ministÉrio da educaÇÃo universidade federal do rio …€¦ · antiproliferative activity as...

60
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE AVALIAÇÃO DAS ATIVIDADES ANTITUMORAL E ANTIOXIDANTE IN VITRO DE EXTRATOS DE Libidibia ferrea EM CÉLULAS DE CÂNCER COLORRETAL ANDREZA CONCEIÇÃO VÉRAS DE AGUIAR GUERRA NATAL/RN 2017

Upload: others

Post on 19-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE CIÊNCIAS DA SAÚDE

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

AVALIAÇÃO DAS ATIVIDADES ANTITUMORAL E ANTIOXIDANTE IN VITRO DE

EXTRATOS DE Libidibia ferrea EM CÉLULAS DE CÂNCER COLORRETAL

ANDREZA CONCEIÇÃO VÉRAS DE AGUIAR GUERRA

NATAL/RN

2017

ANDREZA CONCEIÇÃO VÉRAS DE AGUIAR GUERRA

AVALIAÇÃO DAS ATIVIDADES ANTITUMORAL E ANTIOXIDANTE IN VITRO DE

EXTRATOS DE Libidibia ferrea EM CÉLULAS DE CÂNCER COLORRETAL

Dissertação apresentada ao Programa de

Pós-Graduação em Ciências da Saúde da

Universidade Federal do Rio Grande do

Norte como requisito para a obtenção do

título de Mestre em Ciências da Saúde.

Orientador: Prof. Dr. Raimundo Fernandes

Araújo Junior

NATAL/RN

2017

i

Universidade Federal do Rio Grande do Norte - UFRN

Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial do Centro Ciências da Saúde - CCS

Guerra, Andreza Conceição Véras de Aguiar.

Avaliação das atividades antitumoral e antioxidante in vitro

de extratos de Libidibia ferrea em células de câncer colorretal

/ Andreza Conceição Véras de Aguiar Guerra. - Natal, 2017. 60f.: il.

Dissertação (Mestrado) - Programa de Pós-Graduação em Ciências

da Saúde. Centro de Ciências da Saúde. Universidade Federal do Rio Grande do Norte.

Orientador: Raimundo Fernandes de Araújo Júnior.

1. Neoplasias Colorretais - Dissertação. 2. Libidibia ferrea -

Dissertação. 3. Apoptose - Dissertação. 4. Antioxidante -

Dissertação. I. Araújo Júnior, Raimundo Fernandes de. II. Título.

RN/UF/BS-CCS CDU 616.348-006

ii

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE CIÊNCIAS DA SAÚDE

PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

Coordenador do Programa de Pós-Graduação em Ciências da Saúde:

Prof. Dr.: Eryvaldo Socrates Tabosa do Egito.

iii

ANDREZA CONCEIÇÃO VÉRAS DE AGUIAR GUERRA

AVALIAÇÃO DAS ATIVIDADES ANTITUMORAL E ANTIOXIDANTE IN VITRO DE

EXTRATOS DE Libidibia ferrea EM CÉLULAS DE CÂNCER COLORRETAL

Aprovada em: 23/06/2017

Banca examinadora:

Presidente da Banca: Prof. Dr. Raimundo Fernandes Araújo Junior (UFRN)

Membros da Banca:

Prof. Dr. Sergio Adriane Bezerra de Moura

Prof. Dr. Jeymesson Raphael Cardoso Vieira

iv

DEDICATÓRIA

Dedico este trabalhoà minha família, em especial, com todo meu amor e

gratidão, aos meus pais Mary e Aldo (in memoriam) e minha avó Fátima por tudo

que fizeram por mim e ao meu esposo Maximiliano, pelo apoio e compreensão

sempre.

v

AGRADECIMENTOS

Agradeço primeiramente à Deus por me fortalecer a cada dia nesta

caminhada e por me permitir alcançar mais uma conquista. À minha família, que

sempre me apoiou, auxiliou e incentivou, sendo minha base e o motivo que me faz

ser melhor a cada dia.

Ao Prof. Dr. Raimundo Fernandes de Araújo Júnior, expresso meu sincero

agradecimento pela confiança, por acreditar em meu potencial e por estar sempre

disponívelem me guiar, ajudar e ensinar.

À Prof.ª Dr.ª Aurigena Antunes de Araújo, pela valorosa colaboração durante

todo o trabalho e pelos ensinamentos que foram essenciais para o desenvolvimento

e êxito obtido.

Aos alunos que fazem parte da equipe do LAICI, que me acolheram e foram

bastante solícitos. Agradeço especialmente às alunas Ana Luiza e Juliana, cuja

amizade ultrapassa os limites do laboratório e sempre estiveram dispostas a ajudar,

ensinar, a oferecer uma palavra de ânimo, consolo ou mesmo um café, criando

momentos descontraídos e deixando mais leve os dias na universidade.

Ao Prof. Dr. Hugo Alexandre Rocha, pela colaboração, atenção e por deixar

sempre seu laboratório e a sala de cultura de células acessível à nossa equipe.

Aos Laboratórios de Imunogenética do Departamento de Bioquímica e de

Microscopia do Instituto do Cérebro pelo auxílio e disponibilidade para realização de

alguns dos ensaios realizados.

Ao Laboratório de Farmacognosia da Universidade Federal de Pernambuco,

em especial ao Prof. Dr. Luiz Alberto Soares e à Dr.ª Magda Rhayanny Ferreira pela

relevante cooperação durante este trabalho.

Ao Programa de Pós-Graduação em Ciências da Saúde, pela oportunidade

de realização deste Mestrado.

À CAPES pelo apoio financeiro por meio da bolsa de estudos de mestrado

que colaborou na conclusão desse projeto.

vi

RESUMO

O câncer colorretal tem se destacado por ser um dos tumores mais freqüentes, com

taxas de morbidade e mortalidade expressivos. Na descoberta de novas drogas,

produtos derivados de plantas se destacam por ser uma fonte segura e capaz de

originar compostos de alta eficiência. Bastante conhecida na medicina popular

brasileira, Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz var. ferrea, tem sido utilizada

no tratamento de um amplo espectro de condições e na prevenção do câncer. Nesse

estudo, extratos etanólicos dos frutos de L. ferrea (a 20T, 40T, 60T e 80T) foram

avaliados por 24 h e 48 h pela capacidade de inibição da proliferação celular;

indução de apoptose através da avaliação de Bcl-2, caspase-3 e Apaf-1; atividade

antioxidante e efeito sobre alvos importantes relacionados a proliferação celular

(EGFR e AKT) na linhagem colorretal humana HT-29, por meio de metodologias que

envolveram ensaios de citometria de fluxo, espectrofotometria e RT-qPCR. Os

resultados demostram que os extratos tiveram atividade antiproliferativa comparado

ao controle, indução de apoptose através da via intrínseca e ação de inibição

tumoral in vitro com a mediação de alvos importantes na tumorigênese. Além disso,

possui efeito antioxidante e anti-peroxidação lipídica, bem como quimioprotetor nas

células saudáveis. Portanto, derivados de L. ferrea possuem importantes efeitos

anticâncer podendo ser considerados candidatos moleculares promissores para o

tratamento do câncer colorretal.

Palavras-chave: Libidibia ferrea. Câncer colorretal. Apoptose. Antioxidante.

vii

ABSTRACT

Colorectal cancer is noted for being one of the most frequent of tumors, with

expressive morbidity and mortality rates. In new drug discovery, plants stand out as a

source capable of yielding safe and high-efficiency products. Well known in Brazilian

popular medicine, Libidibia ferrea (Mart. Ex Tul.) L.P. Queiroz var. ferrea (better

known as "ironwood" or "jucá"), has been used to treat a wide spectrum of conditions

and to prevent cancer. Using methodologies that involved flow cytometry,

spectrophotometry and RT-qPCR assays, ethanolic extracts of the fruits of L. ferrea

(20T, 40T, 60T and 80T) were evaluated at 24 h and 48 h for: their ability to inhibit

cell proliferation; induce apoptosis through Bcl-2, caspase-3 and Apaf-1; their

antioxidant activity and effects on important targets related to cell proliferation (EGFR

and AKT) in the HT-29 human colorectal cancer lineage. The results revealed

antiproliferative activity as compared to the controls, induction of apoptosis through

the intrinsic pathway, and in vitro tumor inhibition activity under the mediation of

important targets in tumorigenesis. In addition, L. ferrea revealed antioxidant, lipid

peroxidation and chemoprotective effects in healthy cells. Thus, L. ferrea derivatives

have important anticancer effects, and may be considered promising candidate for

colorectal cancer therapy.

Key words:Libidibia ferrea. Colorectal cancer. Apoptosis. Antioxidant.

viii

LISTA DE ABREVIATURAS E SIGLAS

20T (Extrato etanólico a 20% do fruto de Libidibia ferrea)

40T (Extrato etanólico a 40% do fruto de Libidibia ferrea)

60T (Extrato etanólico a 60% do fruto de Libidibia ferrea)

80T (Extrato etanólico a 80% do fruto de Libidibia ferrea)

AKT (Proteína Quinase B)

Apaf-1 (Fator Apoptótico de Ativação de Protease 1)

BCL-2 (Célula B de Linfoma 2)

DAPI (4,6-diamidino-2-fenilindol)

DMEM (Meio Eagle Modificado de Dulbecco)

DTNB (Ácido Dithiobisnitrobenzoico)

EDTA (Ácido Etilenodiamino Tetra-acético)

EGFR (Receptor do Fator de Crescimento Epidérmico)

FITC (Isotiocianato de Fluoresceína)

GSH (Glutationa reduzida)

HCl (Ácido Clorídrico)

HEK-293 (Linhagem de células embrionárias de rim humano)

HT-29 (Linhagem de células de câncer colorretal humano)

IRI (Índice de Importância Relativa)

MDA (Malondialdeído)

MTT (Brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio)

PBS (Tampão Fosfato Salino)

PI (Iodeto de Propídio)

RNA (Ácido Ribonucléico)

RT-qPCR (Reação de Transcrição Reversa Quantitativa da Cadeia de Polimerase)

TCA (Ácido Tricloroacético)

ix

LISTA DE FIGURAS

Figura 1 -Libidibia ferrea e suas estruturas ................................................................................... 14

Figura 2 - Mapa global da carcinogênese ..................................................................................... 15

x

SUMÁRIO

1 INTRODUÇÃO ................................................................................................................................ 12

2 JUSTIFICATIVA .............................................................................................................................. 16

3 OBJETIVOS ..................................................................................................................................... 17

3.1 Objetivo geral ......................................................................................................................... 17

3.2 Objetivos específicos ........................................................................................................... 17

4 MÉTODO .......................................................................................................................................... 18

4.1 Obtenção dos extratos de Libidibia ferrea e preparo das soluções ........................ 18

4.2 Linhagem celular e cultivo .................................................................................................. 18

4.3 Ensaio de citotoxicidade pelo método do MTT ............................................................. 18

4.4 Avaliação da morte celular por citometria de fluxo ..................................................... 19

4.5 Imunofluorescência .............................................................................................................. 19

4.6 Dosagem de GSH ................................................................................................................... 20

4.7 Dosagem de MDA .................................................................................................................. 21

4.8 Real Time RT-qPCR ............................................................................................................... 21

4.9 Análise estatística ................................................................................................................. 22

5 ARTIGOS PRODUZIDOS .............................................................................................................. 23

5.1 Full article: Libidibia ferrea presents antiproliferative, apoptotic and antioxidant

effects in a colorectal cancer cell line .................................................................................... 25

6 COMENTÁRIOS, CRÍTICAS E CONCLUSÕES ....................................................................... 52

7 REFERÊNCIAS ............................................................................................................................... 54

xi

12

1 INTRODUÇÃO

Entende-se que o câncer, condição marcada pela proliferação desordenada

de células sutilmente modificadas, é um dos principais problemas de saúde pública

enfrentados neste século e apesar dos avanços, os procedimentos terapêuticos

disponíveis ainda estão aquém do necessário: são altamente invasivos ou não

específicos e muitas vezes estão acompanhados de efeitos secundários e toxicidade

para as células1,2. Enquanto isso, os índices de novos casos continuam a aumentar

no mundo todo e estima-se que seja superior a 20 milhões por ano até 20253.

