mle1101 ay1213 sem2 detailed tutorial solutions

Upload: morgan-ochoa

Post on 08-Aug-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    1/40

    MLE1101AY12/13 Semester 2

    Tutorial 1-6 Detailed Tutorial Solutions

    Written by: Ms Kong Hui Zi :3

    A-PDF Merger DEMO : Purchase from www.A-PDF.com to remove the watermark

    http://www.a-pdf.com/http://www.a-pdf.com/
  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    2/40

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    3/40

    Determinetheelectronconfigurationsforasiliconatom(Z=14)

    andagermaniumatom(Z=32).

    Explainwhythesetwoelementsdisplaysimilar characteristics.

    Tutorial1Question2(ElectronicConfig.):

    e configurationofSi(Z =14): 1s22s22p63s23p2

    e configurationofGe (Z=32): 1s22s22p63s23p64s23d104p2

    or 1s22s22p63s23p63d104s24p2

    Bothelementshaveavalenceelectronstructureoftheformxs2xp2

    wherex is3 forSiand4 forGe,

    (bothbelongtoGp.4inPeriodictable)

    soverysimilarcharacteristics.

    5

    1s

    2s 2p

    3s 3p 3d

    4s 4p 4d 4f

    5s 5p 5d 5f

    6s 6p 6d

    7s 7p

    1s22s22p63s23p64s23d104p6

    36electrons

    In a commercial xray generato

    (Cu) or tungsten (W) is expose

    energy electrons. These electron

    metal atoms. When the metal athey emit xrays of characteris

    example, a tungsten atom st

    may lose one of its K shell

    another electron, probably from

    into the vacant site in the K s

    occurs in tungsten, a tungsten K

    Tutorial1Question4(E

    34 8

    15

    9

    6.63 10 J s 3 10 m/s9.30 10 J

    1m0.02138nm

    10 nm

    hcE

    AtungstenK

    xrayhasawavelength of0.02138nm.

    Whatisitsenergy?Whatisitsfrequency?

    Tutorial1Question4(Contd):

    8

    19

    9

    3.00 10 m/ s1.40 10 Hz

    1m0.02138nm10 nm

    c

    7

    [LNChap2p.6]

    Tutorial1Question5(EDescribetheelectrontransferp

    formationoftheioniccompoun

    Electropositive : Li:1s22s1

    Electronegative: O:1s22s22p4

    Li++Li++O2 Li2O

    Li LiO

    ++ + ++

    [LN: Noble gas:s2p6 ,Metals:1 #of

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    4/40

    Tutorial1Question6(IonicBonding):IftheattractiveforcebetweenapairofSr2+ andO2 ionsis1.29x

    108NandtheionicradiusoftheO2 ionis0.132nm,calculatethe

    ionicradiusoftheSr2+ ion innanometers.

    21 2

    net a tt ract ive repulsive 2 1

    04n

    Z Z e nbF F F

    a a

    2192

    1 20

    12 2 2 80 attractive

    10

    2 2 1.6 10 C

    4 4 8.85 10 C / N m 1.29 10 N

    2.672 10 m 0.2672nm

    Z Z ea

    F

    0 0 0.2672nm 0.132nm 0.135nma r R r a R9

    o = Permeabilityoffreespace,b&nareconstants

    [LNChap2p.2223]

    Tutorial1Question7(CUseschematicdiagramstodepictt

    ineachofthefollowingmaterials:

    (b)C2H6 (ethane)

    (c)C2H3Cl (VinylChloride)

    #ofcovalentbonds # ofvalenceelectNo.ofvalenceelectrons: H:1 O:6

    c.f. C2HCl3 (Chloroform

    8O:1s22s22p4

    Usetheconceptofsecondarybondstrengthtopredictwhichmemberofeachpairof

    materialsbelowhasahigher meltingtemp.

    Matls Typeof 2o bond Size Ans: m.p. (oC)

    (a) C2H4 WeakVan der Waals Similar Lower 169C

    C2H2F2 Permanent dipolefromhighly electrove F(EN=4.1)

    Similar Higher 144or

    165C

    (b) H2O Permanentdipolew moreelectrove O(EN=3.5)

    +HBonding

    Similar Higher 0C

    H2S Permanentdipolewithelectrove S(EN=2.4)

    Similar Lower 85.5C

    (c) C3H8 organicmoleculescomposedofcarbonand

    hydrogen V.d.W. only

    Smaller (orshorter)

    moleculeLower 189.7C

    C12H26 organicmoleculescomposedofcarbonand

    hydrogen V.d.W. only

    Largermolecule

    canformalarger

    numberofdipoles

    Higher 9.6C

    11

    Tutorial1Question9(SecondaryBonds): SecondaryBondin

    Aspecialcase:hydrogenbonding

    (a) It occurs between molecules in which h

    (F), oxygen (O) and nitrogen (N).

    (b) For each HF, HO and HN bond, the si

    other atom. Thus, the hydrogen end of th

    bare proton, which is capable of a strong at

    adjacent molecule.

