milewski sequences revisited, and its generalization

33
KICS North-America Branch Workshop 2019.2.9 Hong-Yeop Song Yonsei University Milewski sequences revisited, and its generalization

Upload: others

Post on 17-Feb-2022

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Milewski sequences revisited, and its generalization

KICS North-America Branch Workshop2019.2.9

Hong-Yeop SongYonsei University

Milewski sequences revisited,

and its generalization

Page 2: Milewski sequences revisited, and its generalization

Hong-Yeop Song

โ€ข For complex-valued sequences ๐’™๐’™,๐’š๐’š of length ๐ฟ๐ฟ, the periodic correlation of ๐’™๐’™ and ๐’š๐’š at shift ๐‰๐‰ is

๐‘ช๐‘ช๐’™๐’™,๐’š๐’š ๐‰๐‰ = ๏ฟฝ๐’๐’=๐ŸŽ๐ŸŽ

๐‘ณ๐‘ณโˆ’๐Ÿ๐Ÿ

๐’™๐’™ ๐’๐’ + ๐‰๐‰ ๐’š๐’šโˆ—(๐’๐’)

โ–ซ If ๐’š๐’š is a cyclic shift of ๐’™๐’™, it is called autocorrelation, and denoted by ๐‘ช๐‘ช๐’™๐’™ ๐‰๐‰

โ–ซ Otherwise, it is called crosscorrelation

Sequences and Correlation

2

Page 3: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Perfect Sequences

โ€ข A sequence ๐’™๐’™ of length ๐‘ณ๐‘ณ is called perfect if

C๐’™๐’™ ๐œ๐œ = ๏ฟฝ๐‘ฌ๐‘ฌ, ๐œ๐œ โ‰ก 0 mod ๐ฟ๐ฟ0, ๐œ๐œ โ‰ข 0 (mod ๐ฟ๐ฟ)

Here, ๐‘ฌ๐‘ฌ is called the energy of ๐’™๐’™

โ€ข (Sarwate, 79) Crosscorrelation of any two perfect sequences of length ๐‘ณ๐‘ณ with the same energy ๐‘ฌ๐‘ฌ is lower bounded by ๐‘ฌ๐‘ฌ/ ๐‘ณ๐‘ณ.โ–ซ An optimal pair of perfect sequences of length ๐‘ณ๐‘ณโ–ซ An optimal set of perfect sequences of length ๐‘ณ๐‘ณ

3

Page 4: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Interleaved Sequence

4

โ€ข Consider two sequences ๐’”๐’”0 = ๐‘Ž๐‘Ž, ๐‘๐‘, ๐‘๐‘ and ๐’”๐’”1 = ๐‘‘๐‘‘, ๐‘’๐‘’,๐‘“๐‘“ of length 3 each

โ€ข Write each as a column of an array:

๐’”๐’”0, ๐’”๐’”1 =๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘๐‘ ๐‘’๐‘’๐‘๐‘ ๐‘“๐‘“

โ€ข Read the array row-by-row and obtain a sequence of length 6:

๐’”๐’” = ๐ผ๐ผ(๐’”๐’”๐ŸŽ๐ŸŽ, ๐’”๐’”๐Ÿ๐Ÿ) = ๐‘Ž๐‘Ž,๐‘‘๐‘‘, ๐‘๐‘, ๐‘’๐‘’, ๐‘๐‘, ๐‘“๐‘“is called an interleaved sequence of ๐’”๐’”0 and ๐’”๐’”1

Page 5: Milewski sequences revisited, and its generalization

Hong-Yeop Song

History of Perfect Polyphase Sequences

5

1960โ€™s

1970โ€™s

1980โ€™s

1990โ€™s

Frank, ZadoffIRE T-IT, 1962

(Heimiller 1961)

Kumar, Scholtz, WelchJ. Comb. Theory Series

A. 1985

P1 code

Mowโ€™s two unified construction (dissertation 1993, ISSTA 1996)

Alphabet size : ๐‘๐‘Period : ๐‘๐‘2

Chu(Frank,Zadoff)

IEEE T-IT, 1973

PopovicIEEE T-IT, 1992

P2 codeAlphabet size : ๐‘๐‘

Period : ๐‘๐‘

Chung, KumarIEEE T-IT, 1989

P4 codeAlphabet size : ๐‘ ๐‘ ๐‘๐‘

Period : ๐‘ ๐‘ ๐‘๐‘2

MilewskiIBM J. R&D, 1983

P3 codeAlphabet size : ๐‘๐‘๐‘˜๐‘˜+1

Period : ๐‘๐‘2๐‘˜๐‘˜+1

Page 6: Milewski sequences revisited, and its generalization

Hong-Yeop Song 6

The original Milewski constructionLength: ๐’Ž๐’Ž โ†’ ๐’Ž๐’Ž ๏ฟฝ๐’Ž๐’Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ

MilewskiConstruction

Output perfect polyphase sequence

๐’”๐’” = ๐‘ ๐‘  ๐‘›๐‘› ๐‘›๐‘›=0๐’Ž๐’Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ๐Ÿโˆ’1

perfect polyphase Sequence of length ๐‘š๐‘š

๐œท๐œท = ๐›ผ๐›ผ ๐‘›๐‘› ๐‘›๐‘›=0๐‘š๐‘šโˆ’1

A positive integer

๐พ๐พ

where

๐’”๐’” ๐’๐’ = ๐œท๐œท ๐’’๐’’ ๐Ž๐Ž๐’’๐’’๐’“๐’“

๐œ”๐œ” = ๐‘’๐‘’โˆ’๐‘—๐‘—2๐œ‹๐œ‹

๐‘š๐‘š1+๐พ๐พ

Here, we use๐‘›๐‘› = ๐’’๐’’๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐’“๐’“ โ†” (๐’’๐’’, ๐’“๐’“)

๐‘š๐‘š ๏ฟฝ ๐‘š๐‘š๐พ๐พ ร— ๐‘š๐‘š๐พ๐พ array form of ๐’”๐’”

โ‹ฎ โ‹ฎ โ‹ฎโ‹ฑ

โ‹ฎ โ‹ฎ โ‹ฎโ‹ฑ

โ‹ฎ โ‹ฎ โ‹ฎโ‹ฑ

๐›ฝ๐›ฝ(0) ๐›ฝ๐›ฝ(0) ๐›ฝ๐›ฝ(0)๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐›ฝ๐›ฝ(1) ๐›ฝ๐›ฝ(1) ๐›ฝ๐›ฝ(1)๐Ž๐Žร— ร— ร—โ‹ฏ ๐Ž๐Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐›ฝ๐›ฝ(2) ๐›ฝ๐›ฝ(2) ๐›ฝ๐›ฝ(2)๐Ž๐Ž๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐Ž๐Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐›ฝ๐›ฝ(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ(๐‘š๐‘šโˆ’ 1)๐Ž๐Ž๐’Ž๐’Žโˆ’๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐Ž๐Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ ๐’Ž๐’Žโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐›ฝ๐›ฝ(0) ๐›ฝ๐›ฝ(0) ๐›ฝ๐›ฝ(0)๐Ž๐Ž๐’Ž๐’Ž(๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ)ร— ร— ร—โ‹ฏ ๐Ž๐Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ ๐’Ž๐’Ž(๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

๐›ฝ๐›ฝ(1) ๐›ฝ๐›ฝ(1) ๐›ฝ๐›ฝ(1)๐Ž๐Ž๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐Ž๐Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐›ฝ๐›ฝ(2) ๐›ฝ๐›ฝ(2) ๐›ฝ๐›ฝ(2)๐Ž๐Ž๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐Ž๐Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐›ฝ๐›ฝ(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ(๐‘š๐‘šโˆ’ 1)๐Ž๐Ž๐’Ž๐’Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐Ž๐Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ ๐’Ž๐’Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Input sequence of period ๐‘š๐‘š

๐‘ต๐‘ต = ๐’Ž๐’Ž๐Ÿ๐Ÿ

Page 7: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Our framework(A special type of interleaved sequences)

7

where

with ๐’๐’ = ๐’’๐’’๐‘ต๐‘ต + ๐’“๐’“, and ๐Ž๐Ž = ๐ž๐ž๐ž๐ž๐ž๐ž(โˆ’๐’‹๐’‹๐Ÿ๐Ÿ๐’‹๐’‹/๐’Ž๐’Ž๐‘ต๐‘ต).

Interleaving technique

A positive integer๐‘๐‘

A polyphase sequenceof length ๐‘๐‘

๐๐ ๐œ‹๐œ‹

A functionโ„ค๐‘ต๐‘ต โŸถ โ„ค๐’Ž๐’Ž๐‘ต๐‘ต

A collection of ๐‘๐‘ sequence of length ๐‘š๐‘š๐‘ฉ๐‘ฉ = ๐œท๐œท0,๐œท๐œท1, โ€ฆ ,๐œท๐œท๐‘๐‘

not necessarily polyphasenot necessarily all distinct

Output sequence ๐‘ ๐‘  = ๐’”๐’” ๐’๐’ ๐‘›๐‘›=0๐‘š๐‘š๐‘๐‘2โˆ’1

๐’”๐’” ๐’๐’ = ๐๐ ๐’“๐’“ ๐œท๐œท๐’“๐’“ ๐’’๐’’ ๐Ž๐Ž๐’’๐’’๐’‹๐’‹(๐’“๐’“)

Definition. We define A ๐‘ฉ๐‘ฉ,๐’‹๐’‹ be a family of interleaved sequences constructed by the above procedure using all possible polyphase sequences ๐๐.