Dentre os tipos de câncer, o câncer colorretal tem se destacado por ser um

dos tumores sólidos mais frequentes, tanto em homens quanto em mulheres,

representando 10% da incidência global3. Os fatores etiológicos e mecanismos

patogênicos relacionados ao seu desenvolvimento parecem ser complexos e

heterogêneos e contribuem para que seja uma das principais causas de morbidade

e mortalidade no mundo todo, despertando esforços na investigação de novas

estratégias terapêuticas4,5.

Atualmente, o desenvolvimento da terapêutica anticâncer tem sido conduzido

pela identificação de compostos citotóxicos. Esses agentes têm melhorado as taxas

de sobrevivência e a qualidade de vida de pacientes com diferentes tumores,

trazendo certas vantagens sobre os convencionais, como menor tempo de

administração, mecanismos para superar a resistência aos medicamentos e menor

incidência de efeitos adversos6,7. O modelo de triagem convencional é o teste em

linhagens celulares, que são uma ferramenta amplamente utilizada devido, entre

outros fatores, à sua facilidade de manipulação, caracterização molecular e alto grau

de similaridade, sendo excepcionais para o estudo das vias celulares e de genes

críticos envolvidos no câncer8.

As plantas são consideradas uma das principais fontes de novas entidades

químicas biologicamente ativas, com considerável interesse científico e comercial na

busca de potenciais fármacos. Para algumas doenças complexas, representam uma

fonte extremamente valiosa na produção de drogas inovadoras de alta eficiência9-11.

Estima-se que aproximadamente 40% dos medicamentos disponíveis atualmente

foram desenvolvidos, de maneira direta ou indireta a partir de fontes naturais, onde

as plantas são as mais utilizadas12.

13

O Brasil possui a maior diversidade de espécies de plantas no mundo, entre

350.000 a 550.000, porém menos de 10% foram avaliadas no que diz respeito às

suas características biológicas13,14. A vegetação da caatinga, em especial, é uma

fonte de recursos naturais pouco estudados15. Muitas espécies são amplamente

conhecidas, utilizadas empiricamente pela medicina popular, como Libidibia ferrea

Martius L. P. Queiroz, também denominada Caesalpinia ferrea e mais conhecida

como “pau-ferro” ou “jucá”, uma grande árvore nativa de ampla distribuição no norte

e nordeste, pertencente à família Fabaceae (Leguminosae)16.

Esta planta é considerada uma das espécies com maior índice de importância

relativa (IRI), medida quantitativa baseada no número de propriedades médicas

fornecidas por indivíduos de comunidades rurais17. Popularmente, vem sendo usada

no tratamento de afecções bronco-pulmonares, distúrbios gastrointestinais, diabetes,

doenças renais, inflamações e feridas em geral18-20. Em virtude de seu valor

etnomedicinal, o Ministério da Saúde incluiu L. ferrea na lista nacional de plantas

medicinais importantes para o sistema de saúde21.

Muitos componentes botânicos de L. ferrea são aproveitados como, por

exemplo, as folhas, flores, entrecasca e raízes22 (Figura 1). Os frutos, em especial,

são vagens achatadas de casca dura e cor marrom escuro utilizados pela

população, através de infusões aquosas, na prevenção do câncer23. Na literatura, já

foram relatados por possuírem propriedades antimicrobiana24-26, antidiabetes27, além

de ser quimiopreventivo23, não apresentar potencial mutagênico28 ou toxicidade

reprodutiva29. Apresentam ainda alta atividade antioxidante, descrito pela presença

de compostos polifenóis como ácido gálico e epicatequina30.

Sobre a composição fitoquímica dos frutos de L. ferrea, além dos compostos

fenólicos descritos anteriormente, reporta-se ainda etil galato, metil galato e ácido

elágico23,31, bem como a presença de ácidos graxos e terpenoides (ácidos linoleico,

palmítico, elaídico, esteárico, além de gama-sisterol e lupenona)32, que são

responsáveis por muitas das atividades farmacológicas observadas.

Antioxidantes, em especial, produzem uma ação protetora efetiva contra

danos oxidativos que estão frequentemente envolvidos na etiologia e progressão de

muitas doenças humanas, incluindo o câncer33. Entre os sistemas relacionados à

manutenção do equilíbrio redox intracelular, um papel principal é desempenhado

pela glutationa (GSH), que também participa de uma multiplicidade de processos,

incluindo diferenciação celular, proliferação e apoptose, atraindo a atenção de

farmacologistas como um possível alvo de intervenção médica contra o câncer34.

14

Figura 1 -Libidibia ferrea e suas estruturas. Adaptado de Melo18.

Um outro parâmetro importante na avaliação da atividade antioxidante é o

nível de malondialdeído (MDA), produto final da peroxidação lipídica mediada por

radicais livres35. Esse processo é considerado o principal mecanismo de destruição

da membrana e lesão celular, tendo sido relatado em vários tipos de câncer,

inclusive no câncer colorretal, estando intrinsicamente relacionado ao estresse

oxidativo36. Sendo assim, a mensuração da intensidade da peroxidação lipídica é

essencial para a melhor compreensão de seus efeitos moleculares deletérios e

mutagênicos e na avaliação da resposta dos pacientes à terapia37.

A desregulação de vias de sinalização celular relacionadas à apoptose e à

proliferação são fundamentais na sobrevivência das células cancerosas e no

desenvolvimento tumoral, sendo considerada um dos “hallmakers” ou capacidades

biológicas adquiridas38. Há vários fatores na membrana celular que se relacionam

com apoptose e crescimento, além do envolvimento de proteínas citoplasmáticas

como caspases e AKT (serina/treonina quinase ou proteína quinase B), por exemplo,

que por fim atuarão na parada do ciclo celular, inflamação, proliferação, invasão e

metástase39(Figura 2). Interferindo-se nos passos de modulação (iniciação,

15

promoção, progressão) e nas vias de transdução de sinais associadas, é a maneira

mais racional de afetar a carcinogênese40.

Figura 2 - Mapa global da carcinogênese. Adaptado de Bernstein & Lev-Ari31

A apoptose é desencadeada pela ativação cronológica das famílias de

caspases iniciadoras (como por ex. caspase 9) e efetoras (como por ex. caspase-3)

através de duas vias distintas, mas associadas, conhecidas como via intrínseca e

extrínseca. A via intrínseca, em especial, é controlada dominantemente pela família

de proteínas Bcl-2 que regulam as decisões relacionadas a sobrevivência

celular/morte por agir sob a permeabilização da membrana mitocondrial41, além de

ser mediada pela formação inicial do apoptossoma, cujo componente principal é o

fator Apaf-142.

Outras vias de interesse para estudo do câncer são as vias mediadas por

EGFR (receptor do fator de crescimento epidérmico) e AKT que possuem papeis

multi-dimensionais no desenvolvimento e crescimento tumoral, estando envolvidas

em numerosas respostas celulares inclusive na proliferação, apoptose e

angiogênse43,44.

16

2 JUSTIFICATIVA

Apesar do enorme progresso na compreensão da biologia do câncer, os

procedimentos terapêuticos ainda são uma exceção e até hoje existem poucos

exemplos que levam à cura. Terapias para o câncer colorretal, em especial, são

criticamente necessárias e cientificamente desafiadoras. A intervenção cirúrgica é

considerada a única modalidade de tratamento com potencial curativo, porém

apenas se detectado nos estágios iniciais. Além disso, os pacientes estão sujeitos

ao desenvolvimento de metástase, que ocorre em mais de 60% dos casos, e

recorrência do tumor. A quimioterapia permanece em grande parte de forma

paliativa.45-47

Produtos naturais e, particularmente derivados de plantas, são componentes

essenciais na pesquisa e desenvolvimento de medicamentos novos e econômicos.

Têm sido reconhecidos durante muitos anos como uma fonte importante de

diversidade estrutural, levando a avanços em metodologias sintéticas e promovendo

melhorias nas propriedades farmacológica ou farmacêutica de muitos

agentes9,48,49.Além da ampliação do atendimento médico-farmacêutico na saúde

pública, o estudo de plantas medicinais é importante para adquirir conhecimento

sobre o potencial farmacológico da diversidade vegetal nativa que permanece

subexplorada e auxiliar no desenvolvimento sustentável50.

Requisitos como aplicabilidade versátil e segurança terapêutica apresentadas

por plantas da caatinga tem atraído a atenção para a busca de novas drogas51.

Espécies popularmente usadas como Libidibia ferrea Martius L. P. Queiroz requerem

abordagens etnofarmacológicas que até o momento permanecem escassas. As

propriedades anticâncer e antioxidante in vitro, necessitam de uma avaliação mais

criteriosa no estudo de possíveis mecanismos de ação dos alvos moleculares para

elucidação que conferem tais ações farmacológicas. Diante do exposto, este

trabalho permitirá a investigação da potencialidade dessa planta como candidata à

fármaco antitumoral e contribuir para inovação na terapia do câncer colorretal.

17

3 OBJETIVOS

3.1 Objetivo geral

Avaliar as atividades antitumoral e antioxidante in vitro induzidas por extratos

de Libidibia ferrea frente à linhagem celular de câncer colorretal humano.

3.2 Objetivos específicos

1) Realizar o screening farmacológico da atividade antiproliferativa in vitro dos

extratos etanólicos dos frutos de Libidibia ferrea frente à linhagem de câncer

colorretal (HT-29) e à linhagem de células renais embrionárias (HEK-293), através

do ensaio de viabilidade celular baseado no sal de tetrazólio MTT.

2) Avaliar o comportamento de morte celular das linhagens HT-29 e HEK-293

através da técnica de citometria de fluxo, pela análise da integridade de membrana,

frente aos extratos de L.ferrea.

3) Avaliar a expressão de proteínas mediadoras do processo de morte celular

por apoptose (Bcl-2 e caspase-3) nas células HT-29, após tratamento com os

extratos de L. ferrea, por microscopia de imunofluorescência.

4) Avaliar a atividade antioxidante das células HT-29 e HEK-293 submetidas

ao tratamento pelos extratos de L. ferrea através da dosagem dos níveis de GSH e

MDA por espectrofotometria.

5) Avaliar a expressão de genes associados às vias de sinalização AKT, Apaf-

1 e EGFR nas células HT-29 tratadas com os extratos de L. ferrea através da técnica

de Real Time RT-qPCR.

18

4 MÉTODO

4.1 Obtenção dos extratos de Libidibia ferrea e preparo das soluções

Os extratos etanólicos dos frutos de Libidibia ferrea (Mart. ex Tul.) L.P.

Queiroz (Fabaceae) 20T, 40T, 60T e 80T foram obtidos por turbólise na proporção

10% (m/v) utilizando como solvente etanol nas proporções 20, 40, 60 e 80% (v/v),

respectivamente. Em seguida, os extratos foram concentrados em rotaevaporador,

congelados a -80ºC durante 3 dias e por fim liofilizados. Todo o processo de síntese

e análises cromatográficas foi realizado pelo Laboratório de Farmacognosia/Núcleo

de Desenvolvimento Analítico e Tecnológico de Fitoterápicos da Universidade

Federal de Pernambuco (UFPE) e descrito por Ferreira et al52. As amostras obtidas

foram posteriormente pesadas, dissolvidas em meio de cultivo celular para uma

concentração inicial de 100 mg/ml e filtradas (filtros estéreis, 0.22 µm) para obtenção

das soluções finais para teste.

4.2 Linhagem celular e cultivo

A linhagem de células de câncer colorretal humana HT-29 (HTB-38, ATCC,

VA, USA) e a linhagem de células renal embrionária humana HEK-293 (CRL-1573,

ATCC, VA, USA) que foi utilizada como controle de parâmetros de citotoxicidade,

foram cultivadas em DMEM – Dulbecco’s Modified Eagle Medium (Thermo Fisher

Scientific, MA, EUA) suplementado com 10% de soro fetal bovino e 1% de

antibióticos (penicilina/estreptomicina), em uma incubadora à 37˚C, com atmosfera

de 5% de CO2. O crescimento celular foi acompanhado com microscópio de luz

invertida (NIKON CFI60 - Spectrum Bioengenharia Médica Hospitalar LTDA, BR) e a

manutenção das células realizada a cada 3 dias.