    H Cl H Clsecondarybonding

    Fluctuating

    dipole

    Permanent

    dipole+ +

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    5/40

    Chap.3Cyrstal Structure1. CrystalStructure,SpaceLattice,UnitCell,Amorphous

    2. 14Bravais Lattices:Cubic,Tetragonal,Orthorhombic,Rhombohedral,Hexagonal,Monoclin

    3.

    4. AtomicPackingFactor Interplanar spacing

    5. AtomsPositions

    6. CrystallographicDirtn:Start&End,End start(orwalk),I

    7. MillerIndices:Origin,Intercept,Inverse,Integer,Bracket,

    8. VolumeDensity(g/cm3 ), PlanarDensity(Ctr),LinearAto

    9. Polymorphismor

    Allotropy

    10. XRayDiffraction:

    hkla d

    2

    2 2 2 2

    2sin

    4h k l

    a

    2 sinhkl

    d

    2

    2

    sin

    sin

    A

    B

    3

    3

    4

    3n r

    a A A

    A

    A

    A

    A

    AB

    B BC

    CC

    Stacking:ABAB

    vs ABCABC

    BCC 2atoms

    CN=8

    0.68

    FCC 4atoms

    CN=12

    0.74

    HCP 6atoms

    CN=12

    0.74

    4 3R a 4 2R a 2 c

    R aa

    Massu.c./Volumeu.c. Equiv.#ofatomctr intersected

    SelectedArea

    Equiv.#ofat

    S

    Integer#ofwavelength BCC:h+k+l =even,FCC:(h,k,l)allevenorallodd

    HCP(0001) FCC(111)

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    6/40

    Thed130 interplanar spacinginaBCCelementis0.1587nm.

    (a) Whatisitslatticeconstanta?

    (b) Whatistheatomicradiusoftheelement?

    (c) Whatcouldthiselement be?

    Tutorial2Question5:

    2 2 2 2 2 2

    0.1587 1 3 0 0.502hkla d h k l nm (a)

    3 0.50234 3 0.2174

    4 4

    nmaR a R nm (b)

    (c) Lattice

    Constant

    Crystalstructure

    Atomicradius

    Qn 5 Ans: 0.502 BCC 0.2174

    Barium,Ba 0.5019 BCC 0.217

    Lead,Pb 0.49502 FCC 0.175

    Potassium, K 0.5344 BCC 0.238

    Silicon,Si 0.54282 Diamond 0.1171

    Question8:ThelatticeconstantforBCCtantalumat20

    16.6g/cm3.Calculateavalueforitsatomic

    3

    Atominumber of atoms

    mV a

    3

    7

    216.6

    0.33026 10 6.023 10

    Atomic mass

    180.08 /Atomic mass g mol

    18 1 2

    8 Number of atoms

    Calculatetheplanaratomicdensityinatomspersquaremillimetreforthe

    (111)crystalplaneinFCCgold,whichhasalatticeconstantof0.40788nm.

    1 1sin

    2 2Area of Triangle bh ab

    21 3

    2 2 sin 602 2

    oArea of a a a

    1 1

    3 3 22 6Number of atoms

    2

    6

    13 2

    2 2

    3 0.40788 10

    1.39 10 /

    Number of AtomsPlanar Density

    Area mm

    atoms mm

    3

    a a

    (111)

    Question9:

    1

    6

    1

    2

    1

    4

    12 12

    Number of atoms

    62.33 10

    Number of Linear Density

    Length

    ato

    2 2

    6

    7

    2

    2 0.3039 10

    4.3 10

    Face diagonal a a a

    mm

    Calculate the linear atomic density in at

    direction in BCC vanadium, which has a lat

    Draw[110]inBCCunitcell

    Question10:

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    7/40

    5

    Cubic structure

    XRD

    2A

    2BXRDpattern

    0.75

    0.5

    3

    4

    2

    4

    2

    2 2 2 2

    2sin

    4h k l

    a 2 2 2

    hkla d h k l

    2 sinhkld

    No. 2 sin sin21 38.60o 19.30o 0.3305 0.109

    2 55.71o 27.86o 0.4672 0.218

    Anxraydiffractometer (Wavelength ofth

    recorderchartforanelementthathaseithe

    showeddiffractionpeaksatthefollowing2

    38.60,55.71,69.70,82.55,95.00and10

    (a) Determinethecrystalstructureofthe

    (b) Determinethelatticeconstantofthee

    (c) Identifytheelement.

    Question11(Contd):

    (a)

    2 2 2

    0.15405

    2sin 2sin 19.3

    na h k l

    (b)

    2

    2 2 2 2

    2sin

    4h k l

    a

    7

    Anxraydiffractometer (Wavelength oftheincomingradiation=0.15405nm)

    recorderchartforanelementthathaseithertheBCCortheFCCcrystalstructure

    showeddiffractionpeaksatthefollowing2 angles:

    38.60,55.71,69.70,82.55,95.00and107.67.

    (a) Determinethecrystalstructureoftheelement.

    (b) Determinethelatticeconstantoftheelement.

    (c) Identifytheelement.