Page 8: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Array Form

8

Row index ๐’’๐’’

=๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ,๐Ÿ๐Ÿ,โ€ฆ

,๐’Ž๐’Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ

Column index ๐’“๐’“ = ๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ,๐Ÿ๐Ÿ, โ€ฆ ,๐‘ต๐‘ตโˆ’ ๐Ÿ๐ŸAssume that ๐๐ is the all-one sequence, โ€ป ๐œ”๐œ” = ๐‘’๐‘’โˆ’๐‘—๐‘—

2๐œ‹๐œ‹๐‘š๐‘š๐‘๐‘

โ‹ฎ โ‹ฎ โ‹ฎโ‹ฑ

โ‹ฎ โ‹ฎ โ‹ฎโ‹ฑ

โ‹ฎ โ‹ฎ โ‹ฎโ‹ฑ

๐›ฝ๐›ฝ0(0) ๐›ฝ๐›ฝ1(0) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(0)๐œ”๐œ”๐œ‹๐œ‹(1) ๐ŸŽ๐ŸŽร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐ŸŽ๐ŸŽ๐œ”๐œ”๐œ‹๐œ‹(0) 0

๐›ฝ๐›ฝ0(1) ๐›ฝ๐›ฝ1(1) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(1)๐œ”๐œ”๐œ‹๐œ‹(1) ๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐Ÿ๐Ÿ๐œ”๐œ”๐œ‹๐œ‹(0) ๐Ÿ๐Ÿ

๐›ฝ๐›ฝ0(2) ๐›ฝ๐›ฝ1(2) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(2)๐œ”๐œ”๐œ‹๐œ‹(1) ๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐Ÿ๐Ÿ๐œ”๐œ”๐œ‹๐œ‹(0) ๐Ÿ๐Ÿ

๐›ฝ๐›ฝ0(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ1(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(๐‘š๐‘šโˆ’ 1)๐œ”๐œ”๐œ‹๐œ‹(1) ๐’Ž๐’Žโˆ’๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐’Ž๐’Žโˆ’๐Ÿ๐Ÿ๐œ”๐œ”๐œ‹๐œ‹(0) (๐’Ž๐’Žโˆ’๐Ÿ๐Ÿ)

๐›ฝ๐›ฝ0(0) ๐›ฝ๐›ฝ1(0) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(0)๐œ”๐œ”๐œ‹๐œ‹(1) ๐’Ž๐’Ž(๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ)ร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐’Ž๐’Ž(๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ)๐œ”๐œ”๐œ‹๐œ‹(0) ๐’Ž๐’Ž(๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ)

๐›ฝ๐›ฝ0(1) ๐›ฝ๐›ฝ1(1) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(1)๐œ”๐œ”๐œ‹๐œ‹(1) ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐œ”๐œ”๐œ‹๐œ‹(0) ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿ

๐›ฝ๐›ฝ0(2) ๐›ฝ๐›ฝ1(2) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(2)๐œ”๐œ”๐œ‹๐œ‹(1) ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐œ”๐œ”๐œ‹๐œ‹(0) ๐’Ž๐’Ž ๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ +๐Ÿ๐Ÿ

๐›ฝ๐›ฝ0(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ1(๐‘š๐‘šโˆ’ 1) ๐›ฝ๐›ฝ๐‘๐‘โˆ’1(๐‘š๐‘šโˆ’ 1)๐œ”๐œ”๐œ‹๐œ‹(1) ๐’Ž๐’Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿร— ร— ร—โ‹ฏ ๐œ”๐œ”๐œ‹๐œ‹(๐‘๐‘โˆ’1) ๐’Ž๐’Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ๐œ”๐œ”๐œ‹๐œ‹(0) ๐’Ž๐’Ž๐‘ต๐‘ตโˆ’๐Ÿ๐Ÿ

Input sequence ๐œท๐œท0of period ๐‘š๐‘š

Input sequence ๐œท๐œท1of period ๐‘š๐‘š

Input sequence ๐œท๐œท๐‘๐‘โˆ’1of period ๐‘š๐‘š

Input function ๐œ‹๐œ‹:โ„ค๐‘ต๐‘ต โŸถ โ„ค๐’Ž๐’Ž๐‘ต๐‘ต

Page 9: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Milewski Construction is a Special Case

9

MilewskiConstruction

Output perfect polyphase sequence

๐’”๐’” = ๐‘ ๐‘  ๐‘›๐‘› ๐‘›๐‘›=0๐’Ž๐’Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ๐Ÿโˆ’1

perfect polyphase sequence

๐œท๐œท = ๐›ผ๐›ผ ๐‘›๐‘› ๐‘›๐‘›=0๐‘š๐‘šโˆ’1

A positive integer

๐พ๐พ

where๐‘ ๐‘  ๐‘›๐‘› = ๐›ฝ๐›ฝ ๐‘ž๐‘ž ๐œ”๐œ”๐‘ž๐‘ž๐’“๐’“

with ๐‘›๐‘› = ๐‘ž๐‘ž๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐‘Ÿ๐‘Ÿ,and

๐œ”๐œ” = ๐‘’๐‘’โˆ’ ๐‘—๐‘— 2๐œ‹๐œ‹๐‘š๐‘š1+๐พ๐พ .

Interleaving technique

๐‘๐‘ ๐๐

where๐‘ ๐‘  ๐‘›๐‘› = ๐›ฝ๐›ฝ๐’“๐’“ ๐‘ž๐‘ž ๐œ”๐œ”๐‘ž๐‘ž๐’‹๐’‹(๐’“๐’“) = ๐›ฝ๐›ฝ ๐‘ž๐‘ž ๐œ”๐œ”๐‘ž๐‘ž๐’“๐’“

with ๐‘›๐‘› = ๐‘ž๐‘ž๐‘ต๐‘ต + ๐‘Ÿ๐‘Ÿ = ๐‘ž๐‘ž๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐‘Ÿ๐‘Ÿ, and

๐œ”๐œ” = ๐‘’๐‘’โˆ’ ๐‘—๐‘— 2๐œ‹๐œ‹๐‘š๐‘š๐‘ต๐‘ต = ๐‘’๐‘’โˆ’ ๐‘—๐‘— 2๐œ‹๐œ‹๐’Ž๐’Ž๐Ÿ๐Ÿ+๐Ÿ๐Ÿ .