4.3 Ensaio de viabilidade pelo método do MTT

A viabilidade e a proliferação das células tratadas com os extratos de Libidibia

ferrea foram determinadas através de um ensaio baseado no sal de tretazólio MTT

(brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio)53. Para tanto, as linhagens

celulares HT-29 e HEK-293 foram colocadas em placas de 96 poços, com densidade

de 5 x 103 células/poço. Após 24 horas em condições de cultura, foi realizado o

19

carenciamento e passado o mesmo período, a aplicação dos extratos etanólicos

20T, 40T, 60T e 80T nas concentrações de 12.5 µg/ml, 25 µg/ml, 50 µg/ml e 100

µg/ml. O tratamento foi avaliado em 24 h e 48 h, através da adição de 100 µl/poço

do MTT (1 mg/ml), incubação por 4 h e adição de 100 µl de etanol/poço. As placas

foram agitadas e a absorbância obtida em um leitor de microplacas (Epoch - BioTek

Instruments Inc, VT, EUA) a 570 nm, com o uso do software Gen5 Data Analysis

versão 2.0 (BioTek Instruments Inc, VT, EUA).

4.4 Avaliação da morte celular por citometria de fluxo

O efeito dos extratos de Libidibia ferrea sobre as células HT-29 e HEK-293 foi

determinado por citometria de fluxo com marcação dupla com Anexina V – FITC e

Iodeto de Propídio (PI), que permite a identificação de células apoptóticas e

necróticas através da perda de integridade de membrana. As linhagens celulares

foram dispostas em placas de 6 poços com densidade de 2 x 105 células/poço, com

volume total de 2 ml. Após 24 h de incubação em condições de cultura, as células

foram tratadas com os extratos 40T, 60T e 80T, pois apresentaram melhor efeito sob

a viabilidade das células tumorais. As doses escolhidas para tratamento foram 25

µg/ml e 50 µg/ml, que representaram uma média de inibição da proliferação de 50%

(IC50), após a realização de curva dose-resposta. Após os tempos de 24h e 48h, as

células foram obtidas através da coleta do sobrenadante dos poços, lavagem com

PBS, dissociação enzimática com tripsina e duas etapas de centrifugação a 3000 G

a 4ºC. Por fim foram marcadas conforme instruções do kit de Anexina V-FITC/PI (BD

Pharmigen, CA, EUA) e analisadas com citômetro BD FACSCanto II (BD

Biosciences, CA, EUA) e o software FlowJo, versão 7.6.5 (Tree Star Inc., CA, EUA).

4.5 Imunofluorescência

Para avaliação de alvos de vias de apoptose, as células HT-29 e HEK-293

foram plaqueadas em lamínulas de vidro com densidade celular de 5 x 104

células/poço (para um volume total de 1 ml) e colocadas em placas de 24 poços.

Brevemente, passado o tempo de 24 h, as células foram tratadas com os extratos

40T e 60T, dose 25 µg/ml, com base nos que apresentaram melhor ação no ensaio

20

anterior. Após cada período de tempo (24h e 48h), foram fixadas com

paraformaldeído a 7%, permeabilizadas com Triton X-100/PBS 0.2% e incubadas

durante 1 hora em câmera úmida com os anticorpos policlonais de rato anti-Bcl-2 e

de coelho anti-caspase-3 (Abcam, CA, EUA), uma lamínula para cada anticorpo,

diluídos 1:100 no PBS contendo albumina de soro bovino 5% (Life Technologies,

SP, BR). O anticorpo primário foi detectado com o anticorpo secundário Alexa Fluor

488 anti-rato ou anti-coelho (Abcam, CA, EUA) diluídos 1:500 no PBS contendo

albumina de soro bovino 5 %, e 4,6-diamidino-2-fenilindol (DAPI) (Life Technologies,

SP, BR) diluído 1:200 no PBS contendo albumina de soro bovino 5% foi usado para

coloração nuclear. As lamínulas foram examinadas em um microscópio LSM 510

laser scanning (Carl Zeiss, Jena, DE) na objetiva de 40x. As imagens selecionadas

foram representativas da maioria das células.

4.6 Dosagem de GSH

Para avaliar a atividade antioxidante, o nível total de glutationa (GSH) foi

determinado através do método de Costa et al54. A obtenção inicial das células foi

realizada através do processo descrito por Rahman et. al55. Em resumo, HT-29 foi

disposta em placas de 6 poços, com 1 x 106 células/poço, num volume total de 2 ml.

No dia seguinte foi realizado o tratamento com os extratos etanólicos 40T e 60T na

concentração de 25 µg/ml. Após 24 horas, as células foram removidas,

ressuspendidas em PBS e centrifugadas duas vezes por 5 minutos, em 3000 rpm a

4ºC. Em seguida o pellet foi homogeneizado com uma solução de ácido

etilenodiamino tetra-acético (EDTA) 0.02M (Sigma-Aldrich, SP, Brazil) para

trituração. Após esse processo, 400 µl da suspensão obtida foi então diluída em 80

µl de ácido tricloroacético (TCA) 50% (Vetec, SP, Brazil) e 320 µl de água destilada

para centrifugação por 15 minutos em 3000 rpm a 4ºC. Por fim, em cada poço foi

aplicado 100 µl do sobrenadante celular, 200 µl do tampão Tris 0.4 M (Sigma-

Aldrich, SP, Brazil) e 20 µl de uma solução de ácido dithiobisnitrobenzoico (DTNB)

0.01 M (Sigma-Aldrich, SP, Brazil), em triplicata, para leitura da absorbância de cada

amostra em 412 nm. Os resultados foram expressos em nmol/106 cells.

21

4.7 Dosagem de MDA

Para avaliar a peroxidação lipídica, a produção de malondialdeído (MDA) foi

medida de acordo com o ensaio descrito por Esterbauer e Cheeseman56. As células

passaram pelo mesmo processo inicial de centrifugação descrito no tópico anterior e

em seguida foram homogeneizadas com 500 µl de tampão Tris-HCl 20 mM (Trizma

HCl, Sigma-Aldrich, SP, Brazil) para trituração. Após esse processo, foram

centrifugadas por 20 minutos em 3000 rpm a 4ºC. Então, 375 µl do reagente

cromogênico (10.3 mM 1-metil-2-fenilindol em 3:1 acetonitrila) e 112.5 µl de HCl 37%

foi adicionado a cada 150 µl de sobrenadante da amostra. Após uma etapa de

incubação em banho-maria por 40 min a 45ºC, as amostras foram centrifugadas a

3000 rpm a 4ºC. A absorbância foi medida a 586 nm e os resultados foram

expressos em nmol/106 cells.

4.8 Real Time RT-qPCR

O RNA total foi extraído das células HT-29 tratadas por 24 horas com os

extratos 40T e 60T (dose 25 µg/ml, em duplicata) com o reagente Trizol (Invitrogen,

CA, USA) e SV Total RNA Isolation System (Promega, WI, EUA) segundo as

orientações do fabricante. O RNA total sofreu a ação da transcriptase reversa do kit

ImProm-IITM Reverse Transcriptase System (Promega, WI, EUA) e a RT-qPCR foi

então realizada para a análise quantitativa da expressão de RNA mensageiro

(mRNA) com SYBR Green Mix no sistema Applied Biosystems 7500 FAST (Applied

Biosystems, CA, EUA), de acordo com o protocolo padrão e os seguintes primers

(Integrated DNA Technologies, IA, EUA): AKT (forward: 5’ TCA CCT CTG AGA CCG

ACA CC 3’; reverse: 5’ ACT GGC TGA GTA GGA GAA CTG G 3’, temperatura de

anelamento: 58.3°C), APAF-1 (forward: 5’ CCT CTC ATT TGC TGA TGT CG 3’;

reverse: 5’ TCA CTG CAG ATT TTC ACC AGA 3’, temperatura de anelamento:

56.9°C) e EGF-R (forward: 5’ TGA TAG ACG CAG ATA GTC GCC 3’; reverse: 5’

TCA GGG CAC GGT AGA AGT TG 3’, temperatura de anelamento: 56.9°C).

As concentrações finais dos reagentes no mix foram: 5 µl de SYBR Green, 0.7

µl de cada primer, 1.6 µl de água nuclease e 2 µl de cDNA. As condições de PCR

padrão foram as seguintes: 50 °C durante 2 min e 95 °C durante 10 min, seguido por

quarenta ciclos de 30 s a 95 °C, uma temperatura de anelamento dos primers

22

variável durante 30 s e 72 °C durante 1 min. Os valores médios de Cq foram usados

para calcular a expressão relativa dos níveis dos genes alvos para os grupos

experimentais, em relação aos do grupo controle negativo; os dados de expressão

foram normalizados em relação ao gene β-actina humano usando a fórmula 2-

ΔΔCq57.

4.9 Análise estatística

Todos os experimentos foram realizados em triplicata. A significância das

diferenças entre os grupos foi obtida através da análise de variância (ANOVA) e do

teste de Bonferroni (Nível de significância de p<0,05), com o software GraphPad

Prism versão 5.0 (GraphPad Software Inc., CA, EUA).

23

5 ARTIGOS PRODUZIDOS

O artigo “Libidibia ferrea presents antiproliferative, apoptotic and

antioxidant effects in a colorectal cancer cell line” foi aceito no periódico

Biomedicine & Pharmacotherapy que possui fator de impacto 2.326 e Qualis B1

da CAPES para área Medicina II.

Acceptance Letter:

24

25

5.1 Full article: Libidibia ferrea presents antiproliferative, apoptotic and

antioxidant effects in a colorectal cancer cell line

Andreza Conceição Véras de Aguiar Guerraa, Luiz Alberto Lira Soaresb, Magda

Rhayanny Assunção Ferreirab, Aurigena Antunes de Araújoc, Hugo Alexandre de

Oliveira Rochad, Juliana Silva de Medeirose, Rômulo dos Santos Cavalcantea,

Raimundo Fernandes de Araújo Júniora,e*

aPost graduation program in Health Science, Federal University of Rio Grande do

Norte (UFRN), Natal, RN, Cep: 59078-970, Brazil

bPost graduation program in Therapeutic Innovation, Department of Pharmaceutical

Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Cep: 50740-530,

Brazil

cPost graduation program in Pharmaceutical Sciences, Department of Biophysics

and Pharmacology, UFRN, Natal, RN, Cep: 59078-970, Brazil

dPost graduation program in Biochemistry, Department of Biochemistry, UFRN,

Natal, RN, Cep: 59078-970, Brazil

ePost graduation program in Functional and Structural Biology, Department of

Morphology, UFRN, Natal, RN, Cep: 59078-970, Brazil

*Corresponding author: Raimundo Fernandes de Araújo Júnior, Department of

Morphology, Centre of Biosciences, UFRN, Av. Senador Salgado Filho, S/N, Campus

Universitário, Lagoa Nova, 59072-970, Natal, RN, Brazil.

E-mail: [email protected]

Abstract

Colorectal cancer is noted for being one of the most frequent of tumors, with

expressive morbidity and mortality rates. In new drug discovery, plants stand out as a

source capable of yielding safe and high-efficiency products. Well known in Brazilian

ACCEPTED ARTICLE

26

popular medicine, Libidibia ferrea (Mart. Ex Tul.) L.P. Queiroz var. ferrea (better

known as "ironwood" or "jucá"), has been used to treat a wide spectrum of conditions

and to prevent cancer. Using methodologies that involved flow cytometry,

spectrophotometry and RT-qPCR assays, crude extracts of the fruits of L. ferrea

(20T, 40T, 60T and 80T) were evaluated at 24 h and/or 48 h for: their ability to inhibit

cell proliferation; induce apoptosis through Bcl-2, caspase-3 and Apaf-1; their

antioxidant activity and effects on important targets related to cell proliferation (EGFR

and AKT) in the HT-29 human colorectal cancer lineage. The results revealed high

antiproliferative potential as compared to the controls, induction of apoptosis through

the intrinsic pathway, and probable tumor inhibition activity under the mediation of

important targets in tumorigenesis. In addition, L. ferrea revealed antioxidant, lipid

peroxidation and chemoprotective effects in healthy cells. Thus, L. ferrea derivatives

have important anticancer effects, and may be considered promising candidate for

colorectal cancer therapy.

Key words: Libidibia ferrea. Colorectal cancer. Apoptosis. Antioxidant.