    Question11(Contd):

    Lattice Constant(nm) CrystalstructureQn 11Ans: 0.3296 BCC

    Magnesium, Mg 0.32094 HCP

    Niobium,Nb 0.33007 BCC

    Tantalum,Ta 0.33026 BCC

    Zirconium,Zr 0.32312 HCP

    (0.30to0.34)(c)

    Coordinates

    x, y, z

    (0, 1,0)

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    8/40

    Drawdirectionvectorsinunitcubesforthefollowingcubicdirections:

    9

    Question1:

    111

    113

    121

    110(a) (b) (c) (d)

    y

    x

    z

    (0,0,1)

    (0,1,0)(0,0,0)x

    (b)1. Start&Endpositions:

    2. End start(orwalk):

    3. Integer:

    4. Sqr Bracket:

    1, 1, 0 0, 0, 0 1, 1, 0

    1 1 0

    1 1 0

    1 1 0

    1 1 0

    x

    x

    1, 0, 0 0,1, 0 1, 1, 0

    x

    Drawdirectionvectorsinunitcubesforth

    Question1(Contd):

    111

    (a) (b

    (d 121

    (c)

    y

    x

    z

    1

    3

    11

    Question2:

    Whataretheindicesofthedirectionsshownintheunitcube:

    (e)1. Start&Endpositions:

    2. End start(orwalk):

    3. Integer:

    4. Sqr Bracket:

    (1,1,0)

    1,0,1

    4

    1,0,1

    4

    1 3

    , 0,1 1,1, 0 , 1, 14 4

    3

    4, 1 4, 1 4 3, 4, 44

    (1,1,0)

    3 4 4

    Question2(Contd):

    Whataretheindicesofthedirectionsshow

    (g)

    11,0,

    4

    10,1,

    2

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    9/40

    13

    Question2(Contd):

    Whataretheindicesofthedirectionsshownintheunitcubebelow:

    Subtractingorigincoordinates

    fromemergencecoordinates

    (e)

    (f)

    (g)

    (h)

    x y z

    Origin: 1 1 1

    Intercept: 1 1

    Inverse: 1 1 0

    Integer: 1 1 0

    Bracket:

    x

    Origin: 0

    I nt ercept : 1

    Inverse: 1

    Integer: 1

    Bracket: 1

    1 1 0 h k Family

    15

    Question3:

    (a)1. Origin

    2. Intercept

    3. Inverse

    4. Integer

    5. Bracket

    x y z

    Origin: 1 0 1

    Intercept: 1

    Inverse: 1 0 3

    Integer: 1 0 3

    Bracket: 1 0 3

    y

    x

    z

    x

    13

    (1,0,1)

    WhataretheMillerindicesofthecubiccrystallographicplanesshownbelow:

    Question3(Contd):

    W

    c

    (0,0,0) x y

    x

    z

    1 10

    4 4

    2 1 8 3 51

    3 4 12 12

    5 1 1 12 30

    12 4 4 5 5

    y ax b

    a b b

    a a

    y x x

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    10/40

    17

    Question3(Contd):

    x

    x

    (0,0,0)

    Top

    view

    xx y

    x

    z

    3 30

    4 4

    1 3 4 9 51

    3 4 12 12

    5 3 3 12 90

    12 4 4 5 5

    y ax b

    a b b

    a a

    y x x

    (c) x y z

    Origin: 0 1 0

    Intercept:

    Inverse: X 9 X 9 0 X 9

    Integer: 5 12 0

    Bracket: 5 12 0

    3

    4

    4

    3

    9

    55

    9

    (0,1,0)

    Question3(Contd):

    (b) x y z

    Origin: 0 1 1

    Intercept: 1 1

    Invers e: 1 X2 1 X2 X2

    Integer: 2 2 3

    Bracket: 2 2 3

    2

    3

    WhataretheMillerindicesofthecubic

    crystallographicplanesshownbelow:

    3

    2

    (d)

    Orig

    Inte

    Inve

    Inte

    Brac

    19

    (a)

    Question4:

    y

    x

    z

    DrawinunitcubesthecrystalplanesthathavethefollowingMillerindices:

    111 213 121 102(a) (b) (c) (d)

    (a) x y z

    Origin: 0 1 1

    Intercept:

    Inverse: 1 1 1

    Integer:

    Bracket: 1 1 1

    x(0,1,1)

    y

    x

    z

    x

    x

    x

    x

    Originat

    (b)

    Question4(Contd):

    y

    x

    z

    Drawinunitcubesthecrystalplanesthat

    111 102(a) (b) (c)

    (0,0,1)

    y

    x

    z

    x

    x

    x x

    x

    x

    1

    2

    Originat

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    11/40

    21

    (c)

    Question4: DrawinunitcubesthecrystalplanesthathavethefollowingMillerindices:

    111 213 121 102(a) (b) (c) (d)

    (c) x y z

    Origin: 0 1 1

    Inverse: 1 1

    Bracket: 1 2 1

    1

    2

    y

    x

    z

    (0,1,1)

    y

    x

    z

    x

    x

    1

    2

    x

    x

    x

    (d)

    y

    x

    z

    (0,0,1)

    y

    x

    z

    x

    x12 x

    x

    x

    1

    3

    (d) x y z

    Origin: 0 0 1

    Inverse: 1

    Bracket:

    1

    2

    1

    3

    2 1 3

    OriginatOriginat

    1

    1

    x

    y

    Intercept:

    x=1

    y=1

    Intercep

    a1 a2 a31 1 1 1

    23

    x

    xx

    DrawthehexagonalcrystalplaneswhoseMillerBravais indicesare:

    Question6:

    1 0 1 1(a) (b) (c) 0 1 1 1 1 2 1 0

    (a) a1 a2 a3 c

    Origin: 0 0 0 0

    Intercept:

    Inverse: 1 1 1

    Integer:

    Bracket:

    c

    a1

    a2

    a3

    a3

    1 0 1 1

    (b)

    (c)

    c

    c

    (b)

    Orig

    Inte

    Inve

    Inte

    Brac

    (c)

    Orig

    Inte

    Inve

    Inte

    Brac

    Question6(Contd): DrawthehMillerBrav

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    12/40

    DetermineMillerBravais indicesofthehexagonalcrystalplanesinthefigues below:

    25

    Question7(Contd):

    (b) a1 a2 a3 c

    Origin: 0 0 0 1

    Intercept: 1 1 1

    Inverse: 1 1 0 1

    Integer: 1 1 0 1

    Bracket: 1 1 0 1

    (b) a1 a2 a3 c

    Origin: 0 0 0 0

    Intercept: 1 1 1

    Inverse: 1 1 0 1

    Integer: 1 1 0 1

    Bracket: 1 1 0 1

    c

    a1

    a1

    a2

    DetermineMillerBravais indicesofthehexag

    c

    Question7:

    (c)

    Origin

    Interc

    Invers

    Intege

    Bracke

    27

    AreaofCD=a 0cos 30

    cV HC

    a

    a

    60o

    A

    B

    CArea of

    cV HCP

    Equilateral

    Triangle

    VolumeofHCPunitcell:

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    13/40

    Chap.4Solidification&Imperfections

    12nN d

    VG

    r

    2

    *1. HomogeneousNucleation:

    2. HeterogeneousNucleation:

    3. Growth,GrainRefiner,GrainBoundaries(polycrystalline),

    SingleCrystal Creepresistance

    4. Substitutional solidsolution:Substi.Solvent,distort,Solubility ifdia.

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    14/40

    vacancy

    1. 2.

    3.

    4. Diffusionrate:solid

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    15/40

    Calculate the number of atoms in a critically sized nucleus for the

    homogeneous nucleation of pure iron. Assume T (undercooling) = 0.2 Tm.

    Tutorial3Question1(Nucleation):

    *

    7 2

    10

    3

    2 2

    0.2

    2 204 10 J/cm 1808K9.72 10 m

    2098J/ cm 0.2 1808K

    m m

    f f m

    T Tr

    H T H T

    3

    3 10 27 34 4vol.ofcriticalsizednucleus * 9.72 10 m 3.85 10 m

    3 3r x

    For 1criticallysizednucleus,

    LatentheatoffusionHf =2098J/cm3, Surfaceenergy=204107J/cm2,

    MeltingtemperatureTm =1808K,latticeconstantBCCa=0.28664nm.

    r*

    3

    Tutorial3Question1(Con

    3 vol.of1unitcellofFe 0.28664 1a

    29 329 3

    Averagevolume/atom (includesspace

    2.355 1 0 m1.178 1 0 m

    2

    vol.ofnucleus 3.85

    Volume/atom 1.17

    For1BCCFeunitcell,

    NumberofAtoms

    in1nucleus =

    Calculate the number of atoms in a c

    homogeneous nucleation of pure iron. AssumLatentheatoffusionHf =2098J/cm

    3, Surfaceenergy

    MeltingtemperatureTm =1808K,latticeconstantBCCa

    h

    x

    y

    Calculate the radius of the largest interstitial void in the BCC iron lattice. Theatomic radius of the iron atoms in this lattice is 0.124nm, and the largest

    interstitial voids occur at etc., type positions.

    Tutorial3Question2(Interstitial):

    1 14 2, ,0

    2 2

    2 25

    4 2 16

    a ah a

    h =RFe +Rvoid

    ForBCCstructure,

    void Fe 0.160nm 0.124nm 0.036nmR h R

    RFe

    Rvoid

    5

    4 0.124nm43 4 0.286nm

    3 3

    Ra R a

    225 5

    0.286nm 0.160nm16 16

    h a

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    16/40

    [AdaptedfromMST5001LecturenotesChap2]

    Interstitialsite inFCCunitcell(Extra)

    7

    Describe and illustrate the edge and screwt

    What types ofstrain fields surround both typ

    Tutorial3Question3(Disl

    Line imperfection caused by an extra

    half plane of atoms between two

    normal planes of atoms.

    Lin

    up

    to

    sep

    EdgeDislocation

    Tension

    Compression

    Shea

    Dislocationline

    [AdaptedfromMST5001LecturenotesChap4]9

    Dislocations:BurgersCircui

    Edgedislocation

    definesense

    of

    Dislocation

    line

    closedcircuitbyRHrule

    vectorfromStarttoFinish Burgersvector

    T

    [AdaptedfromMST5001LecturenotesChap4]

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    17/40

    If there are 400 grains per square inch on a photomicrograph of a ceramic

    material at 200x, what is the ASTM grainsize number of the material?