๐œ‹๐œ‹๐ต๐ต = ๐œท๐œท0,๐œท๐œท1, โ€ฆ ,๐œท๐œท๐‘๐‘

Output sequence

๐’”๐’” = ๐‘ ๐‘  ๐‘›๐‘› ๐‘›๐‘›=0๐’Ž๐’Ž ๐’Ž๐’Ž๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

โˆ’1

perfect polyphase sequences

๐œท๐œท0 = ๐œท๐œท1 = โ‹ฏ = ๐œท๐œท๐‘๐‘โˆ’1An integer๐‘๐‘ = ๐‘š๐‘š๐พ๐พ

all-one sequence

The identityfunction๐œ‹๐œ‹ ๐‘Ÿ๐‘Ÿ = ๐‘Ÿ๐‘Ÿ

=

Page 10: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Condition on perfectness(Main result 1)

10

Theorem. Any sequence inA ๐‘ฉ๐‘ฉ,๐’‹๐’‹ is perfect if and only if the following conditions are satisfied:

1) ๐šฟ๐šฟ๐’‹๐’‹(๐’“๐’“) = ๐ŸŽ๐ŸŽ for ๐’“๐’“ = ๐Ÿ๐Ÿ,๐Ÿ๐Ÿ, โ€ฆ ,๐‘ต๐‘ตโˆ’ ๐Ÿ๐Ÿ.That is, ๐’‹๐’‹ ๐’“๐’“ (๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ ๐‘ต๐‘ต) for ๐’“๐’“ = ๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ, โ€ฆ ,๐‘ต๐‘ตโˆ’ ๐Ÿ๐Ÿ is a permutation over โ„ค๐‘ต๐‘ต.

2) ๐‘ฉ๐‘ฉ is a collection of perfect sequences all of period ๐‘š๐‘š with the same energy.

We now call themthe generalized Milewski sequences

Definition. Let ๐’‹๐’‹,๐ˆ๐ˆ be two functions from โ„ค๐‘ต๐‘ต to โ„ค๐’Ž๐’Ž๐‘ต๐‘ต. We define

When ๐’‹๐’‹ = ๐ˆ๐ˆ, we use ๐œณ๐œณ๐’‹๐’‹ ๐‰๐‰ simply.

๐œณ๐œณ๐’‹๐’‹,๐ˆ๐ˆ ๐‰๐‰ = ๐’™๐’™ โˆˆ โ„ค๐‘ต๐‘ต ๐’‹๐’‹ ๐’™๐’™ + ๐‰๐‰ โ‰ก ๐ˆ๐ˆ ๐’™๐’™ ๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐‘ต .

Page 11: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Examples

11

Constellation of ๐’”๐’”

โ€ป ๐œ”๐œ” = ๐‘’๐‘’โˆ’๐‘—๐‘—2๐œ‹๐œ‹12

Generalized Milewski

Construction

๐‘๐‘ ๐๐๐ต๐ต = ๐œท๐œท0,๐œท๐œท1 ๐œ‹๐œ‹

๐’”๐’” = 0, 0,โˆ’1,โˆ’๐œ”๐œ”, 1,๐œ”๐œ”2, 0, 0, 1,๐œ”๐œ”4, 1,๐œ”๐œ”5, 0, 0,โˆ’1,โˆ’๐œ”๐œ”7, 1,๐œ”๐œ”8, 0, 0, 1,๐œ”๐œ”10, 1,๐œ”๐œ”11

is a perfect sequence of length 24.

โ€ข ๐œท๐œท0 = ๐œท๐œท1 = 0,โˆ’1,1,0,1,1which is a perfect sequence of length 6,

โ€ข ๐‘๐‘ = 2,โ€ข ๐œ‹๐œ‹(๐‘Ÿ๐‘Ÿ) = ๐‘Ÿ๐‘Ÿ, andโ€ข ๐๐ is the all-one sequence.

Page 12: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Examples

12โ€ป ๐œ”๐œ” = ๐‘’๐‘’โˆ’ ๐‘—๐‘—2๐œ‹๐œ‹12

Generalized Milewski

Construction

๐‘๐‘ ๐๐๐ต๐ต = ๐œท๐œท0,๐œท๐œท1,๐œท๐œท2 ๐œ‹๐œ‹

๐’”๐’” is a perfect sequence of length 90.

โ€ข ๐œท๐œท0 = ๐œท๐œท1 = ๐œท๐œท2 =3,โˆ’2,3,โˆ’2,โˆ’2,3,โˆ’2,โˆ’7,โˆ’2,โˆ’2

which is a perfect sequence of period 10โ€ข ๐‘๐‘ = 3,โ€ข ๐œ‹๐œ‹(๐‘Ÿ๐‘Ÿ) = ๐‘Ÿ๐‘Ÿ, andโ€ข ๐๐ is the all-one sequence.

