misg12 tuc

Upload: daryanto

Post on 05-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Misg12 Tuc

    1/41

    Thermal Unit Commitment Problem

    Moshe Potsane, Luyanda Ndlovu, Simphiwe SimelaneChristiana Obagbuwa, Jesal Kika, Nadine Padayachi, Luke O. Joel

    Lady Kokela, Michael Olusanya, Martins Arasomwa, Sunday Ajibola

    07 January 2012

    (Optimization Group)   TUC Problem   07 January 2012 1 / 35

    http://find/

  • 8/16/2019 Misg12 Tuc

    2/41

    Outline

    Contents

    1 Introduction

    2 Problem description

    3

    Constraints4 Heuristic Solution

    5 Deterministic Solution

    6 Results

    7 Questions

    (Optimization Group)   TUC Problem   07 January 2012 2 / 35

    http://find/

  • 8/16/2019 Misg12 Tuc

    3/41

    Outline

    Contents

    1 Introduction

    2 Problem description

    3

    Constraints4 Heuristic Solution

    5 Deterministic Solution

    6 Results

    7 Questions

    (Optimization Group)   TUC Problem   07 January 2012 2 / 35

    http://find/

  • 8/16/2019 Misg12 Tuc

    4/41

    Outline

    Contents

    1 Introduction

    2 Problem description

    3

    Constraints4 Heuristic Solution

    5 Deterministic Solution

    6 Results

    7 Questions

    (Optimization Group)   TUC Problem   07 January 2012 2 / 35

    O li

    http://find/

  • 8/16/2019 Misg12 Tuc

    5/41

    Outline

    Contents

    1 Introduction

    2 Problem description

    3

    Constraints4 Heuristic Solution

    5 Deterministic Solution

    6 Results

    7 Questions

    (Optimization Group)   TUC Problem   07 January 2012 2 / 35

    O tli

    http://find/

  • 8/16/2019 Misg12 Tuc

    6/41

    Outline

    Contents

    1 Introduction

    2 Problem description

    3

    Constraints4 Heuristic Solution

    5 Deterministic Solution

    6 Results

    7 Questions

    (Optimization Group)   TUC Problem   07 January 2012 2 / 35

    Outline

    http://find/

  • 8/16/2019 Misg12 Tuc

    7/41

    Outline

    Contents

    1 Introduction

    2 Problem description

    3

    Constraints4 Heuristic Solution

    5 Deterministic Solution

    6 Results

    7 Questions

    (Optimization Group)   TUC Problem   07 January 2012 2 / 35

    Outline

    http://find/

  • 8/16/2019 Misg12 Tuc

    8/41

    Outline

    Contents

    1 Introduction

    2 Problem description

    3

    Constraints4 Heuristic Solution

    5 Deterministic Solution

    6 Results

    7

    Questions

    (Optimization Group)   TUC Problem   07 January 2012 2 / 35

    http://goforward/http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    9/41

    Problem Description

  • 8/16/2019 Misg12 Tuc

    10/41

    Problem Description

    Problem Description

    minx 

    F (P i ,t ,U i ,t ) =i ∈I 

    i ∈T 

    C i ,t (P i ,t ,U i ,t )

    s .t . i ∈I 

    P i ,t    =   Lt ,   ∀t  ∈ T ,

    i ∈I 

    U i ,t  P̄ i    ≥   Lt  + R t   ∀t  ∈ T ,

    P i ,t    ∈   Π(i , t ),∀t  ∈ T , t  ∈ T ,

    Ui , t    ∈   (0, 1),

    P i ,t    ∈   R

    (Optimization Group)   TUC Problem   07 January 2012 4 / 35

    Constraints

    http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    11/41

    Constraints

    1 Maximum and Minimum Power generation.

    2 Minimum Up Time.

    3 Minimum Down Time.

    4 Shut Down Cost.

    Maximum and Minimum power generation

    P mini    ≤ P i (t ) ≤  P max (t ),   U i (t ) > 0,

    P i (t ) = 0,   U i (t ) 

  • 8/16/2019 Misg12 Tuc

    12/41

    The minimum and maximum power generation reduces to:

    U i ,t P min

    i    (t ) ≤ P i (t ) ≤  U i ,t P max 

    i    (t ),   U i (t )  > 0,

    where  U i ,r  

  • 8/16/2019 Misg12 Tuc

    13/41

    Minimum Up time

    This constraint signifies the minimum time for which a committed unitshould be turned on.Note : once the unit is running, it cannot be turned off immediately.