    Tutorial3Question4(Grainsize):

    [LNChap4p36]

    2

    2 2100

    200400grains/inch 1600grains/inch

    100x

    xN

    x

    1 12 1600 2 ln1600 1 ln2 10.64 1 11.64n nN n n

    [TBCD:Tutorials Grainsize.htmlorTBExample4.5]

    11

    a) Calculatetheequilibriumconcentration

    purecopperat850oC.Assumethatthee

    inpurecopperis1.00eV,constant C=1.

    b) Whatisthevacancyfractionat800oC?

    Tutorial3Question5(Vac

    5

    VacancyFraction= 1 exp8.6

    2.02 10

    vn

    N(b)

    a) Calculatetheequilibriumconcentrationofvacanciespercubicmeterin

    purecopperat850oC.Assumethattheenergyofformationofavacancy

    inpurecopperis1.00eV,constantC=1.

    b) Whatisthevacancyfractionat800oC?

    Tutorial3Question5(Contd):

    (AtomicmassofCu=63.54g/mol;DensityofCu=8.96g/cm3;

    Avogadrosconstant=6.02x1023 atoms/mol;Boltzmannsconstant=8.62x105 eV/K)

    2328 3

    3

    3

    3

    8.96 6.023 10 atoms / mol8.49 10 /

    . . 63.54g /mol1001

    1

    AN g xN x atoms mA M cm

    cmm

    28 3

    5

    24 3

    1eV8.49 10 atoms/ m exp

    8.62 10 e V / K 850 273

    2.77 10 vacancies/ m

    vnK

    exp expv v v

    v

    n E EC n NC

    N kT kT

    13

    WriteequationforFicks firstlawofdiffusion,

    Tutorial3Question6(Fick

    2

    atomsInSIunitform,

    m s

    dCJ D

    dx

    where

    J = Flux,netflowofatoms

    D

    =

    Diffusitivity, Diffusion

    Coefficien

    = ConcentrationgradientdC

    dx

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    18/40

    Consider the gas carburizing of a gear of 1018 steel (0.18 wt%) at 927oC.

    Calculate the time necessary to increase the carbon content to 0.35 wt% at

    0.40 mm below the surface of the gear. Assume the carbon content at the

    surface to be 1.15 wt%. D (C in iron) at 927oC = 1.28x1011m2/s.

    0 2

    S X

    S

    C C xerf

    C C Dt

    55.90170.8247 erf

    t

    Co=0.18wt%

    T=927oC

    t=?Cx =0.35wt%

    x=0.4x103 m

    Cs=1.15wt%

    D=1.28x1011 m2/s

    3

    11 2

    1.15 0.35 0.4 10 m

    1.15 0.18 2 1.28 10 m / s

    xerf

    x t

    Tutorial3Question7(Diffusion):

    3400

    3400sec 56.67mins60

    st

    s

    55.9017

    0.9587t

    15

    z erf (z)

    0.95 0.8209

    z 0.8247

    1 0.8427

    1 0.8427 0.8247

    1 0.95 0.8427 0.8209

    0.9587

    z

    z

    z erf (z)

    0.95 0.8209z 0.8247

    1 0.8427

    17

    The diffusivity of copper atoms in the alumi

    600oC and 2.50x1015 m2/s at 400oC. Calcula

    case in this temperature range. Given R = 8.3

    0 exp

    QD D

    RT

    13 2

    15 2

    7.5 10 /exp

    8.314 / 2.5 10 /

    m s Q

    J mol K m s

    3139.3 10 J/Q x

    0

    1

    2

    0

    exp

    exp

    DD

    D D

    Tutorial3Question8(Diff

    Thankyou!

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    19/40

    Chap.6Mechanical

    cos cosr

    0

    F

    A

    i 0

    0

    l l

    l

    Ti

    F

    A 0i

    0

    ln lnTi

    Al

    l A

    E

    (12): 1

    (3): 00

    FCC

    HCP

    y ok

    d

    (Coldwork(loadr.t.)createmoredefects(dislocations,atomsmove

    dislocationmovementhinderedby GB&otherdislocations,Anneal

    (deform2000%,>0.5Tm+slowstrain+5m+strainsensitive(resistivity),GBsoften,grainsslideandelongated)

    (

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    20/40

    ExplanatoryNotesforQn

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    21/40

    Engineering stressstraindatawereobtainedatthe

    beginningofatensiletest0.2%Cplaincarbonsteel.

    (a) Plottheengineeringstressstraincurve

    (b) Determinethe0.2percentoffsetyieldstress

    (c) Determinethetensileelasticmodulus

    Tutorial4Question1( ): (k psi) (in./in.)0 0

    15 0.0005

    30 0.001

    40 0.0015

    50 0.0020

    60 0.0035

    66 0.004

    70 0.006

    72 0.008

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

    Engineering

    Stress

    (1000

    psi)

    EngineeringStrain(in./in.)