Constellation of ๐’”๐’”

APSK constellation

ASK constellation

Page 13: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Direct vs Indirect

13

Theorem. Assume that ๐‘๐‘ is a composite number.1) Any generalized Milewski sequence of length ๐‘š๐‘š๐‘๐‘2 from the two-step

method can be also obtained by the direct method.2) There exists a generalized Milewski sequence of length ๐‘š๐‘š๐‘๐‘2 from the direct

method which can not be obtained by the two-step method.

Perfect sequences of length ๐‘š๐‘š

Generalized Milewski

sequences of length ๐‘š๐‘š๐‘๐‘12

Generalized Milewski

sequences of length ๐‘š๐‘š๐‘๐‘2

Two-step synthesis

Direct synthesis

Page 14: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Condition on optimal pair(Main result 2)

14

Theorem. Let ๐ต๐ต1 = ๐œท๐œท0,๐œท๐œท1, โ€ฆ ,๐œท๐œท๐‘๐‘โˆ’1 and ๐ต๐ต2 = ๐œธ๐œธ0,๐œธ๐œธ1, โ€ฆ ,๐œธ๐œธ๐‘๐‘โˆ’1 , all of length ๐‘š๐‘š and the same energy ๐ธ๐ธ๐ต๐ต, and perfect.

Construct ๐’”๐’” โˆˆ A ๐ต๐ต1,๐œ‹๐œ‹ and ๐’‡๐’‡ โˆˆ A(๐ต๐ต2,๐œŽ๐œŽ).

Then, ๐’”๐’” and ๐’‡๐’‡ have optimal crosscorrelation if and only if the following conditions are satisfied for each ๐’“๐’“ = ๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ, โ€ฆ ,๐‘ต๐‘ตโˆ’ ๐Ÿ๐Ÿ:1) ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ(๐‘Ÿ๐‘Ÿ) = 1, i.e., ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ ๐‘Ÿ๐‘Ÿ = ๐‘ฅ๐‘ฅ .2) For the unique ๐‘ฅ๐‘ฅ โˆˆ ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ(๐‘Ÿ๐‘Ÿ), the pair of sequences

๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ+๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก ๐œ”๐œ”๐‘š๐‘š๐œ‹๐œ‹ ๐‘ฅ๐‘ฅ+๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก

๐‘ก๐‘ก=0

๐‘š๐‘šโˆ’1and ๐›พ๐›พ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก ๐œ”๐œ”๐‘š๐‘š

๐œŽ๐œŽ ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก๐‘ก๐‘ก=0

๐‘š๐‘šโˆ’1is optimal.

Page 15: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Condition on optimal pair(Simple Special Case)

15

Corollary. Let ๐ต๐ต1 = ๐œท๐œท0,๐œท๐œท1, โ€ฆ ,๐œท๐œท๐‘๐‘โˆ’1 and ๐ต๐ต2 = ๐œธ๐œธ0,๐œธ๐œธ1, โ€ฆ ,๐œธ๐œธ๐‘๐‘โˆ’1 , all of length ๐‘š๐‘š and the same energy ๐ธ๐ธ๐ต๐ต, and perfect.

Assume that ๐’‹๐’‹ and ๐ˆ๐ˆ have the same range.Construct ๐’”๐’” โˆˆ A ๐ต๐ต1,๐œ‹๐œ‹ and ๐’‡๐’‡ โˆˆ A(๐ต๐ต2,๐œŽ๐œŽ).

Then, ๐’”๐’” and ๐’‡๐’‡ have optimal crosscorrelation if and only if the following conditions are satisfied for each ๐’“๐’“ = ๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ, โ€ฆ ,๐‘ต๐‘ตโˆ’ ๐Ÿ๐Ÿ:1) ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ(๐‘Ÿ๐‘Ÿ) = 1, i.e., ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ ๐‘Ÿ๐‘Ÿ = ๐‘ฅ๐‘ฅ .2) For the unique ๐‘ฅ๐‘ฅ โˆˆ ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ(๐‘Ÿ๐‘Ÿ),

the pair of sequences ๐œท๐œท๐’™๐’™+๐’“๐’“ and ๐œธ๐œธ๐’™๐’™ is optimal.

Page 16: Milewski sequences revisited, and its generalization

Hong-Yeop Song

when ๐’Ž๐’Ž = ๐Ÿ๐Ÿโ€ข The all-one sequence of length 1 is a trivial perfect sequence.โ€ข And, we can say that

16

โ€œthe all-one sequence and itself is a (trivial) optimal pair of perfect sequences of length 1โ€

an optimal ๐‘˜๐‘˜-set of generalized Milewski sequences of length ๐‘ต๐‘ต๐Ÿ๐Ÿ exists

if and only if a ๐‘˜๐‘˜ ร— ๐‘๐‘ circular Florentine array exists

โ€ข Therefore, for ๐‘š๐‘š = 1,

Page 17: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Example

โ€ข For a 4 ร— 15 circular Florentine array

we have optimal ๐Ÿ’๐Ÿ’-set of generalized Milewski sequences of length ๐‘๐‘2 = 152 by picking up a single perfect sequence from each and every

17

๐œ‹๐œ‹1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

๐œ‹๐œ‹2 0 7 1 8 2 12 3 11 9 4 13 5 14 6 10

๐œ‹๐œ‹3 0 4 11 7 10 1 13 9 5 8 3 6 2 14 12

๐œ‹๐œ‹4 0 13 7 2 11 6 14 10 3 5 12 9 1 4 8

A 1 ,๐œ‹๐œ‹1 , A 1 ,๐œ‹๐œ‹2 , A 1 ,๐œ‹๐œ‹3 , and

A 1 ,๐œ‹๐œ‹4 .

