    r2(I k̂k̂) pj

    (2 )

    • Induced axial SH polarization of bond j:

    • Far-field SH radiation of bond j :

    Ein

    s

    p

    • Simplifications: - transverse hyperpolarizabilities neglected

    - local field corrections folded into ’s

    - boundary conditions not treated rigorously

    b̂j ,

    Ej2

    • Total far-field SH radiation:

    Ej2

    =eikr

    r2(I k̂k̂) pj

    (2 )

    j

    terrace dimer

    0o 180o 360o

    step rebond

    0o 180o 360o

    step dangling bond

    0o 180o 360o

    SH

    G i

    nte

    nsit

    y

    p-in/p-out

    i = 45o

    b̂k ,

    b̂l ,

    d.bstep

    dimerterrace

    d.b.terrace

    ab initio DFT

    calculation

    provides input

    structure

    for SBHM

    analysis

    back.terrace

    rebondstep

    backstep

  • SHG “dictionary” for Si(001): 6o

  • Multi-parameter fitting (like Wall St. investing)

    requires “government regulation” based on...

    Bonds that are parallel to E , charge-rich and non-centrosymmetric contribute most strongly

    ... Bond physics & chemistry

    .. Consistency for Multiple Angles ( ) and Polarizations (MAP)

    ... Kramers-Kronig consistency

    p-in/p-out

    SH

    G i

    nte

    ns

    ity

    [a

    rb.u

    .]

    0o 180o 360o

    azimuthal angle (degrees)

    00o 180o 360o

    azimuthal angle (degrees)

    00o 180o 360o

    azimuthal angle (degrees)

    0

    s-in/s-out s-in/p-out = 52.5o

    = 45o

    = 30oclean

    Si(001):6oclean

    Si(001):6o

    clean

    Si(001):6o

    stepdb

    = 0.4

    terrace = 0.2db

    terrace = -0.2dimer

    e steprebond

    = 0.3

    m steprebond

    = 0.2

    0o 180o 360o

    azimuthal angle (degrees)

    0

    p-in/p-outafter exposureto 1500 L H2at RT

    SH

    G i

    nte

    ns

    ity

    [a

    rb.u

    .]

    e steprebond

    = 0.3

    m steprebond

    = 0

    stepdb

    = 0

    H2 terrace = 0.2

    db

    terrace = -0.2dimer

    1

    0.8

    0.2

    0.1

  • Full SBHM fits SHG data with high fidelity = 42oclean Si(001): 6

    o

    Si(001): 6o with H-terminated steps p-in/p-out

  • Strict regulation: derive RAS response from SHG data

    step terrace

    Fitted bond hyperpolarizability spectra j||

    Elinear2 ( Î k̂k̂) j ,2

    j

    b̂jb̂j Ein2

    *Miller’s theorem:

    j||= j ,2 j , j ,

    r

    rr~

    ~~110011

    linear bond polarizabilities

    j ,2

    spectral range

    of SHG data

    *R. C. Miller, Appl. Phys. Lett. 5, 17 (1964)

    Ehlert, JOSA B 27,

    981 (2009)

  • Hyperpolarizability spectra show charge transfer from step

    dangling bond to 3 underlying bonds when H2dissociatively adsorbs at step-edges

    clean

    1000 L H2

    With SHG-RAS-SBHM, we watch charge transfer

    accompanying the formation of specific step-

    edge chemical bonds.

  • SHG/RAS/SBHM Case Study #2: Reaction of atomic H with H2-saturated Si(001):6o surface

    ?

    ?

    1000 L H2 × 1000

    • symmetrized dimers• 2×1-reconstructed terraces• re-bonded (r) DB steps intact

    Pehlke & Kratzer, Phys. Rev. B 59, 2790 (1999)

    Laracuente & Whitman, Surf. Sci.545, 70 (2003)

    • atomic H catalyzes conversion of r-DB to non-rebonded DB, SB and SA steps

    H

    top view

    sideview

    • 2×1 monohydride terraces convert to 1×1 dihydride, breaking dimers

    2×1

    1×1

    Borenzstein et al., Phys. Rev. Lett.95, 117402 (2005)

  • clean
(2x1) full
H2
+50L
H
@300C

    +
50L
H
@
300C


    +
50L
H
@RT

    2x1
spots

    SHG: Rebonds break immediately

    LEED: Dimers break later

    spot
spli+ng

    2x1
spotsp-in/p-out

    No remaining SHG signature of rebondafter ~ 100 L atomic H

    2x1
spotsgone!

    dimers broken

    rebondcontribution

    2x1
spots

  • pp

    
step
rebond step
backbond

    sp

    ss

    SHG-MAP shows shows decreasing rebond, in-creasing backbond, expression during H exposure

    Si(001):4o 780nm 45o incidence

    azimuthal angle [radians]

    0 3 6

    1×106 L H2+ 50 L atomic H

  • RAS is a “spectator” as the rebond breaks

  • ... H2 pre-adsorption at step db’s partially pro- tects steps from reacting with C5H8

    RAS-SHG-SBHM Case Study #3: monitor and control ofnanofabrication of organic monolayers on Si(001)

    0 90 180 270 3600.0

    0.1

    0.2

    0.3

    0.4

    clean H2 H2+Cyclopentene Cyclopentene

    SH in

    tens

    ity [

    arb.

    units

    ]

    azimuthal angle

    780nm Si(001):6

    SHG

    Inte

    nsity

    [arb

    . u.]

    0

    1

    2

    3

    4

    Hamers et al. (2000). Acc. Chem. Res. 33(9): 617-624Lu et al., Phys. Rev. B 68, 115327 (2003)

    STM shows C5H8 bonds to Si=Si terrace dimers to form an ordered monolayer.

    clean vicinal Si(001):6o after C5H8 adsorption

    pp 300 CSHG, on the other hand, shows ...

    ... C5H8 reacts immediately & strongly with step rebonds of the clean Si(001):6o surface

    C5H8

  • I. 0-D: Si NCs embedded in SiO2

    • method: XP2-SHG + SE, Raman, XPS, PL

    II. 1-D: step-edges of vicinal Si

    Summary: Noninvasive optical spectroscopy of nano-interfaces

    • method: SHG & RAS & SBHM

    • importance: Si LEDs, bio-sensors

    • importance: templates for molecular electronics, quantum wires & computers

    Figliozzi et al., Phys. Rev. Lett. 94, 047401 (2005); Wei et al., in preparation

    Kwon et al., Phys. Rev. B 73, 195330 (2006). Ehlert et al., J. Opt. Soc. Am. B 27, 981 (2009) & more in the oven.

    Yu Suzuki• results: visualization of formation of step Si-H bond

    and of breaking of step rebond; - control & optical monitoring of cyclopentene nano-lithography by self-assembly

    • results: new SHG evidence for a-Si and SiOx nano-interfacial transition regions

  • END