1. Introduction

It is understood that cancer, a condition marked by the disorderly proliferation

of subtly modified cells, is one of the main public health problems faced in this

century. Despite advances, the therapeutic procedures available are still insufficient,

they are generally highly invasive or non-specific, and are often accompanied by side

effects and cell toxicity [1,2]. Currently, new-case rates continue to rise worldwide

and are estimated to be over 20 million per year by 2025 [3].

Among cancers, colorectal cancer has been noted as one of the most frequent

in solid tumors, in men and women, representing 10% of the global incidence [3]. The

etiological factors and pathogenic mechanisms related to its development are

complex and heterogeneous [4,5], this contributes to its being one of the main

causes of morbidity and mortality in the world.

Natural products, particularly plant derivatives, are essential components in

research and development for safe, innovative, economical and high efficiency drugs

against complex diseases [6-8]. It is estimated that about 60% of the antitumoral

27

drugs available on the market and most of those in the late stages of clinical trials are

derived from natural products, mainly from plants [9].

Over the last two decades, public interest and research efforts from scientific

and medical communities worldwide has increased expressively, generating a large

volume of information including studies on the pharmacological effects, usage, and

the development into future medicines of herbs and derivative medicinal

phytochemicals as anti-tumor and chemoprevention agents. [10] This leads to

growing number of sales of commercialised medicinal herbs and most importantly,

growing number of pharmaceutical companies that involve in the research and

development of plants as a source for modern medicine. [11]

Brazil has one of the largest plant species diversities in the world, yet less than

10% of its species have been evaluated for their biological characteristics [12]. In

particular, the vegetation of the caatinga, an extremely threatened biome, as a

valuable natural resource has been little studied [13]. Many species however are

widely known and used empirically in folk medicine. Thus, we have Libidibia ferrea

(Mart. Ex Tul.) L.P. Queiroz var. ferrea (Fabaceae) known as Caesalpinia ferrea, and

popularly known as "ironwood" or "jucá" [14]. It is used popularly in the treatment of

bronchopulmonary disorders, gastrointestinal disorders, diabetes, rheumatism,

inflammation, wounds in general, and for prevention of cancers [15].

Most of the botanical components of this plant are harnessed, such as flowers,

shells, pods and roots. The fruits have been reported in the literature because they

have antimicrobial [16-18], antioxidant [19] and antidiabetic [20] properties, and

besides being chemopreventive [21], they show no mutagenic potential [22], or

reproductive toxicity [23]. Yet studies exploring their anticancer activity, especially

mechanisms of action in cellular signaling pathways are practically nonexistent.

Dysregulation of apoptosis and cell proliferation signaling pathways is critical

to both the promotion and progression of cancer. Thus, assessment of key points in

these pathways is essential for developing new target molecules with effective

antineoplastic activity [24,25]. Apoptosis is triggered by chronological activation of the

initiator (caspase 9), and effector (caspase-3) families via two distinct but associated

pathways known as the intrinsic and extrinsic pathways. The intrinsic pathway in

particular is dominated by the Bcl-2 family of proteins that regulate cell survival/death

related decisions, acting through permeabilization of the mitochondrial membrane

28

[26], in addition to being mediated by initial apoptosome formation, whose main

component is the Apaf-1 factor [27].

Other pathways of interest in the study of cancer are the EGFR and AKT (AKT

serine/threonine kinase) mediated pathways, which have multidimensional roles in

tumor development and growth, and are involved in numerous cellular responses

including proliferation, apoptosis and angiogenesis [28,29].

The objectives of this work are to investigate the potential of L. ferrea as an

antitumor drug candidate to contribute to colorectal cancer therapy innovation

through in vitro evaluations of cell death, antiproliferative effects, and signaling

pathways related to intrinsic apoptosis (Bcl-2, caspase-3 and Apaf-1), and to AKT

and EGFR expression; and as well, to evaluate L. ferrea’s antioxidant potential. Such

bioactive actions presented by L. ferrea may contribute to the availability of new

anticancer treatments in the clinic.

2. Methodology

2.1 Obtaining Libidibia ferreacrude extracts

The crude extracts of fruits from Libidibia ferrea were obtained at 10% (w/v) by

turbo extraction (four extractive cycles of 30 sec, interspersed with by 5 min of

pause), using ethanol as solvent at 20, 40, 60 and 80% (v/v). The extracts were

filtred and concentrated under reduced pressure at 40°C (RV10 Basic, IKA®) to

remove the ethanol. The aqueous residues were frozen under -80 °C for three days

and then lyophilized (Model L101, Liotop®) to yield the crude extracts. The

quantification of chemical markers (ellagic acid and gallic acid) in the crude extracts

was carried out by high performance liquid chromatography (HPLC) according to the

methodology previously described by Ferreira et al. [30], shown in summary in Table

1.

29

Table 1

Content of ellagic acid and gallic acid (g%) in crude extracts of fruits from L. ferrea.

Sample Ellagic acid (EA) Gallic acid (GA)

20T 2.78 ± 1.227 (0.89) 4.43 ± 0.132 (0.24)

40T 2.89 ± 0.551 (0.39) 3.39 ± 0.268 (0.67)

60T 2.73 ± 2.213 (1.65) 1.61 ± 0.125 (0.66)

80T 2.61 ± 0.381 (0.29) 1.84 ± 0.073 (0.34)

The results were expressed in g%, as mean ± standard deviation (relative standard deviation).

2.2 Cell line and cultivation

The HT-29 human colorectal cancer cell line and the HEK-293 human

embryonic kidney cell line (used as control of cytotoxicity parameters) were obtained

from the American Type Culture Collection (Rockville, MD, USA). All cell lines were

cultivated in Dulbecco's Modified Eagle Medium (Thermo Fisher Scientific, MA, USA)

supplemented with 10% (v/v) fetal bovine serum and 1% antibiotics

(penicillin/streptomycin) in a 37°C incubator with atmosphere of 5% CO2.

2.3 Viability test

Viability and cell proliferation for the Libidibia ferrea extracts were determined

by an assay based on the MTT tretazolium salt (3- (4,5-dimethylthiazol-2-yl) -2,5-

diphenyltetrazolium bromide) [31]. To this end, the HT-29 and HEK-293 cell lines

were plated in 96-well plates, with a density of 5 x 103 cells/well. After 24 hours under

culture conditions, applications of 20T, 40T, 60T and 80T crude extracts at

concentrations of 12.5 μg/mL, 25 μg/mL, 50 μg/mL and 100 μg/mL were performed.

Treatments were evaluated at 24 h and 48 h by addition of 100 μl/well of MTT (1

mg/mL), incubation for 4 h, and addition of ethanol/well. The plates were shaken and

the absorbance obtained in a microplate reader (Epoch - BioTek Instruments Inc, VT,

USA) at 570 nm. The Gen5 Data Analysis software version 2.0 (BioTek Instruments

Inc, VT, USA) was used.

2.4 Evaluation of in vitro cell death

30

The effect of Libidibia ferrea extracts on HT-29 and HEK-293 cells was

determined by double-labeled flow cytometry with Annexin V-FITC and Propidium

Iodide (PI), which allows the identification of apoptotic and necrotic cells through loss

of membrane integrity. Cell lines were arranged in 6-well plates with a density of 2 x

105 cells/well, at a total volume of 2 mL. After 24 h of incubation under culture

conditions, the cells were treated with the 40T, 60T and 80T crude extracts at doses

of 25 μg/mL and 50 μg/mL, at 24 h and 48 h. After each period, the cells were

obtained by collecting the supernatant from the wells, washing with PBS,

trypsinization, and two steps of centrifugation at 3200 rpm at 4°C. Finally, they were

labeled according to instructions from the Annexin V-FITC / PI kit (BD Pharmigen,

CA, USA), and analyzed with BD FACSCanto II (BD Biosciences, CA, USA) and

FlowJo software, version 7.6.5 (Tree Star Inc., CA, USA).

2.5 Immunofluorescence microscopy

For evaluation of apoptosis pathway targets, HT-29 cells was plated on glass

coverslips with cell density of 5 x 104 cells/well (for a total volume of 1 mL), and

plated in 24-well plates. Briefly, after 24 h the cells were treated with extracts 40T

and 60T, being dosed at 25 μg/mL, for 24 h and 48 h. After each period, they were

fixed with 7% paraformaldehyde, permeabilized with 0.2% Triton X-100/PBS and

incubated for 1 hour in a humid chamber with anti-Bcl-2 and rabbit anti-caspase-3

mouse polyclonal antibodies (Abcam, CA, USA), using one coverslip for each

antibody, diluted 1:100 in PBS containing 5% bovine serum albumin (Life

Technologies, SP, BR). Primary antibody was detected with Alexa Fluor 488 anti-

mouse or anti-rabbit secondary antibody (Abcam, CA, USA) diluted 1:500 in PBS,

containing 5% bovine serum albumin, and 4,6-diamidino-2-phenylindole (DAPI) (Life

Technologies, SP, BR), diluted 1:200 in PBS containing 5% bovine serum albumin

and used for nuclear staining. The coverslips were examined in an Zeiss Observer

Z1 upright microscope for fluorescence (Carl Zeiss, Jena, DE) on the 40x objective.

The selected images were representative of most cells.

2.6 GSH dosage

31

To assess antioxidant activity, the total level of glutathione (GSH) was

determined using the Costa et al [32] method. Initial cell uptake was performed using

the procedure described by Rahman et al [33]. Briefly, HT-29 and HEK-293 cells

were plated in 6-well plates, with 1 x 106 cells/well, in 2 mL total volume. On the

following day, treatment with extracts 40T and 60T in the concentration of 25 μg/mL

was carried out. After 24 hours, the cells were removed, resuspended in PBS and

centrifuged twice for 5 minutes at 3000 rpm, and at 4ºC. The pellet was then

homogenized with a 0.02 M solution of ethylenediamine tetraacetic acid (EDTA)

(Sigma-Aldrich, SP, Brazil) for grinding. After this process, the suspension obtained

was then diluted in 50% trichloroacetic acid (Vetec, SP, Brazil) and distilled water for

centrifugation for 15 minutes at 3000 rpm, and at 4°C. Finally, a mix of the cell

supernatant, 0.4 M Tris buffer (Sigma-Aldrich, SP, Brazil) and 0.01 M

dithiobisnitrobenzoic acid solution (Sigma-Aldrich, SP, Brazil) were applied to each

well, to read the absorbance of each sample at 412 nm. The results were expressed

as nmol /106 cells.

2.7 MDA dosage

To evaluate lipid peroxidation, malondialdehyde (MDA production) was

measured according to an assay described by Esterbauer and Cheeseman [34]. HT-

29 cells underwent the same initial centrifugation procedure described above, and

were then homogenized with a 20 mM Tris-HCl buffer (Trizma HCl, Sigma-Aldrich,

SP, Brazil) for trituration. After this process, they were centrifuged for 20 minutes in

3000 rpm at 4ºC. Afterwards, the chromogenic reagent (10.3 mM 1-methyl-2-

phenylindole in 3:1 acetonitrile), and a 37% solution of HCl were added to each 150

μL of supernatant sample. After an incubation step in a water bath for 40 min at

45°C, the samples were centrifuged at 3000 rpm at 4°C. The absorbance was

measured at 586 nm, and the results were expressed as nmol/106 cells.

2.8 Real time-qPCR

Total RNA was extracted from the HT-29 cells treated for 24 hours with

extracts 40T and 60T (25 μg/mL) with the Trizol reagent (Invitrogen, CA, USA) and

the SV Total RNA Isolation System (Promega, WI, USA) according to the

32

manufacturer's guidelines. First-strand cDNA was synthesized from 1 μg of total RNA

with the ImProm-IITM Reverse Transcriptase System (Promega, WI, USA) and Real

time-qPCR was then performed for the quantitative analysis of messenger RNA

expression (mRNA) with SYBR Green Mix at Applied Biosystems 7500 FAST system

(Applied Biosystems, CA, USA), according to the standard protocol, using the

following primers (Integrated DNA Technologies, IA, USA): AKT (forward: 5’ TCA

CCT CTG AGA CCG ACA CC 3’; reverse: 5’ ACT GGC TGA GTA GGA GAA CTG G

3’, annealing primer temperature: 58.3°C), Apaf-1 (forward: 5’ CCT CTC ATT TGC

TGA TGT CG 3’; reverse: 5’ TCA CTG CAG ATT TTC ACC AGA 3’, annealing primer

temperature: 56.9°C) e EGF-R (forward: 5’ TGA TAG ACG CAG ATA GTC GCC 3’;

reverse: 5’ TCA GGG CAC GGT AGA AGT TG 3’, annealing primer temperature:

56.9°C). The mean Ct values were used to calculate the relative expression of the

target gene levels for the cells treated with the extracts, relative to those untreated

cells control. The expression data were normalized to the β-actin gene using the

formula 2-ΔΔCt [35].