    (a)

    0.2%( =0.002)yieldstress

    =66x103 psi

    3

    7

    30 10 psi

    0.001

    3.0 10 psi

    xE

    (b)

    (c) [LNChap6p89]

    2

    A 0.505in.diameter aluminum alloy test

    diameter of the bar is 0.490 in. at this load,

    (a) the engineering stress and strain and (b)

    22

    2

    0

    2

    2

    0.505

    0.200

    i2 4

    0.4900.189in

    4i

    d

    A r

    A

    Assumenovolumechange, 0 0 i iA l A l

    32

    0

    25000lb125 10 psi

    0.200in

    fFx

    A

    32

    25000lb133 10 psi

    0.189in

    f

    T

    i

    Fx

    A

    (a)

    (b)

    Question2(Tensile):

    Units: psi:poundforcepersquareinch

    a) Why do pure FCC metals like Ag and Cu have low values of critical resolved

    shear stress c?

    b) What is believed to be responsible for the high values ofc for HCP titanium?

    For FCC metals like Ag and Cu, slip takes place on the closepacked {111}

    o ctahedral pla nes an d i n the close p ac ked dire ctions .

    Lower shear stress is required for slip to occur in densely packed planes.

    The high c values associated with HCP titanium is attributed to the mixedcovalent and metallic bonding with the atomic lattice structure.

    [TB Chap6 p237]

    Question3(CriticalResolvedShearStress):

    4

    110

    [TBChap6p236]

    Slipsystem:Thesystem(plane+direction)i

    HighestPlanardensity,HighestLineardensi

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    22/40

    111

    111

    111

    111

    110

    101

    011

    1 1 2 2 3 3cos

    , cos90 0o

    u v u v u v u v u v

    If perpendi cul ar u v u v

    110

    101

    011

    110

    101

    011

    1 2 3u u u u

    1 2 3v v v v

    110

    101

    011

    7

    2 2 21 2 3u u u u

    A stress of 75 MPa is applied in the [001] d

    (a) the resolved shear stress acting on the

    shear stress acting on the sli p s(111)[110]

    Question4(Schmids Law

    (a)

    isbtw &SlipDirtF

    isbtw &NormalofSlipPlaneF

    cos 54.73

    a

    a

    45Facediagonal

    cos cos 75cos45 cos54.7 30.6MPar

    Question4(Contd):

    9

    A stress of 75 MPa is applied in the [001] direction on an FCC single crystal. Calculate

    (a) the resolved shear stress acting on the slip system and (b) the resolved

    shear stress acting on the sli p system.

    (111)[101]

    (111)[110]

    (b)

    cos cos 75cosr

    Question4(Contd):A stress of 75 MPa is applied in the [001] d

    (a) the resolved shear stress acting on the

    shear stress acting on the sli p s(111)[110]

    asi

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    23/40

    A 70% Cu 30% Zn brass wire is cold drawn 20 percent to a diameter of 2.80 mm. The

    wire is then further colddrawn to a diameter of 2.45 mm. Definition of cold reduction is

    given as:

    changeincrosssectionalarea%coldreduction 100% 100%

    originalcrosssectionalarea

    o i

    o

    A Ax

    A

    a) Calculate the total percent cold work that the wire undergoes.

    b) Estimate the wires tensile, yield strengths and elongation from figure (a) in the

    appendix

    2 2

    1

    2

    1

    2 2 21 1

    1

    2.80mm

    2 220% 100%

    2

    0.20 7.84mm

    3.13 mm

    d

    d

    d d

    d

    2 2

    2

    Total%coldwork

    3.13mm 2.45mm

    2 2100%

    3.13mm

    2

    38.75%

    (a)

    Question5(ColdWork):

    11Figure (a): % Cold work v

    work is expressedas a p

    For Cold Work 39%,

    TensileStrength 76kpsi

    YieldStrength 64kpsi

    ksi:1000psi

    Elongation 7%

    Question5(ColdWork):

    A 70% Cu 30% Zn brass wire is cold draw

    wire is then further colddrawn to a diamet

    given as:

    a) Calculate the total percent cold work t

    b) Estimate the wires tensile, yield stren

    appendix

    Derivetheleverrulefortheamountinweightpercentofeachphaseintwophase

    regionsof abinaryphasediagram.Useaphasediagraminwhichtwoelementsare

    completelysolubleineachother. Isomorphous

    1L SX X

    0 L

    S

    S L

    w w LOX

    w w LS

    S o

    L

    S L

    w w OSX

    w w LS

    X:weightfraction

    Total B = B in Liquid + B in Solid

    Similarly,

    0

    0

    0

    0

    1

    L L S S

    S L S S

    L S L S S

    L S S L

    w X w X w

    w X w X w

    w w X w X w

    w w X w w

    Question6(LeverRule):

    13

    0 53 45

    58 45

    LS

    S L

    w wX

    w w

    58 53

    58 45

    S oL

    S L

    w wX

    w w

    0

    5 845 58

    13 13

    17. 3 3 5.7 53 %

    L L S Sw X w X w

    wt N i

    ExtraSlideonLeverRule

    0

    1 30 0 ,

    53 %58 %

    45 %

    o

    S

    L

    At T C

    w wt Ni w wt Ni

    w wt Ni

    p/s: Tielineisusedin2phaseregiononly

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    24/40

    Ag=88wt%

    T=1000oC

    Consider the binary eutectic coppersilver phase diagram. Make phase analyses of an