    U i ,t  ≤ U i ,r  − U i ,r −1,

    where  r  = t  − τ + + 1, ..., t  − 1,   ∀t  ∈ T ,∀i  ∈ I .

    t  = 1, ..., |T |, T is the time horizon committed.

    i  = 1, ..., |I |, I is the number of units.

    (Optimization Group)   TUC Problem   07 January 2012 7 / 35

    Constraints

    http://find/

  • 8/16/2019 Misg12 Tuc

    14/41

    Minimum Up time continued

    Example:Assuming that we have  t  = 5, minimum up time(MU)=3,then,  r  = 3.4.First units binary variable:

    U 1,t  =

      U 1,5 ≥ U 1,3 − U 1,2U 1,5 ≥ U 1,4 − U 1,3.

    Second unit variable:

    U 2,t  =

      U 2,5 ≥ U 2,3 − U 2,2U 2,5 ≥ U 2,4 − U 2,3.

    Thus such observation shows the general behaviour to be:

    U i ,t  =

      U i ,5 ≥ U i ,3 − U i ,2U i ,5 ≥ U i ,4 − U i ,3.

    (Optimization Group)   TUC Problem   07 January 2012 8 / 35

    Constraints

    http://find/

  • 8/16/2019 Misg12 Tuc

    15/41

    Minimum up time continued

    Figure below goes further to show the period that the possiblecombinations of minimum up time are

    Figure:  Period of possible combinations

    (Optimization Group)   TUC Problem   07 January 2012 9 / 35

    Constraints

    http://find/

  • 8/16/2019 Misg12 Tuc

    16/41

    Minimum Down Time

    This constraint signifies the minimum time for which a de-committed unitshould be turned off.Note : Once the unit is de-committed, there is a minimum time before itcan be recommitted.

    1 − U i ,t  ≥ (1 − U 1,r ) − (1 − U 1,r −1)U i ,t  ≤ U i ,r −1 +  U i ,r 

    U i ,r  ≤ 0;   U i ,t  ∈ [0, 1]

    where  r  = t  − τ + + 1, ..., t  − 1,   ∀t  ∈ T ,∀i  ∈ I .

    t  = 1, ..., |T |,  T   is the time horizon committed.i  = 1, ..., |I |,   I   is the number of units.

    (Optimization Group)   TUC Problem   07 January 2012 10 / 35

    Minimum Down Time Continued

    http://find/

  • 8/16/2019 Misg12 Tuc

    17/41

    Assuming that we have,  t  = 4, minimum down time(MD ) = 2.From the above we get that,  r  = 3.Observing the first unit binary variable:

    U 1,t  = {U 1,4 ≤ 1 − U 1,2 − U 1,3

    Second variable:

    U 2,t  = {U 2,4 ≤ 1 − U 2,2 − U 2,3

    (Optimization Group)   TUC Problem   07 January 2012 11 / 35

    Minimum Down Time Continued

    http://find/

  • 8/16/2019 Misg12 Tuc

    18/41

    Minimum Down Time Continued

    Thus such observation shows the general behaviour to be:

    U 2,t  = {U i ,4 ≤ 1 − U i ,2 − U i ,3Figure below goes further to show the period that the possiblecombinations of minimum down time are

    Figure:  Period of possible combinations

    (Optimization Group)   TUC Problem   07 January 2012 12 / 35

    Minimum Down Time Continued

    http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    19/41

    Shut Down Cost

    Objective function was,

    F (P i ,t , U i ,t ) =i ∈I 

    i ∈T 

    C i ,t (P i ,t , U i ,t )

    F (P i ,t ,U i ,t ) =i ∈I 

    i ∈T 

    C i ,t (P i ,t ,U i ,t ) + SD i ,t 

    SD i ,t  =

      0,   if not shut downSD cost ,   if shut down.

    t  = 1, ..., |T |,  T   is the time horizon committed.i  = 1, ..., |I |,   I   is the number of units.

    (Optimization Group)   TUC Problem   07 January 2012 13 / 35

    Heuristic Solution

    http://find/

  • 8/16/2019 Misg12 Tuc

    20/41

    Heuristic Approach

    (Optimization Group)   TUC Problem   07 January 2012 14 / 35

    Heuristic Solution

    http://find/

  • 8/16/2019 Misg12 Tuc

    21/41

    Available Methods

    Dynamic programming

    Benders decomposition

    mixed integer programming

    Lagrangian relaxation

    Simulated annealing

    Tabu search

    The high dimensionality and combinatorial nature of the unit commitment

    problem curtail attempts to develop any rigorous mathematicaloptimization method capable of solving the whole problem for any real-sizesystem.