2.9 Statistical analysis

All experiments were performed in triplicate. The significance of the

differences between the groups was obtained through analysis of variance (ANOVA),

and the Bonferroni test (significance level of p <0.05), with GraphPad Prism software

version 7.0 (GraphPad Software Inc., CA, USA).

3. Results

3.1 Cell viability

To assess the antiproliferative and anticancer potential of the extracts of

Libidibia ferrea, HT-29 and HEK-293 cells were treated and evaluated at the 24 hour

and 48 hour periods. As observed in Figure 1, during the first 24 hours in HT-29 cell

line, inhibition of tumor cell proliferation was observed, with significant action of the

40T, 60T and 80T crude extracts. The 40T extract had levels of cell proliferation

inhibition varying between 15% and 25% between doses 25 μg/mL at 100 μg/mL,

whereas for the 60T and 80T extracts these levels were higher ranging from 25% to

33

about 50% (50% inhibition of proliferation at the dose 25 μg/mL in 60T and 43.7% at

the dose of 12.5 μg/mL in 80T). In the same time period, the non-tumor cell line HEK-

293 showed no cell proliferation inhibition, and the cells exposed to the extracts

proliferated in general at rates higher than the untreated cells control (with one

exception: a decrease of 15% at 25 μg/mL in 60T). At 48 hours, there was a certain

reduction in the proliferation inhibitory effect on the tumor cells, mainly in the 40T and

60T extracts, but the 80T extract still presented proliferation inhibition percentages

close to the previous period, ranging from 21.7% to 48.7% between the doses tested.

In the non-tumoral lineage, proliferation was observed as either close to or greater

than the control. Because the half maximal inhibitory concentration (IC50) on

proliferation of the HT-29 cell line was found in the concentration range of 25 μg/mL

at 50 μg/mL of the extracts of L. ferrea, those concentrations were selected for the

flow cytometry assay.

34

Fig 1. Effect of Libidibia ferreaextracts on HT-29 and HEK-293 cell line

proliferation. (A)24 hour treatment time. (B) 48 hour treatment time. *P < 0.05, **P <

0,01 and ***P<0.001 versus control. CTRL (control, untreated cells), 20T (crude

extract 20T), EF40T (crude extract 40T), EF60T (crude extract 60T), EF80T (crude

extract 80T).

3.2 Cell death evaluation

For evaluation of cell line deaths after treatment with L. ferrea extracts, an

assay with flow cytometry was performed by double labeling with Annexin V - FITC

and Propidium Iodide (PI). The selected extracts were the most effective in the cell

viability screening (40T, 60T and 80T), and at the intermediate doses (25 μg/mL and

50 μg/mL). In addition, the antineoplastic agent cisplatin (50 μM) was used as the

standard drug and tested for comparison purposes.

In Figure 2 we observe that during the time period of 24 hours from treatment,

all extracts caused cell death by apoptosis in HT-29 tumor cells, and most of the

apoptotic cells were found in the initial stage. Among the crude extracts, the 40T at

25 μg/mL presented a higher percentage of cells in apoptosis (38.7%), surpassing

even cisplatin, which presented 33.4% of cells in apoptosis. In the non-tumoral

lineage HEK-293, there was no statistical difference between the percentages of

cells in apoptosis presented by the controls as compared to the extracts. Under the

same conditions, the cisplatin antineoplastic presented a significant rate of apoptotic

cells (49%).

According to Figure 3, at the 48 hour time of treatment in the HT-29 line, half

of the extracts tested provoked an increase in the percentage of cells in the

apoptosis process in comparison to the previous period, varying between them at

22.4% for 60T at the 25 μg/mL dose, 3.77% for 60T at 50 μg/mL, and 10.79% for 80T

at 25 μg/mL). Cisplatin also increased apoptotic cell rates over time (up 28.9%). Of

the cells in apoptosis, most were in the early stages. In the non-tumor cell line HEK-

293, all extracts showed concentrations of viable cells close to or above the control,

whereas cisplatin presented viable cells at 43.6%, and an expressive number of cells

in apoptosis (54.6%).

35

The results are most clearly observed in Figure 4, where they were separated

by percentages of cells that were in early apoptosis and late apoptosis in the HT-29

cells and total apoptosis in the HEK-293 cells.

Fig 2. Effect of L. ferrea extracts on HT-29 and HEK-293 cells, after treatment

for 24 hours, evaluated by flow cytometry. (A) Control (untreated cells); (B) 40T -

25 μg/mL; (C) 40T - 50 μg/mL; (D) 60T - 25 μg/mL; (E) 60T - 50 μg/mL; (F) 80T - 25

μg/mL; (G) 80T - 50 μg/mL; (H) Cisplatin - 50 μM. Dot plots are displayed with

Annexin V-FITC (X-axis) e PI (Y-axis). Cells in the upper-left quadrant represent

36

nuclear debris (Q1); upper-right quadrant, late apoptotic cells (Q2); lower-right

quadrant, early apoptotic cells (Q3); lower-left quadrant, viable cells (Q4).

Fig 3. Effect of L. ferrea extracts on HT-29 and HEK-293 cells, after treatment

for 48 hours, evaluated by flow cytometry. (A) Control (untreated cells); (B) 40T -

25 μg/mL; (C) 40T - 50 μg/mL; (D) 60T - 25 μg/mL; (E) 60T - 50 μg/mL; (F) 80T - 25

μg/mL; (G) 80T - 50 μg/mL; (H) Cisplatin - 50 μM. Dot plots are displayed with

Annexin V-FITC (X-axis) e PI (Y-axis). Cells in the upper-left quadrant represent

37

nuclear debris (Q1); upper-right quadrant, late apoptotic cells (Q2); lower-right

quadrant, early apoptotic cells (Q3); lower-left quadrant, viable cells (Q4).

Fig 4. Representation of apoptotic cells concentration treated by the extracts of

L. ferrea at 24 hour and 48 hour times. Left-side: HT-29 cells; Right-side: HEK-293

cells.

3.3 Apoptosis activation analyses

Activation of important targets of the apoptotic pathway (caspase-3 and Bcl-2)

in the HT-29 tumor line, treated with the crude extracts 40T and 60T was performed

to study the mechanisms related to the presented apoptosis induction; 25 μg/mL

dosage, for 24 h and 48 h (chosen because of better performance in the previous

result). The antineoplastic cisplatin was also used for comparison. Representative

images are shown in Figure 5 (caspase-3), and Figure 6 (Bcl-2).

An intense positive labeling of the effector protease of apoptosis caspase-3 is

observed in tumor cells treated with extracts of L. ferrea, as well as with the

antineoplastic cisplatin, indicating that the cell death provoked is mediated by an

38

apoptotic process. Regarding the anti-apoptotic protein Bcl-2, lower expression was

observed for treated cells than for the controls.

Fig 5. Detection of caspase-3 of HT-29 under the effect of L. ferrea extracts in

24 hour and 48 hour times, evaluated by immunofluorescence, with contrast

index. (A) Control (untreated cells); (B) Cisplatin - 50 μM; (C) EF40T - 25 μg/mL; (D)

EF60T - 25 μg/mL.

39

Fig 6. Detection of Bcl-2 of HT-29 under the effect of L. ferrea extracts in 24

hour and 48 hour times, evaluated by immunofluorescence, with contrast

index. (A) Control (untreated cells); (B) Cisplatin - 50 μM; (C) EF40T - 25 μg/mL; (D)

EF60T - 25 μg/mL.

3.4 GSH and MDA dosages

It is highlighted in Figure 7 that glutathione (GSH) levels, an important marker

of antioxidant activity, increased by 18% in relation to the control in extract EF60T at

25 μg/mL, which was the sample presenting higher dosages of this protein in the HT-

29 tumoral lineage. Regarding extracts EF40T and EF60T at the highest dose (50

μg/mL), they presented reduced levels, and we did not find the same effect.

Regarding the malondialdehyde oxidative stress marker (MDA), we observed in

Figure 8 that all of the extracts at all doses were able to significantly reduce the

levels of the protein, thus indicating a protective effect on lipid peroxidation in the HT-

29 tumor line, being higher than cisplatin.

40

Fig 7. Effect of L. ferrea extracts on total glutathione (GSH) levels of HT-29 and

HEK-293 cells. * P <0.05, ** P <0.01 and *** P <0.001 versus control. CTRL

(untreated cells), CIS (cisplatin), 40T (crude extract 40T), 60T (60T crude extract).

Fig 8. Effect of L. ferrea extracts on malondialdehyde (MDA) levels of HT-29 and

HEK-293 cells. *P <0.05, **P <0.01 and ***P <0.001 versus control. CTRL (untreated

cells), CIS (cisplatin), 40T (crude extract 40T), 60T (crude extract 60T).

3.5 mRNA expression

Based on Figure 9, we see that the AKT gene that is involved in cell survival

and proliferation had a slightly reduced expression in the treatment with EF40T at the

41

extract dose of 25 μg/mL (4%); extract EF60T with the same dose yielded (26%), a

rate still lower than that found with the antineoplastic cisplatin (49%). The Apaf-1

(apoptotic peptidase activating factor 1) gene encoding a cytoplasmic protein that

initiates apoptotic events in the intrinsic pathway was found to be reduced in all

treatments. Epidermal growth factor receptor (EGFR), involved in the pathogenesis

and progression of different carcinomas, showed a reduction in expression as

compared to the control: 29% for the EF40T extract, 48% for the EF60T extract and

53% for cisplatin.

Fig 9.Effect of L. ferrea extracts on the expression of AKT, Apaf-1 and EGFR

mRNAs in HT-29. *P < 0.05, **P < 0,01 e ***P<0.001 versus control. CTRL

(untreated cells), CIS (cisplatin), EF40T (40T crude extract), EF60T (60T crude

extract).

4. Discussion

In addition to expanding medical-pharmacological care in public health, the

study of medicinal plants is important for acquiring knowledge about the

pharmacological potential of a native plant diversity that remains under exploited, and

helps to ensure its rational exploitation [13]. The versatility, applicability and

therapeutic safety presented by caatinga plants have attracted great attention to

them in the search for new drugs [36]. Popular species such as Libidibia ferrea

42

Martius L. P. Queiroz require ethno-pharmacological approaches, and these have so

far remained scarce, especially regarding anticancer activity.

Crude and fractionated extracts obtained from the fruits of L. ferrea tested by

Freitas et al [37] on human cancer cell lines NCI-H292 (mucoepidermoid carcinoma

of the lung), HEP-2 (squamous cell carcinoma of the larynx), and solid tumor

sarcoma 180 presented no significant antitumor activity or inhibition of cell

proliferation. In the present study, for the HT-29 tumoral lineage (human colorectal

adenocarcinoma), proliferation inhibition by the 40T, 60T and 80T crude extracts was

significant in the first observed hours. In addition, during the same time period, the

same extracts did not generally present toxicity in the non-tumor cell line HEK-293

(human embryonic renal cell).

Alterations to apoptosis death process related pathways and consequent cell

resistance to this mechanism are the main factors responsible for the onset of

tumorigenesis, considered one of the fundamental hallmarks of cancer [38]. Despite

causing the problem, apoptosis plays an important role in cancer treatment strategies

through the eradication of transformed cells, and resistance to conventional

treatments [39].

Induction of apoptosis by L. ferrea has been described previously by Nozaki et

al [40], using acetone stem extract in human acute myeloid leukemia (HL-60)

lineage. In this work, all extracts from the L. ferrea fruit tested in the HT-29 line

induced cell death by apoptosis, corroborating their results.

The apoptotic activity exhibited in the present study has a profile suggestive of

affecting the intrinsic apoptosis pathway, a common target of most anticancer agents

[41], through activation of caspase-3 and reduction of Bcl-2 levels. This pathway

results from increased mitochondrial membrane permeability (with inhibition of anti-

apoptotic regulator Bcl-2), and the release of pro-apoptogenic factors in the

cytoplasm, promoting the activation of effector enzymes (such as caspase-3), which

act on a broad spectrum of substrates, resulting in cell death [42].