Song 00

Page 18: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Check๐’‹๐’‹๐Ÿ๐Ÿ ๐’™๐’™ + ๐‰๐‰ = ๐’‹๐’‹๐Ÿ๐Ÿ(๐’™๐’™)

has exactly one solution ๐‘ฅ๐‘ฅ for any ๐œ๐œ

01

2

3

4

5

6

78

9

10

11

12

13

140

7

1

8

2

12

3

119

4

13

5

14

6

10

๐œ‹๐œ‹1 ๐œ‹๐œ‹2

Page 19: Milewski sequences revisited, and its generalization

01

2

3

4

5

6

78

9

10

11

12

13

14

0 7

1

8

2

12

3

119

4

13

5

14

6

10

๐œ๐œ = 0

Page 20: Milewski sequences revisited, and its generalization

01

2

3

4

5

6

78

9

10

11

12

13

14

71

8

2

12

3

11

94

13

5

14

6

10

0

๐œ๐œ = 1

Page 21: Milewski sequences revisited, and its generalization

01

2

3

4

5

6

78

9

10

11

12

13

14

18

2

12

3

11

9

4135

14

6

10

07

๐œ๐œ = 2

Page 22: Milewski sequences revisited, and its generalization

01

2

3

4

5

6

78

9

10

11

12

13

14

82

12

3

11

9

4

135

14

6

10

0

7

1

๐œ๐œ = 3

Page 23: Milewski sequences revisited, and its generalization

01

2

3

4

5

6

78

9

10

11

12

13

14

212

3

11

9

4

13

514

6

10

0

7

1

8

๐œ๐œ = 4

Page 24: Milewski sequences revisited, and its generalization

01

2

3

4

5

6

78

9

10

11

12

13

14

123

11

9

4

13

5

14610

0

7

1

8

2

๐œ๐œ = 5

Page 25: Milewski sequences revisited, and its generalization

01

2

3

4

5

6

78

9

10

11

12

13

14

๐œ๐œ = 63

11

9

4

13

5

14

6100

7

1

8

2

12

etcโ€ฆ

Page 26: Milewski sequences revisited, and its generalization

Hong-Yeop Song

when ๐’Ž๐’Ž > ๐Ÿ๐Ÿ

โ€ข Construct ๐‘ ๐‘  โˆˆ A ๐ต๐ต1,๐œ‹๐œ‹1 , ๐‘“๐‘“ โˆˆ A ๐ต๐ต2,๐œ‹๐œ‹2 with๐ต๐ต1 = ๐›ฝ๐›ฝ0,๐›ฝ๐›ฝ1, โ€ฆ ,๐›ฝ๐›ฝ๐‘๐‘โˆ’1 and ๐ต๐ต2 = ๐›พ๐›พ0, ๐›พ๐›พ1, โ€ฆ , ๐›พ๐›พ๐‘๐‘โˆ’1 , where

26

๐’‹๐’‹๐Ÿ๐Ÿ 0 1 2 3 4

๐’‹๐’‹๐Ÿ๐Ÿ 0 2 4 1 3

๐œท๐œท0๐œท๐œท1

๐œท๐œท4

โ‹ฎ

= ๐œท๐œท= ๐œท๐œท

= ๐œท๐œท

๐œธ๐œธ0๐œธ๐œธ1

๐œธ๐œธ4

โ‹ฎ

= ๐œธ๐œธ= ๐œธ๐œธ

= ๐œธ๐œธ

1) ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ(๐‘Ÿ๐‘Ÿ) = 1, i.e., ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ ๐‘Ÿ๐‘Ÿ = ๐‘ฅ๐‘ฅ .2) For the unique ๐‘ฅ๐‘ฅ โˆˆ ฮจ๐œ‹๐œ‹,๐œŽ๐œŽ(๐‘Ÿ๐‘Ÿ), the pair of sequences ๐œท๐œท๐’™๐’™+๐’“๐’“ and ๐œธ๐œธ๐’™๐’™ is optimal.