    (Optimization Group)   TUC Problem   07 January 2012 15 / 35

    Heuristic Solution

    L R l Al h

    http://find/

  • 8/16/2019 Misg12 Tuc

    22/41

    Lagrangian Relaxation Algorithm

    Why choose the LR algorithm

    1 Specific for the UCP.

    2 Flexible in dealingg with different types of constraints.

    3 Flexible to incorporating additional coupling constraints that have notbeen considered so far.

    4 Flexible because no priority ordering is imposed

    5 Computationally much more attractive for large system since the

    amount of computation varies with the number of units

    (Optimization Group)   TUC Problem   07 January 2012 16 / 35

    Heuristic Solution

    H h l i h k

    http://find/

  • 8/16/2019 Misg12 Tuc

    23/41

    How the algorithm works:

    The problem has three components;

    1 Cost function

    2 Set of constraints involving a single unit3 Set of coupling constraints, one for each hour in the study period

    involving all unit.

    (Optimization Group)   TUC Problem   07 January 2012 17 / 35

    http://find/

  • 8/16/2019 Misg12 Tuc

    24/41

    Heuristic Solution

    N

  • 8/16/2019 Misg12 Tuc

    25/41

    Now

    1 loading contraints

    P t load  −N 

    i =1

    P t i  U t i    = 0

    2 unit limits

    U t i  P min

    i    ≤ P t 

    i    ≤ U t 

    i  P max 

    3 unit minimum up- and down-time constraints

    (Optimization Group)   TUC Problem   07 January 2012 19 / 35

    Heuristic Solution

    Obj ti f ti

    http://find/

  • 8/16/2019 Misg12 Tuc

    26/41

    Objective function

    minx 

    F (P i ,t ,U i 

    ,t ) =

    i ∈I 

    i ∈T 

    C i ,t (P i 

    ,t ,U i 

    ,t )

    s .t .i ∈I 

    P i ,t    =   Lt ,   ∀t  ∈ T ,

    i ∈I 

    U i ,t  P̄ i    ≥   Lt  + R t   ∀t  ∈ T ,

    P i ,t    ∈   Π(i , t ),∀t  ∈ T , t  ∈ T ,

    Ui , t    ∈   (0, 1),

    P i ,t    ∈   R

    The procedure attempts to reach the constrained optimum by maximizingthe lagrange multipliers, while minimizing with respect to the othervariables in the problem. That is

    (Optimization Group)   TUC Problem   07 January 2012 20 / 35

    Heuristic Solution

    http://find/

  • 8/16/2019 Misg12 Tuc

    27/41

    q ∗(λ) = maxλt 

    q (λ)]

    whereq (λ) = minP t i  ,U t 

    L(P ,U , λ).   (1)

    This is achieved in two basic steps

    1 Find a value for each  λt  which moves  q (λ) towards a larger value

    2 Assuming that the  λt  found are now fixed, find the minimum of  L  byadjusting the values of  P t  and  U t .

    (Optimization Group)   TUC Problem   07 January 2012 21 / 35

    Heuristic Solution

    W it th bj ti f ti b t ki th li t i t d

    http://goforward/http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    28/41

    We rewrite the objective function by taking the coupling constraints andadding them into the objective function to come up with the lagrangianfunction

    L =i ,t 

    C i ,t (P i ,t ,U i ,t ) +t 

    λt 

    (Lt −i 

    P i ,t ) +t 

    u t 

    (Lt  +R t −i 

    U i ,t  P̄ i )

    Now drop the constant terms, thus the equation above simplifies to

    L   =i ,t 

    C i ,t (P i ,t ,U i ,t ) −t 

    λt i 

    P i ,t  −t 

    u t i 

    U i ,t  P̄ i ).