Most of the apoptotic cells in this work were detected in the initial stage,

characterized by phosphatidylserine exposure (an event that precedes cell

membrane permeabilization), cellular shrinkage, and nuclear condensation. In

addition, the collapse of the mitochondrial transmembrane potential has also been

reported as an early event in the apoptotic process, being present in many cell types

43

in apoptosis that culminate in the release of several apoptotic proteins, independently

of the stimulus [43]. Therapies for colorectal cancer designed to stimulate apoptosis,

as presented here, play a critical role in controlling its development and progression,

as well as improving response to chemotherapy and radiation [44].

To assess antioxidant status, dosages were performed for analysis of GSH

(glutathione) and MDA (malondialdehyde) levels. We observed that the EF60T

extract, at the lowest dose tested presented a significant increase in the level of

GSH, an intracellular peptide that exerts, among other functions, detoxification,

elimination of free radicals, maintenance of the thiol state, and cellular proliferation

modulation [45]. As for the MDA lipid peroxidation marker, all of the extracts at all

doses presented reductions, which is an important sign for prevention of MDA’s

mutagenic and genotoxic activities in tumor cells [46]. All in all, the extract stands out

for presenting potential antioxidant activity. The antioxidant activities of L. ferrea fruits

were first described by Silva et al [47] through several in vitro assays. Later, Barros et

al [19] also described augmented antioxidant activity in addition to hepatoprotection

in mice.

The expression of certain relevant genes to tumor signaling machinery was

evaluated in this work through identification of mRNA-targets (EGFR, AKT and

APAF-1). We found that levels of the EGFR receptor (involved in growth, invasion

and metastasis of epithelial tumors and particularly important in the development of

colorectal tumors) [48] were reduced after treatment with the extracts, indicating that

L. ferrea interferes with this pathway and is effective in tumor inhibition.

Expression of AKT was varied, with reduced expression for EF40T and

increased expression for EF60T. Interestingly, some studies have shown that AKT is

not a single-function kinase and may facilitate, rather than inhibit, cell death under

certain conditions [49], thus being involved both in inducing death and cell survival.

The same scenario of opposite functions in the same protein may also involve Apaf-1

factor, whose expression was reduced in cells treated with L. ferrea. Although this

protein is known for its apoptotic role in the intrinsic pathway, recent work has

suggested additional non-apoptotic functions including a pro-survival role that needs

to be better investigated [50].

Through various mechanisms, cancer itself, through induction of pro-survival

signals such as the AKT activation pathway bypasses activation of the intrinsic

44

pathway as in blockade of apoptosome formation and consequently of Apaf-1. Thus,

strategies to bypass resistance, through therapeutic restoration of apoptotic

pathways as conducted by interactions with the tumor microenvironment, provide

new promise for cancer patients in clinical treatment [51]. Therefore, the differing

expression profiles presented in this study from the extracts of L. ferrea may be

related to different activities in the mediation of important pathways in tumor

development, that culminate in cell death stimuli, as already verified in the previous

results.

Mediation of the AKT pathway, in addition to influencing apoptosis induction

impacts oxidization capacity. Ramos et al [52] showed that apoptosis caused by

treatment with low concentrations of arsenic trioxide in human myelogenous

leukemia cells (HL-60) was potentiated by the use of AKT pathway inhibitors, which

also led to the reduction of levels of GSH causing intracellular oxidation. The results

demonstrated that AKT signaling pathway activity is necessary to maintain normal

GSH metabolism in cells. We observed in the current study that there is also

synchronization between AKT expression levels and intracellular GSH levels:

increased AKT expression is accompanied by increased GSH and vice versa.

The main constituents found in the L. ferrea extracts tested were the

hydrolyzable tannins: gallic acid (GA) and ellagic acid (EA) (30). GA is a phenolic

compound naturally present in a wide variety of fruits and plants exhibiting various

pharmacological activities such as antimicrobial, antitumor, anti-inflammatory,

antioxidant, antidepressant, antidiabetic, anxiolytic, and others [53]. The acid is

associated to inhibition in various cancer cell lines including human colorectal

carcinoma cells through apoptosis induction by different mechanisms such as

regulation of apoptotic and anti-apoptotic proteins [54]. It is also well known for its

efficient protection against oxidative damage, maintenance of endogenous defense,

and chiefly, prevention of lipid peroxidation [55].

EA is a dimeric derivative of gallic acid present in the plant vacuole and, like

other polyphenols; it has a wide range of biological activities such as antioxidant,

anti-inflammatory, prebiotic and anticancer functions, and the latter by selectively

inhibiting growth in differring tumor types, including inducing apoptosis in human

colon adenocarcinoma cells via the mitochondrial pathway [56].

45

Among the results reported, it is important to highlight the protective effect of

L. ferrea extracts on non-tumor HEK-293 cells, which presented high rates of cell

proliferation and viable cells. In vitro evaluations by Nakamura et al [57] have

demonstrated the chemopreventive effects of L. ferrea through the presence of

ellagic acid in its composition: three adjacent hydroxyl phenolic groups were

responsible for cytotoxicity, and the carboxyl group appeared to be implicated in the

distinction between normal and tumor cells. These results are consistent with studies

by Araújo Júnior et al [58,59], in the sense that many plant derivatives may act both

in inhibiting the proliferation and viability of tumor cells, and in mediating a protective

effect on healthy cells.

5. Conclusions

The present results demonstrate that L. ferrea has antiproliferative activity in

HT-29 cells with induction of apoptosis in association with mitochondrial effects in the

intrinsic pathway (via caspase-3 activation, negative regulation of Bcl-2 and

Reduction of Apaf-1), this as well as acting in the expression of important targets in

the process of colorectal cancer development such as EGFR and AKT, with probable

tumor inhibition. L. ferrea also has antioxidant and lipid peroxidation inhibiting effects,

together with chemopreventive action in healthy renal cells. Taken as such, L. ferrea

is a promising candidate for cancer therapy with both efficacy and selectivity as

potential characteristics.

Acknowledgments

The authors thank the Pharmacognosy Laboratory of Pernambuco Federal University

(UFPE); the cell culture room of the Department of Biochemistry, the Health Sciences

Graduate Program, and the Brain Institute Microscopy Laboratory at Rio Grande do

Norte Federal University (UFRN).

References

[1] V. Pavet, M.M. Portal, J.C. Moulin, R. Herbrecht, H. Gronemeyer, Towards novel

paradigms for cancer therapy, Oncogene 30 (2011) 01-20.

46

[2] Y.A. Luqmani, Mechanisms of drug resistance in cancer chemotherapy, Med.

Princ. Pract. 14 (2005) 35-48.

[3] B.W. Stewart, C.P. Wild, World Cancer Report 2014, International Agency for

Research on Cancer, Lyon, 2014.

[4] E.R. Fearon, Molecular genetics of colorectal cancer, Annu. Rev. Pathol. Mech.

Dis. 6 (2011) 479-507.

[5] M. De Rosa, U. Pace, D. Rega, V. Costabile, F. Duraturo, P. Izzo, P. Delrio,

Genetics, diagnosis and management of colorectal cancer, Oncol. Rep. 34 (2015)

1087-1096.

[6] M.J. Balunas, A.D. Kinghorn, Drug Discovery from medicinal plants, Life Sci. 78

(2005) 431-441.

[7] A. Paul, Manjula, Cytotoxic and antiproliferative activity of indian medicinal plants

in cancer cells, IJSR 3 (2014) 88-93.

[8] P.M.P. Ferreira, D.F. Farias, M. Viana, T.M. Souza, I.M. Vasconcelos, B.M.

Soares, C. Pessoa, L.V. Costa-Lotufo, M.O. Moraes, A.F.U. Carvalho, Study of

antiproliferative potential of seed extracts from northeastern brazilian plants, An.

Acad. Bras. Ciênc. 83 (2011) 1045-1058.

[9] J.B. Calixto. Efficacy, safety, quality control, marketing and regulatory guidelines

for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res. 33 (2000)

179-189.

[10] S.Y. Yin, W.C. Wei, F.Y. Jian, N.S. Yang. Therapeutic applications of herbal

medicines for cancer patients. Evid. Based Complement. Alternat. Med. 2013 (2013)

01-15.

[11] I. Mohamed, A. Shuid, B. Borhanuddin, N. Fozi. The application of

phytomedicine in modern drug development. The Internet Journal of Herbal and

Plant Medicine 1 (2013) 01-9.

[12] U.P. Albuquerque, P.M. Medeiros, A.L.S. Almeida, J.M. Monteiro, E.M.F. Lins,

J.G. Melo, J.P. Santos, Medicinal plants of the caatinga (semi-arid) vegetation of NE

Brazil: a quantitative approach, J. Ethnopharmacol. 114 (2007) 325-354.

47

[13] C.P. Benedito, M.F.B. Coelho, I.P. Guimarães, V.P. Amaral, S.S.S. Maia, P.F.

Batista, Emergence and early growth of Caesalpinia ferrea Mart. ex Tul. var. ferrea

seedlings on different substrates, Rev. Bras. Ciênc. Agrár. 7 (2012) 508-513.

[14] M.R.A. Ferreira, L.A.L. Soares, Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz: A

review of the biological activities and phytochemical composition, J. Med. Plants Res.

9 (2015) 140-150.

[15] L.M. Costa, F. Guilhon-Simplicio, T.P. Souza, Libidibia ferrea (Mart. Ex Tul) L. P.

Queiroz var. ferrea: Pharmacological, phytochemical and botanical aspects, Int. J.

Pharm. Pharm. Sci. 7 (2015) 48-53.

[16] F.C. Sampaio, M.S.V. Pereira, C.S. Dias, V.C.O. Costa, N.C.O. Conde, M.A.R.

Buzalaf, In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral

pathogens, J. Ethnopharmacol. 124 (2009) 289-294.

[17] R.O. Marreiro, M.F.C.L. Bandeira, T.P. Souza, M.C. Almeida, K. Bendaham,

G.N. Venancio, I.C. Rodrigues, C.N. Coelho, P.S.L.L. Milério, G.P. Oliveira GP,

N.C.O. Conde, Evaluation of the stability and antimicrobial activity of an ethanolic

extract of Libidibia ferrea, Clin. Cosmet. Investig. Dent. 6 (2014) 9-13.

[18] L.C. Da Silva, J.M. Sandres, M.M. De Paiva, J.M. De Araújo, R.C. De

Figueiredo, M.V. Da Silva, M.T. Correia, Anti-staphylococcus aureus action of three

Caatinga fruits evaluated by electron microscopy, Nat. Prod. Res. 27 (2013) 1492-

1496.

[19] A.O. Barros, R.S. Souza, E.S.P. Aranha, L.M. Costa, T.P. Souza, M.C.

Vasconcellos, E.S. Lima, Antioxidant and Hepatoprotective Activities of Libidibia

ferrea bark and fruit extracts, Int. J. Pharm. Pharm. Sci. 6 (2014) 71-76.

[20] H. Ueda, Y. Tachibana, M. Moriyasu, K. Kawanishi, S.M. Alves, Aldose

reductase inhibitors from the fruits of Caesalpinia ferrea Mart, Phytomedicine 8

(2001) 377-381.

[21] E.S. Nakamura, F. Kurosaki, M. Arisawa, T. Mukainaka, J. Takayasu, M. Okuda,

H. Tokuda, H. Nishino, F. Pastore, Cancer chemopreventive effects of a Brazilian folk

medicine Juca on in vivo two-stage skin carcinogenesis, J. Ethnopharmacol. 81

(2002) 135-137.

48

[22] A.B. Souza, L.M.S. Souza, J.C.T. Carvalho, E.L. Maistro, No clastogenic activity

of Caesalpinia ferrea Mart. (Leguminosae) extract on bone marrow cells of Wistar

rats, Genet. Mol. Biol. 29 (2006) 380-383.

[23] V.M. Peters, S.O. Souza, J.C.T. Carvalho, L.V. Borges, M.O. Guerra MO,

Evaluation of reproductive toxicity of aqueous extract of the fruits from Caesalpinia

ferrea Mart in rats, B. Latinoam. Caribe Pl. 7 (2008) 268-272.