Assume we have an optimal pair ๐œท๐œท,๐œธ๐œธand a ๐Ÿ๐Ÿ ร— ๐Ÿ“๐Ÿ“ circular Florentine array:

๐œท๐œท0๐œท๐œท1

๐œท๐œท4

โ‹ฎ

= ๐œธ๐œธ= ๐œท๐œท

= ๐œท๐œท

๐œธ๐œธ0๐œธ๐œธ1

๐œธ๐œธ4

โ‹ฎ

= ๐œท๐œท= ๐œธ๐œธ

= ๐œธ๐œธ

Then, any ๐‘ ๐‘  โˆˆ A ๐ต๐ต1,๐œ‹๐œ‹1and ๐‘“๐‘“ โˆˆ A ๐ต๐ต2,๐œ‹๐œ‹2 is an

optimal pair

Page 27: Milewski sequences revisited, and its generalization

Hong-Yeop Song 27

๐œ‹๐œ‹1 0 1 2 3 4

๐œ‹๐œ‹2 0 2 4 1 3

Definition. Let ๐’‹๐’‹,๐ˆ๐ˆ be two functions from โ„ค๐‘ต๐‘ต to โ„ค๐’Ž๐’Ž๐‘ต๐‘ต. ๐œณ๐œณ๐’‹๐’‹,๐ˆ๐ˆ ๐‰๐‰ = ๐’™๐’™ โˆˆ โ„ค๐‘ต๐‘ต ๐’‹๐’‹ ๐’™๐’™ + ๐‰๐‰ โ‰ก ๐ˆ๐ˆ ๐’™๐’™ ๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐‘ต .

๐›น๐›น1,2 ๐ŸŽ๐ŸŽ = ๐‘ฅ๐‘ฅ โˆˆ โ„ค๐‘๐‘ ๐œ‹๐œ‹1 ๐‘ฅ๐‘ฅ + ๐ŸŽ๐ŸŽ โ‰ก ๐œ‹๐œ‹2 ๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘š๐‘š๐‘‘๐‘‘ 5 = 0 โ†” ๐›ฝ๐›ฝ0+๐ŸŽ๐ŸŽ = ๐›ฝ๐›ฝ๐ŸŽ๐ŸŽ and ๐›พ๐›พ๐ŸŽ๐ŸŽ๐›น๐›น1,2 ๐Ÿ๐Ÿ = ๐‘ฅ๐‘ฅ โˆˆ โ„ค๐‘๐‘ ๐œ‹๐œ‹1 ๐‘ฅ๐‘ฅ + ๐Ÿ๐Ÿ โ‰ก ๐œ‹๐œ‹2 ๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘š๐‘š๐‘‘๐‘‘ 5 = 2 โ†” ๐›ฝ๐›ฝ2+๐Ÿ๐Ÿ = ๐›ฝ๐›ฝ๐Ÿ‘๐Ÿ‘ and ๐›พ๐›พ๐Ÿ๐Ÿ๐›น๐›น1,2 ๐Ÿ๐Ÿ = ๐‘ฅ๐‘ฅ โˆˆ โ„ค๐‘๐‘ ๐œ‹๐œ‹1 ๐‘ฅ๐‘ฅ + ๐Ÿ๐Ÿ โ‰ก ๐œ‹๐œ‹2 ๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘š๐‘š๐‘‘๐‘‘ 5 = 4 โ†” ๐›ฝ๐›ฝ4+๐Ÿ๐Ÿ = ๐›ฝ๐›ฝ๐Ÿ๐Ÿ and ๐›พ๐›พ๐Ÿ’๐Ÿ’๐›น๐›น1,2 ๐Ÿ‘๐Ÿ‘ = ๐‘ฅ๐‘ฅ โˆˆ โ„ค๐‘๐‘ ๐œ‹๐œ‹1 ๐‘ฅ๐‘ฅ + ๐Ÿ‘๐Ÿ‘ โ‰ก ๐œ‹๐œ‹2 ๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘š๐‘š๐‘‘๐‘‘ 5 = 1 โ†” ๐›ฝ๐›ฝ1+๐Ÿ‘๐Ÿ‘ = ๐›ฝ๐›ฝ๐Ÿ’๐Ÿ’ and ๐›พ๐›พ๐Ÿ๐Ÿ๐›น๐›น1,2 ๐Ÿ’๐Ÿ’ = ๐‘ฅ๐‘ฅ โˆˆ โ„ค๐‘๐‘ ๐œ‹๐œ‹1 ๐‘ฅ๐‘ฅ + ๐Ÿ’๐Ÿ’ โ‰ก ๐œ‹๐œ‹2 ๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘š๐‘š๐‘‘๐‘‘ 5 = 3 โ†” ๐›ฝ๐›ฝ3+๐Ÿ’๐Ÿ’ = ๐›ฝ๐›ฝ๐Ÿ๐Ÿ and ๐›พ๐›พ๐Ÿ‘๐Ÿ‘

๐œณ๐œณ๐Ÿ๐Ÿ,๐Ÿ๐Ÿ ๐’“๐’“ = ๐’™๐’™ โˆˆ โ„ค๐‘ต๐‘ต ๐’‹๐’‹๐Ÿ๐Ÿ ๐’™๐’™ + ๐’“๐’“ โ‰ก ๐’‹๐’‹๐Ÿ๐Ÿ ๐’™๐’™ ๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐Ÿ“๐Ÿ“ โ†” ๐œท๐œท๐’™๐’™+๐’“๐’“ and ๐œธ๐œธ๐’™๐’™

(๐œท๐œท0,

(๐œท๐œท4,

๐œธ๐œธ0) =

๐œธ๐œธ1) =

(๐œท๐œท,๐œธ๐œธ) or (๐œธ๐œธ,๐œท๐œท)