    =i 

    (t 

    C i ,t (P i ,t , U i ,t ) −t 

    λt i 

    P i ,t  −t 

    u t i 

    U i ,t  P̄ i )

    λ(t ) − demand lagrange multiplier

    U(t) - spinning reserve langrange multiplier

    (Optimization Group)   TUC Problem   07 January 2012 22 / 35

    Heuristic Solution

    Inner System

    http://goforward/http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    29/41

    Inner System

    Low-level:   i  = 1, 2, ..., I 

    minP i ,t ,U i ,t 

    L

    (2)

    with,L =i 

    (t 

    C i ,t (P i ,t , U i ,t ) −t 

    λt i 

    P i ,t  −t 

    u t i 

    U i ,t  P̄ i )

    (3)

    subject to,

    P i ,t  ∈ (i , t )

    U u ,t  ∈ [0, 1].

    thus Li 

    (λ, u 

    ) is the optimal lagrangian for low level with given   and u 

    .(Optimization Group)   TUC Problem   07 January 2012 23 / 35

    Deterministic Solution

    Deterministic Method

    http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    30/41

    Deterministic Method

    Branch and Bound Method

    (Optimization Group)   TUC Problem   07 January 2012 24 / 35

    Deterministic Solution

    What is a deterministic solution?

    http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    31/41

    What is a deterministic solution?

    One which guarantees the optimal solution

    The current state of the solution determines the next stateIt is a more reliable method

    (Optimization Group)   TUC Problem   07 January 2012 25 / 35

    Deterministic Solution

    Some general solution methods considered for solving

    http://find/

  • 8/16/2019 Misg12 Tuc

    32/41

    Some general solution methods considered for solving

    MIQPs

    Benders Decomposition

    Outer Approximation

    Lagrangian Decomposition

    Branch and Bound Method

    (Optimization Group)   TUC Problem   07 January 2012 26 / 35

    Deterministic Solution

    Why Branch and bound?

    http://find/

  • 8/16/2019 Misg12 Tuc

    33/41

    Why Branch and bound?

    BB algorithm searches the complete space for optimal solution

    For a convex problem, the convergence to a global optimum can be

    provedCan be used for general discrete and continuous problems

    Most popular in Optimization Literature

    (Optimization Group)   TUC Problem   07 January 2012 27 / 35

    Deterministic Solution

    http://find/

  • 8/16/2019 Misg12 Tuc

    34/41

    Figure:  BB Tree

    (Optimization Group)   TUC Problem   07 January 2012 28 / 35

    Deterministic Solution

    General Procedure

    http://find/

  • 8/16/2019 Misg12 Tuc

    35/41

    General Procedure

    Choosing the branching variable:

    Randomly

    Choosing a value U from the continuous relaxation closest to an

    integerBounding:

    Lower Bound- Continuous relaxation of the objective function

    Upper Bound-Using a heuristic

    (Optimization Group)   TUC Problem   07 January 2012 29 / 35

    Deterministic Solution

    General Procedure

    http://find/

  • 8/16/2019 Misg12 Tuc

    36/41

    General Procedure

    3 rules for fathoming the nodes:

    If the problem is infeasible

    If the lower bound of node A is greater than or equal to the upper

    bound of node BThe solution is an integer

    Stopping Condition:

    |ub − lb | <

    When all the nodes have been fathomed

    (Optimization Group)   TUC Problem   07 January 2012 30 / 35

    Deterministic Solution

    Constraints

    http://find/

  • 8/16/2019 Misg12 Tuc

    37/41

    Maximum and minimum power generated

    The power generated while the machine is switched on must satisfy

    the loadThe maximum power while the machine is switched on must exceedthe sum of the load and the reserve at each time period

    (Optimization Group)   TUC Problem   07 January 2012 31 / 35

    Deterministic Solution

    http://goforward/http://find/http://goback/

  • 8/16/2019 Misg12 Tuc

    38/41

    Figure:  Time against Units

    (Optimization Group)   TUC Problem   07 January 2012 32 / 35

    Deterministic Solution

    http://find/

  • 8/16/2019 Misg12 Tuc

    39/41

    Figure:  Power against Period

    (Optimization Group)   TUC Problem   07 January 2012 33 / 35

    Deterministic Solution

    Remarks

    http://find/

  • 8/16/2019 Misg12 Tuc

    40/41

    In this instance, the bigger generators were utilized first

    In reality, a combination of both big and small generators will ensureefficiency

    (Optimization Group)   TUC Problem   07 January 2012 34 / 35

    Q and A

    http://find/

  • 8/16/2019 Misg12 Tuc

    41/41

    Thank You!!!

    Any Questions?

    (Optimization Group)   TUC Problem   07 January 2012 35 / 35

    http://find/