[24] F. Hua, M.G. Cornejo, M.H. Cardone, C.L. Stokes, D.A. Lauffenburger, Effects

on fas signaling-induced caspase-3 activation: molecular genetic tests of

computational model predictions, J. Immunol. 175 (2005) 985-995.

[25] J. Polivka Jr, F. Janku, Molecular targets for cancer therapy in the

PI3K/AKT/mTOR pathway, Pharmacol. Ther. 142 (2014) 164-175.

[26] S. Baig, I. Seevasant, J. Mohamad, A. Mukheem, H.Z. Huri, T. Kamarul,

Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we

stand?, Cell Death Dis. 7 (2016) 01-11.

[27] A. Gortat, M. Sancho, L. Mondragón, A. Messeguer, E. Pérez-Payá, M. Orzáez,

Apaf1 inhibition promotes cell recovery from apoptosis, Protein Cell 6 (2015) 833-

843.

[28] P. Seshacharyulu, M.P. Ponnusamy, D. Haridas, M. Jain, A.K. Ganti, S.K.

Batra,Targeting the EGFR signaling pathway in cancer therapy, Expert Opin. Ther.

Targets 16 (2012) 15-31.

[29] G.M. Nitulescu, D. Margina, P. Juzenas, Q. Peng, O.T. Olaru, E. Saloustros, C.

Fenga, D.A. Spandidos, M. Libra, A.M. Tsatsakis, Akt inhibitors in cancer treatment:

The long journey from drug discovery to clinical use, Int. J. Oncol. 48 (2016) 869-885.

[30] M.R.A. Ferreira, M.T.M. Fernandes, W.A.V. Silva, I.C.F. Bezerra, T.P. Souza,

M.F. Pimentel, L.A.L. Soares LAL, Chromatographic and Spectrophotometric

Analysis of Phenolic Compounds from Fruits of Libidibia ferrea Martius, Pharmacogn.

Mag. 12 (2016) 285-291.

[31] T. Mosman, Rapid colorimetric assay for cellular growth and survival: application

to proliferation and cytotoxicity assays, J. Immunol. Methods 65 (1983) 55-63.

49

[32] C.M. Costa, R.C.C. Santos, E.S. Lima, A simple automated procedure for thiol

measurement in human serum samples, J. Bras. Patol. Med. Lab. 42 (2006) 345-

350.

[33] I. Rahman, A. Kode, S.K. Biswas, Assay for quantitative determination of

gluthathione and gluthathione disulfide levels using enzymatic recycling method, Nat.

Protoc. 1 (2006) 3159-3165.

[34] H. Esterbauer H, K.H. Cheeseman, Determination of aldehydic lipid peroxidation

products: malonaldehyde and 4-hydroxynonenal, Methods Enzymol. 186 (1990) 407-

421.

[35] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-

time quantitative PCR and the 2-ΔΔCt method, Methods 25 (2001) 402-408.

[36] N.L. Alencar, F.R. Santoro, U.P. Albuquerque, What is the role of exotic

medicinal plants in local medical systems? A study from the perspective of utilitarian

redundancy, Braz. J. Pharmacog. 24 (2014) 506-515.

[37] A.C.C. Freitas, N.C.A. Ximenes, J.S. Aguiar, S.C. Nascimento, T.U.L. Lins, L.R.

Magalhães, L.C.B.B. Coelho, M.G. Carneiro-da-Cunha, T. Gonçalves-Silva, M.T.S.

Correia, Biological activities of Libidibia (Caesalpinia) ferrea var. parvifolia (Mart. ex

Tul.) L. P. Queiroz pod preparations, Evid. Based Complement. Alternat. Med. 2012

(2012) 01-07.

[38] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144

(2011) 646-674.

[39] M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and

molecular targeting therapy in cancer, BioMed. Res. Int. 2014 (2014) 01-23.

[40] H. Nozaki, K. Hayashi, M. Kido, K. Kakumoto, S. Ikeda, N. Matsuura, H. Tani, D.

Takaoka, M. Iinuma, Y. Akao Y, Pauferrol A - a novel chalcone trimer with a

cyclobutane ring from Caesalpinia ferrea mart exhibiting DNA topoisomerase II

inhibition and apoptosis-inducing activity, Tetrahedron Lett. 48 (2007) 8290-8292.

[41] S. Fulda, K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in

anticancer chemotherapy, Oncogene 25 (2006) 4798-4811.

[42] R.S. Wong, Apoptosis in cancer: from pathogenesis to treatment, J. Exp. Clin.

Cancer Res. 30 (2011) 01-14.

50

[43] G. Denecker, H. Dooms, G.V. Loo, D. Vercammen, J. Grooten, W. Fiers, W.

Declercq, P. Vandenabeele, Phosphatidyl serine exposure during apoptosis

precedes release of cytochrome c and decrease in mitochondrial transmembrane

potential, FEBS Letters 465 (2000) 47-52.

[44] A.M. Abraha, E.B. Ketema, Apoptotic pathways as a therapeutic target for

colorectal cancer treatment, World J. Gastrointest. Oncol. 8 (2016) 583-591.

[45] S.C. Lu, Regulation of glutathione synthesis, Mol. Aspects Med. 30 (2009) 42-

59.

[46] D. Grotto, L.S. Maria, J. Valentini, C. Paniz, G. Schmitt, S.C. Garcia, V.J.

Pomblum, J.B.T. Rocha, M. Farina, Importance of the lipid peroxidation biomarkers

and methodological aspects for malondialdehyde quantification, Quím. Nova 32

(2009) 169-174.

[47] L.C.N. Silva, C.A. Silva Júnior, R.M. Souza, A.J. Macedo, M.V. Silva, M.T.S.

Correia, Comparative analysis of the antioxidante and DNA protection capacities of

Anadenanthera colubrina, Libidibia ferrea and Pityrocarpa moniliformis fruits, Food

Chem. Toxicol. 49 (2011) 2222-2228.

[48] T. Sasaki, K. Hiroki, Y. Yamashita, The role of epidermal growth factor receptor

in cancer metastasis and microenvironment, Biomed. Res. Int. 2013 (2013) 01-08.

[49] M. Los, S. Maddika, B. Erb, K. Schulze-Osthoff, Switching Akt: from survival

signaling to deadly response, Bioessays 31 (2009) 492-495.

[50] M. Sancho, A. Gortat, A.E. Herrera, V. Andreu-Fernández, E. Ferraro, F.

Cecconi, M. Orzáez, E. Pérez-Payá, Altered mitochondria morphology and cell

metabolism in Apaf-1 deficient cells, PLos One 9 (2014) 01-08.

[51] M.V. Fiandalo, N. Kyprianou, Caspase control: protagonists of cancer cell

apoptosis, Exp. Oncol. 34 (2012) 165-175.

[52] A.M. Ramos, C. Fernández, D. Amrán, P. Sancho, E. Blas, P. Aller,

Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the

antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide

accumulation in myeloid leukemia cells, Blood 105 (2005) 4013-4020.

[53] N. Nayeem, A. Smb, H. Salem, S. Ahei-Alfqy, Gallic acid: a promising lead

molecule for drug development, J. App. Pharm. 8 (2016) 01-4.

51

[54] A.P. Subramanian, A.A. John, M.V. Vellayappan, A. Balaji, S.K. Jaganathan, E.

Supriyanto, Gallic acid: prospects and molecular mechanisms of its anticancer

activity, RSC Adv. 5 (2015) 35608-35621.

[55] B. Badhani, N. Sharma, R. Kakkar, Gallic acid: a versatile antioxidante with

promising therapeutic and industrial applications, RSC Adv. 5 (2015) 27540-27557.

[56] J.M. Landete, Ellagitannins, ellagic acid and their derived metabolites: a review

about source, metabolism, functions and health, Food Res. Int. 44 (2011) 1150-1160.

[57] E.S. Nakamura, F. Kurosaki, M. Arisawa, T. Mukainaka, M. Okuda, H. Tokuda,

H. Nishino, F. Pastore, Cancer chemopreventive effects of constituents of

Caesalpinia ferrea and related compounds, Cancer Lett 177 (2002) 119-124.

[58] R.F. Araújo Júnior, A.L.C.S.L. Oliveira, J.B. Pessoa, V.B. Garcia, G.C.B. Guerra,

L.A.L. Soares, T.P. Souza, P.R. Petrovick, A.A. Araújo, Maytenus ilicifolia dry extract

protects normal cells, induces apoptosis and regulates Bcl-2 in human cancer cells,

Exp. Biol. Med. 238 (2013) 1251-1258.

[59] R.F. Araújo Júnior, T.P. Souza, J.G. Pires, L.A. Soares, A.A. Araújo, P.R.

Petrovick, H.D. Macêdo, A.L.S.L. Oliveira, G.C. Guerra, A dry extract of Phyllanthus

niruri protects normal cells and induces apoptosis in human liver carcinoma cells,

Exp. Biol. Med. 237 (2012) 1281-1288.

___________________________________________________________________

52

6 COMENTÁRIOS, CRÍTICAS E CONCLUSÕES

O projeto de pesquisa inicial intitulava-se “Avaliação da Atividade Citotóxica e

dos Mecanismos de Morte Celular In vitro de Extratos de Libidibia ferrea em Células

de Câncer Colorretal”, porém no decorrer dos experimentos e dos resultados

obtidos, decidimos expandir o estudo e avaliar também a atividade antioxidante, em

parceria com o Laboratório Farmol sob orientação da Prof. Aurigena Antunes, onde

obtivemos dados bastante satisfatórios e contribuiu significativamente para a

elucidação do potencial farmacológico dos extratos em questão. Outros alvos de

vias de sinalização de interesse para o câncer também foram acrescentadas à

metodologia inicial (EGFR e Apaf-1), decorrentes também de parcerias e

financiamentos de projetos desenvolvidos pelo nosso grupo de pesquisa.

As concentrações utilizadas para os testes in vitro dos extratos de L. férrea

precisaram sofrer alterações do que foi inicialmente sugerido (doses de mg/mL para

µg/mL), decorrentes de adequações metodológicascom base nos primeiros

resultados de screening da atividade antitumoral. Tais modificações foram

prontamente identificadas e executadas, realizando-se um estudo da curva dose-

resposta dos extratos, o que não comprometeu o desenvolvimento do trabalho.

Ao longo do desenvolvimento desta pesquisa, o cronograma de atividades

passou por mudanças, devido a situações inerentes da pesquisa experimental e do

trabalho científico, relacionadas ao cultivo celular, repetições de resultados,

disponibilidade de equipamentos e material, entre outros. Porém o trabalho seguiu

às metas e ao desenho do estudo planejado, adaptando-se às pequenas limitações

encontradas.

Este projeto contribuiu bastante como ponto de partida para a consolidação

de novas metodologias científicas para o Laboratório LAICI, principalmente quanto à

inserção de técnicas para avaliação da atividade antioxidante in vitro que foram

desenvolvidas após muito estudo e experimentação, para chegarmos ao método

ideal (desde a obtenção das células à leitura). Outra técnica também que foi

estabelecida e aperfeiçoada foi o Real Time RT-qPCR. Esse processo proporcionou

o avanço científico dos alunos e a melhoria, como um todo, dos projetos executados.

53

Os resultados apresentados possuem grande valor para esclarecer o

potencial bioativo que a diversidade vegetal nativa fornece, em especial de L.

ferreaque carece de abordagens etnofarmacológicas, trazendo conhecimento à

população e auxiliando à comunidade científica na busca de novas terapias para o

câncer colorretal. Além disso, este trabalho faz parte de um projeto maior

desenvolvido por nosso grupo de pesquisa que possui resultados preliminares

indicando também atividades anti-inflamatórias e antimicrobianas in vivo, que

constituirão na publicação de artigos e no avanço científico em geral.

Durante a trajetória do mestrado pude progredir intelectualmente, através do

desenvolvimento de novas habilidades e competências que foram necessárias para

dar seguimento ao trabalho, além das aulas e discussões científicas promovidas

pelo Programa de Pós-Graduação em Ciências da Saúde da UFRN, que foram

bastante enriquecedoras e permitiram o contato com diversos profissionais

proporcionando um ambiente de muito aprendizado e conhecimento.

Após a conclusão dessa etapa acadêmica, há a perspectiva futura de serem

realizadas outras abordagens, com o uso de nanotecnologia para avaliação dos

extratos de L. ferrea associado à quimioterápicos, envolvendo novas investigações

de suas aplicações na área da oncologia molecular. A finalidade desta trajetória

seguirá com a busca constante de aprimoramento e inovação científica.