(๐œท๐œท3, ๐œธ๐œธ2) =

(๐œท๐œท,๐œธ๐œธ) or (๐œธ๐œธ,๐œท๐œท)(๐œท๐œท,๐œธ๐œธ) or (๐œธ๐œธ,๐œท๐œท)(๐œท๐œท,๐œธ๐œธ) or (๐œธ๐œธ,๐œท๐œท)(๐œท๐œท,๐œธ๐œธ) or (๐œธ๐œธ,๐œท๐œท)

(๐œท๐œท2, ๐œธ๐œธ3) =(๐œท๐œท1, ๐œธ๐œธ4) =

Page 28: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Maximum set size

28

Theorem. Let ๐น๐น๐‘๐‘ ๐‘๐‘ be the maximal size of circular Florentine arrays with ๐‘๐‘columns(symbols). Denote by ๐‘‚๐‘‚๐บ๐บ(๐‘š๐‘š๐‘๐‘2) the maximum size of optimal sets generalized Milewski sequences of length ๐‘š๐‘š๐‘๐‘2 from perfect sequences of length ๐‘š๐‘š.1) Assume that ๐‘š๐‘š = 1. Then

2) Assume that ๐‘š๐‘š โ‰ฅ 2 and let ๐‘‚๐‘‚๐‘ƒ๐‘ƒ ๐‘š๐‘š be the maximum size of optimal perfect sequence sets of period ๐‘š๐‘š. Then,

๐‘‚๐‘‚๐บ๐บ mN2 = ๐น๐น๐‘๐‘ ๐‘๐‘ .

๐‘‚๐‘‚๐บ๐บ = min ๐‘‚๐‘‚๐‘ƒ๐‘ƒ ๐‘š๐‘š ,๐น๐น๐‘๐‘ ๐‘๐‘ .

Page 29: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Maximum set size โ€“ polyphase

29

Corollary. Let ๐‘๐‘ = ๐‘š๐‘š๐‘๐‘2 be odd and let ๐‘‚๐‘‚๐‘€๐‘€ ๐ฟ๐ฟ be the maximum size of optimal sets of generalized Milewski polyphase sequences of length ๐ฟ๐ฟ constructed by using Zadoff-Chu sequences of length ๐‘š๐‘š.1) If ๐‘š๐‘š = 1, then

๐‘‚๐‘‚๐‘€๐‘€ ๐ฟ๐ฟ = ๐น๐น๐‘๐‘ ๐‘๐‘ .2) If ๐‘š๐‘š โ‰ฅ 2, then

๐‘‚๐‘‚๐‘€๐‘€ ๐ฟ๐ฟ = min ๐‘๐‘min โˆ’ 1,๐น๐น๐‘๐‘ ๐‘๐‘ ,where ๐‘๐‘min โˆ’ 1 is the smallest prime factor of ๐‘š๐‘š.

There is no optimal pair of generalized Milewski polyphase sequences of even length constructed by using Zadoff-chu sequences.

(Popovic, 1992) The maximum size of optimal Zadoff-Chu sequence sets with period ๐‘š๐‘š is ๐‘๐‘min โˆ’ 1,where ๐‘๐‘min is the smallest prime factor of ๐‘š๐‘š.

Page 30: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Concluding remarks

โ€ข To obtain an optimal ๐’Œ๐’Œ-set of generalized Milewski sequences of length ๐’Ž๐’Ž๐‘ต๐‘ต๐Ÿ๐Ÿ, we need both:โ–ซ A ๐’Œ๐’Œ ร— ๐‘ต๐‘ต circular Florentine array, andโ–ซ An optimal ๐’Œ๐’Œ-set of perfect sequences of length ๐’Ž๐’Ž.

30

Page 31: Milewski sequences revisited, and its generalization

3110 x 10 Florentine Square

T. Etzion, S. W. Golomb and H. Taylor,โ€œTuscan-K squares,โ€Advances in Applied Mathematics,Vol. 10, pp. 164-174, 1989

H.-Y. Song and J. H. Dinitz, "Tuscan Squares,"CRC Handbook of Combinatorial Designs,edited by C. J. Colbourn and J. H. Dinitz, CRC Press, pp. 480-484, 1996.

H.-Y. Song, โ€œThe existence of circular florentine arrays,โ€ Comput. Math. Appl., pp. 31-36, June 2000.

0000000000

10 x 11 circular array

Page 32: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Concluding remarks

โ€ข To obtain an optimal ๐’Œ๐’Œ-set of generalized Milewski sequences of length ๐’Ž๐’Ž๐‘ต๐‘ต๐Ÿ๐Ÿ, we need both:โ–ซ A ๐’Œ๐’Œ ร— ๐‘ต๐‘ต circular Florentine array, andโ–ซ An optimal ๐’Œ๐’Œ-set of perfect sequences of length ๐’Ž๐’Ž.

32

Some open problems:โ€ข For a given integer ๐‘๐‘, what is the exact value of ๐น๐น๐‘๐‘(๐‘๐‘)? โ€ข For a given integer and its smallest prime factor ๐‘๐‘min,

is there any other optimal set of size greater then ๐‘๐‘min โˆ’ 1?

Page 33: Milewski sequences revisited, and its generalization

Hong-Yeop Song

Thanks !

33