54

7 REFERÊNCIAS

1. Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H. Towards novel

paradigms for cancer therapy. Oncogene 2011; 30(1):01-20.

2. Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005; 14(1):(2005).

3. Stewart BW, Wild CP.World Cancer Report 2014. International Agency for

Research on Cancer; 2014.

4. Bogaert J, Prenen H. Molecular genetics of colorectal cancer. AnnGastroenterol.

2014; 27(1):9-14.

5. De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P, Delrio P. Genetics,

diagnosis and management of colorectal cancer (Review). Oncol Rep.2015;

34(3):1087-96.

6. Ismael GFV, Rosa DD, Mano MS, Awada A. Novel cytotoxic drugs: old challenges,

new sollutions. Cancer Treat Ver. 2008; 34(1):81-91.

7. Lu Y, Mahato RI. Pharmaceutical Perspectives of Cancer Therapeutics. 1ª edition.

New York: Springer Science; 2009.

8. López-Camarillo C, Aréchaga-Ocampo E. Oncogenomics and cancer proteomics –

Novel approaches in biomarkers discovery and therapeutic targets in cancer. 1ª

edition. Rijeka: InTech; 2013.

9. Lahlou M. The success of natural products in drug discovery. Pharmacol Pharm.

2013; 4:17-31.

10. Paul A, Manjula. Cytotoxic and antiproliferative activity of indian medicinal plants

in cancer cells. IJSR 2014; 3:88-93.

11. Ferreira PMP, Farias DF, Viana MP, Souza TM, Vasconcelos IM, Soares BM,

Pessoa C, Lotufo LVC, Moraes MO, Carvalho AFU. Study of antiproliferative

potential of seed extracts from northeastern brazilian plants. An Acad Bras Cienc.

2011; 83:1045-58.

12. Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines

for herbal medicines (Phytotherapeuthic agents). Braz J Med Biol Research. 2000;

33: 179-87.

55

13. Albuquerque UP, Medeiros PM, Almeida ALS, Monteiro JM, Lins EMF, Melo JG,

Santos JP. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a

quantitative approach. J Ethnopharmacol. 2007; 114(3):325-354.

14. Ribeiro DA, Macedo DG, Oliveira LGS, Saraiva ME, Oliveira SF, Souza MMA,

Menezes IRA. Potencial terapêutico e uso de plantas medicinais em uma área de

Caatinga no estado do Ceará, nordeste do Brasil. Rev Bras PI Med. 2014; 16(4):

912-30.

15. Silva MIG, Melo CTV, Vasconcelos LF, Carvalho AMR, Sousa FCF. Bioactivity

and potential therapeutic benefi ts of some medicinal plants from the Caatinga (semi-

arid) vegetation of Northeast Brazil: a review of the literature. Rev. Bras. Farmacogn.

2012; 22(1): 193-207.

16. National Tropical Botanical Garden. Caesalpinia ferrea [Internet]. Kalaheo:

National Tropical Botanical Garden; 2017 [citado em 2017 May 01]. Disponível em:

<http://www.ntbg.org/plants/index.php>.

17. Ferreira Júnior WS, Ladio AH, Albuquerque UP. Resilience and adaptation in the

use of medicinal plants with suspected anti-inflammatory activity in the Brazilian

Northeast. J Ethnopharmacol. 2011; 138(1):238-52.

18. Frasson APZ, Bittencourt CF, Heinzmann BM. Caracterização físico-química e

biológica do caule de Caesalpinia ferrea Mart. Rev Bras Farmacogn. 2003; 13(1):35-

39.

19. Roque AA, Rocha RM, Loiola MIB. Uso e diversidade de plantas medicinais da

caatinga na comunidade rural de Laginhas, município de Caicó, Rio Grande do Norte

(nordeste do Brasil). RevBras Plan Med. 2010; 12(1):31-42.

20.Hassan SK, El-Sammad NM, Mousa AM, Mohammed MH, Farrag ARH, Hashim

ANE, Werner V, Lindequist U, Nawwar MAE. Hypoglycemic and antioxidant activities

of Caesalpinia ferrea Martius leaf extract in streptozotocin-induced diabetic rats.

Asian Pac J Trop Biomed. 2015; 5(6):462-71.

21. Vasconcelos CF, Maranhão HM, Batista TM, Carneiro EM, Ferreira F, Costa J,

Soares LAL, Sá MDC, Souza TP, Wanderley AG. Hypoglycaemic activity and

molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-

induced diabetes in wistar rats. J Ethnopharmacol. 2011; 137(3):1533-41.

56

22. Melo EA [homepage na internet]. Pau ferro – Caesalpinia ferrea [acesso em 27

mai 2017]. Disponível em: http://www.arvores.brasil.nom.br/esq.htm.

23. Nakamura ES, Kurosaki F, Arisawa M, Mukainaka T, Okuda M, Tokuda H,

Nishino H, Jr Pastore F. Cancer chemopreventive effects of constituents of

Caesalpinia ferrea and related compounds. Cancer Lett. 2002;177:119-24.

24. Sampaio FC, Pereira MSV, Dias CS, Costa VCO, Conde NCO, Buzalaf MAR. In

vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens.

J Ethnopharmacol. 2009; 124:289-94.

25. Marreiro RO, Bandeira MFCL, Souza TP, Almeida MC, Bendaham K, Venancio

GN, Rodrigues IC, Coelho CN, Milério PSLL, Oliveira GP, Conde NCO. Evaluation of

the stability and antimicrobial activity of an ethanolic extract of Libidibia ferrea. Clin

Cosmet Investig Dent. 2014; 6:9-13.

26. Da Silva LC, Sandres JM, De Paiva MM, De Araújo JM, De Figueiredo RC, Da

Silva MV, Correia MT. Anti-staphylococcus aureus action of three Caatinga fruits

evaluated by electron microscopy. Nat Prod Res. 2013; 27(16):1492-96.

27. Ueda H, Tachibana Y, Moriyasu M, Kawanishi K, Alves SM. Aldose reductase

inhibitors from the fruits of Caesalpinia ferrea Mart. Phytomedicine. 2001; 8(5):377-

81.

28. Souza AB, Souza LMS, Carvalho JCT, Maistro EL. No clastogenic activity of

Caesalpinia ferrea Mart. (Leguminosae) extract on bone marrow cells of Wistar rats.

Genet Mol Biol. 2006; 29(2):380-83.

29. Peters VM, Souza SO, Carvalho JCT, Borges LV, Guerra MO. Evaluation of

reproductive toxicity of aqueous extract of the fruits from Caesalpinia ferrea Mart in

rats. B Latinoam Caribe Pl. 2008; 7:268-72.

30. Barros AO, Souza RS, Aranha ESP, Costa LM, Souza TP, Vasconcellos MC,

Lima ES. Antioxidant and Hepatoprotective Activities of Libidibia ferrea bark and fruit

extracts. Int J Pharm Pharm Sci. 2014; 6(11):71-6.

31. Reboredo MM, Lucinda LMF, Rocha CB, Queiroz GT, Faria VC, Vieira VA.

Avaliação da toxicidade do extrato aquoso de Caesalpinia ferrea em órgãos vitais,

no sistema reprodutor e na produção de espermatozóides de ratos Wistar

submetidos a tratamento subagudo. Rev Int Est Exp. 2006; 25:17-29.

57

32. Dias AMA, Rey-Rico A, Oliveira RA, Marceneiro S, Alvarez-Lorenzo C, Concheiro

A, Júnior RNC, Braga MEM, de Sousa H. Wound dressings loaded with an anti-

inflammatory jucá (Libidibia ferrea) extract using supercritical carbon dioxide

technology. J. Supercrit. Fluids 2013; 74: 34-45.

33. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari

UM, Domenicotti C. Role of glutathione in cancer progression and chemoresistance.

Oxid. Med. Cell. Longev. 2013; 2013: 01-10.

34. Bitla AR, Reddy EP, Sambasivaih K, Suchitra MM, Reddy VS, Rao PVLNS.

Evaluation of plasma malondialdehyde as a biomarker in patients with carcinoma of

stomach. Biomed. Res. 2011; 22(1):63-8.

35. Mahmood NA. Glutathion-S- transferase Enzyme and Malondialdehyde (MDA) in

colorectal cancer and in healthy control. IJCMG 2010; 3(1):21-6.

36. Barrera G. Oxidative stress and lipid peroxidation products in cancer progression

and therapy. ISRN Oncol. 2012; 2012:01-21.

37. Hanahan D. Hallmarks of cancer: the next generation. Cell 2011; 144(5):646-74.

38. Bernstein LH, Lev-Ari A [homepage na internet]. Cancer signalling pathways and

tumor progression [acesso em 27 mai 2017]. Disponível em:

https://pharmaceuticalintelligence.com.

39. Fresco P, Borges F, Diniz C, Marques MPM. New insights on the anticancer

properties of dietary polyphenols. Med Res Rev. 2006; 26(6):747-66.

40. Baig S, Seevasant I, Mohamad J, Mukheem A, Huri HZ, Kamarul T. Potential of

apoptotic pathway-targeted cancer therapeutic research: Where do we stand?. Cell

Death Dis. 2016; 7(1):01-11.

41. Gortat A, Sancho M, Mondragón L, Messeguer A, Pérez-Payá E, Orzáez M.

Apaf1 inhibition promotes cell recovery from apoptosis. Protein Cell. 2015; 6(11):833-

43.

42. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK.

Targeting the EGFR signaling pathway in cancer therapy. Expert. Opin. Ther.

Targets 2012; 16(1):15-31.

58

43. Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C,

Spandidos DA, Libra M, Tsatsakis AM. Akt inhibitors in cancer treatment: The long

journey from drug discovery to clinical use. Int. J. Oncol. 2016; 48(3): 869-85.

44. Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H. Towards novel

paradigms for cancer therapy. Oncogene 2011; 30(1):01-20.

45. Janne PA, Mayer RJ. Chemoprevention of colorectal cancer. N Engl J Med 2000;

342:1960-8.

46. Edwards MS, Chadda SD, Zhao Z, Barber BL, Sykes DP. A systematic review of

treatment guidelines for metastatic colorectal cancer. Colorectal Dis 2011; 14(2):31-

47.

47. Nicum S, Midgley R, Kerr DJ. Chemotherapy for colorectal cancer. JR Soc. Med.

2000; 93(8):416-19.

48. Mateescu I, Paun L, Popescu S, Roata G, Sidoroff M. Medicinal and aromatic

plants – a statistical study on the role of phytotherapy in human health. Bulletin

UASVM Animal Science and Biotechnologies 2014; 71(1):14-9.

49. Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13(19-

20):895-901.

50.Benedito CP, Coelho MFB, Guimarães IP, Amaral VP, Maia SSS, Batista PF.

Emergência e crescimento inicial de plântulas de Caesalpinia ferrea Mart. ex. Tul.

var. ferrea em diferentes substratos. Rev Bras Ciên Agrár. 2012; 7(3):508-13.

51. Alencar NL, Santoro FR, Albuquerque UP. What is the role of exotic medicinal

plants in local medical systems? A study from the perspective of utilitarian

redundancy. Braz. J. Pharmacog. 2014; 24(5):506-15

52. Ferreira MRA, Fernandes MTM, Silva WAV, Bezerra ICF, Souza TP, Pimentel

MF, Soares LAL. Chromatographic and spectrophotometric analysis of phenolic

compounds from fruits of Libidibia ferrea Martius. Pharmacogn. Mag. 2016;

12(2):285-291.

53. Mosman T. Rapid colorimetric assay for cellular growth and survival: application

to proliferation and cytotoxicity assays. J. Immunol. Methods 1983; 65(1-2):55-63.

59

54. Costa CM, Santos RCC, Lima ES. A simple automated procedure for thiol

measurement in human serum samples. J. Bras. Patol. Med. Lab. 2006; 42(5):345-

50.

55. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of

gluthathione and gluthathione disulfide levels using enzymatic recycling method. Nat.

Protoc. 2006; 1(6):3159-65.

56. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation

products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990; 186:407-

21.

57. Livak KJ, Schmittgen TD. Anaylisis of relative gene expression. Data using real-

time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;

25(4):402-8