    88 wt% Ag 12 wt% Cu alloy at the temperatures (a) 1000oC, (b) 800oC, (c) 780oC + T,(d) 780oC T. T is assumed to be less than 1oC. In the phase analyses, include:(i) The phases present; (ii) The chemical compositions of the phases; (iii) The amounts

    of each phase; (iv) Sketch the microstructure by using 2cmdiameter circular fields.

    wt% cm

    10 1.25

    8 1

    Question7(PhaseDiagram):

    15

    (a)T =1000oC

    (i)Phasespresent: Liqu

    (ii)Compositionofphase: 88wt

    (iii)Amountofeachphase:

    T=1000oC

    wt%ofliquidphase 100%

    T=800oC

    (b)T = 800oC

    (i)Phasespresent: Liquid Beta(ii)Compositionofphase: 78wt%Ag 93wt% Ag

    (iii)Amountofeachphase: (iv)Micro

    structure

    Ag=88wt%

    93 88wt%ofliquidphase 100% 33.3%

    93 78

    88 78

    wt%ofbetaphase 100% 66.7%93 78

    17

    (b)

    9378

    L

    (c)T = 780oC+T

    (i)Phasespresent: Liqu

    (ii)Compositionofphase: 71.9w

    (iii)Amountofeachphase:

    A

    91.2 88wt%ofliquidphase 10

    91.2 71.9

    88 71.9wt%ofbetaphase 100

    91.2 71.9

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    25/40

    (d)T = 780oC T

    (i)Phasespresent: Alpha Beta

    (ii)Compositionofphase: 7.9wt%Ag 91.2wt% Ag

    (iii)Amountofeachphase: (iv)Microstructure

    Ag=88wt%

    T=780oC T, T

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    26/40

    Os=30wt%

    T=2665oC +T

    (c)T = 2665oC+T

    (i)Phasespresent: Liquid Beta

    (ii)Compositionofphase: 23wt%Os 61.5wt% Os

    (iii)Amountofeachphase: (iv)Microstructure

    61.5 30wt%ofliquidphase 100% 81.8%

    61.5 23

    30 23wt%ofbetaphase 100% 18.2%

    61.5 23

    23Ni=

    T=1517oC T

    Consider an Fe 4.2 wt% Ni alloy that is s

    the amount of phase and phase, respectT to less than 1oC.

    Question9(Peritectic):

    Ni=4.2wt%

    T=1517oC T

    4.2 4wt%of phase 100% 66.7%

    4.3 4

    4.3 4.2wt%of phase 100% 33.3%4.3 4

    Peritectic:L+

    RH

    side:

    L

    +

    LHside:L+L

    25

    L[LNChap7p15]

    Eutectic L +Eutectoid +

    Peritectic +L

    Peritectoid +

    Monotectic L1 +L2

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    27/40

    Martensite:

    Metastable phaseconsisting

    ofsupersaturatedsolid

    solutionofCinBCCorBCC

    tetragonaliron.

    Causedbyrapidcoolingof

    austeniticsteelintoroom

    temperature(quenching).

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    28/40

    Pearlite(layered +Fe3C)

    Bainite(nonlayered

    Pearlite)

    Ms

    MfMartensite (bct)

    250oC

    550o

    C

    +Fe3C

    +Fe3C

    723oC

    IsothermalTransformationDiagramofEutectoid pla

    (0.8wt%C)

    Time (s

    ForTutorial5Question2

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    29/40

    Chap.8MetallicAlloys1. Eutectoid(0.8wt%C,ifnothyper/hypo pro ) AusteniteFCC (at723o

    FerriteBCC0.02wt%C+ Cementite/IronCarbideFe3C6.67wt%C

    2. Martensite:

    Quench to

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    30/40

    Chap.9Polymers1. Polymerization:Chain:freeradical,Stepwise:Condensationbyproduct,N

    2.

    3. Vinyl,Vinylidene,zigzag,entangled,secondarybondsbtwchains,550n

    Copolymers(random,alternating,block,graft)

    4. Thermoplastics:PE:CH2=CH2,HD:littlebranching,chainsclosepack,incc

    PVC: CH2=CHCl,strongstrengthstrongdipole,brittleCl steric hindrancer

    PP:CH2=CHCH3 ,CH3restrictrotationincstrengthhardnessstabilitydec f

    PS:CH2=CH ,bulky,rigid,inflexible,brittle,dimensionstable

    PTFE:

    CF2=CF2,

    small

    regular

    F

    dense,

    strong

    dipole

    chemical

    resistance

    hi

    5. Thermosetting:covalentbondnetworke.g.Phenolics rigidstablecreepc

    6. Elastomers (Rubbers): Vulcanizationcrosslinking isoprenegreatdimensio

    7. SolidificationofThermoplastics:

    8. DeformationofThermoplastics:

    9. Effectsof

    Temperature:

    10. StrengtheningofThermoplastics:incmolecularwt.(notmuchincbeyond

    crystallinity (effectivepacking),pendant(hinderchainslippage),polar(m

    MolecularmassofpolymerDP=

    Massof

    amer

    i i

    m

    i

    f MM

    f

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    31/40

    Ferrite

    Cementite

    orIron

    carbide

    Eutectoid

    Pearlite

    Hypo Eutectoid Hyper

    0.8wt%C

    +Fe3C

    Proeutectoid Fe3C+Pearlite

    Proeutectoid +Pearlite

    Pearlite

    A hypoeutectiod plaincarbon steel was slow

    carbon concentration (in wt%) in the carbon

    723C T? (Hint: see microstructure)

    Ferrite

    Auste

    x

    5.9wt%

    Tutorial5Question1:

    Draw timetemperature cooling paths for a 1080 steel on an isothermal transformation

    diagram that will produce the following microstructures. Start with the steels in the

    austenitic condition at time = 0 and 850C.

    (f)100

    %

    lower

    bainite

    1080Steel 0.8wt%C Eutectoidcomposition

    P

    B

    Ms

    Mf

    (a) 100%martensite

    (c)100%finepearlite +Fe

    3C

    (e)100%upperbainite

    Time (s)

    Question2:

    +Fe3C

    Ms

    Mf

    (b)50%mar

    +50%coars

    (d) 50%martensite

    +50%upperbainite

    +Fe3C

    +Fe3C

    Question2(Contd):

    1% 1

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    32/40

    CentralLibraryRBR (2hrs)

    Callnumber: TA403Smi 2009

    Whatisthemicrostructureproducedafterau

    Doesanaustempered steelneedtobetempe

    After austempering, a eutectoid plaincarb

    Subsequent tempering is not necessary sidistortion and impact energy values comp

    with a marquenched and tempered steel.

    A

    [TBFig.9.34]

    Question3:

    reheatMartensite atmartensite

    Martempering:Tempering:

    QuenchAustensite to>Ms,

    Holdtill

    Tuniform,

    then

    slow

    cool,

    finalTempering

    Temperedmartensite

    Impactenergy>tempered

    (Waterquench+Temper) (Marquenching +temper)

    [TBFig.9.29] [TBFig.9.33]

    Describethefourdecompositionstructurest

    whenasupersaturatedsolidsolutionofanA

    Supersaturated solid solution (FCGP1 zones: consist of segregated regions in th

    few atoms thick (0.4 to 0.6nm) and

    in diameter.

    They form on the {100} cubic plane

    straining the lattice tetragonally

    with the matrix.

    GP2 zones ( phase): approximately 1 to 4nm thick an

    diameter.

    These zones are also coherent wit

    and have a tetragonal structure.

    [TBp.407409]

    Question4:

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    33/40

    Supersaturated solid solution (FCC)GP1 zonesGP2 zones ( phase) phase: nucleates heterogeneously and is incoherent with the

    matrix.

    This phase has a tetragonal structure with a thicknessof 10 to 150nm.

    phase (CuAl2): an incoherent equilibrium phase having the

    composition CuAl2.

    This phase, which forms from or directly from thematrix, has a BCT structure.

    [PhaseTransformationsinMetalsandAlloysbyD.A.PorterandK.E.Eastering,p297]

    Question4(Contd):Describethefourdecompositionstructuresthatcanbedeveloped

    whenasupersaturatedsolidsolutionofanAl4%Cualloyisaged.

    Extra:

    Determine the mole fraction of polyvinyl chlo

    having a molecular weight of 11,000 g/mol and

    avav

    MW (polymer) 11,000g/mMW (mer)

    DP 150

    av PVC PVC PVAc PVAc PMW (mer) MW MW f f f

    PVCMW 3H 2C 1Cl

    3 1 2 1 2 1 35.5

    62.5g/ mol

    PVAcMW

    6 1

    86.0g

    PVC PVAc0.539 0.461f f

    Question5:

    Howisitpossibleforapolymerchainsuchasapolyethyleneonetokeepgrowing

    spontaneouslyduringpolymerization?

    The polymer chains in chain polymerization keep growing spontaneously because the

    energy of the chemical system is lowered by the chain polymerization process; the

    total energy of newly created polymers is lower than the total energy of the

    monomers that have reacted to form them.

    Monomerschemicallyreactwitheach

    othertoproducelinearpolymersand

    asmallmoleculeofbyproduct

    [LNChap9p5,6,11]

    heat

    Question7:

    1 . ChainPolymerization:

    2. Stepwise

    Polymerization

    (Condensation):

    Explainhowdoestheamountofcrystallin

    (a)density,(b)tensilestrength

    (a) Density increases, due to increase of t

    (b) Tensile strength increases, due to str

    between the polymer chains that are p

    Question8:

    Amorphous

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    34/40

    How much sulphur must be added to 70g of butadiene rubber to cross link 3.0 percent of

    the mers? (Assume all sulphur is used to crosslink the mers and that only one sulphur

    atom is involved in each crosslinking bond.)

    polybutadieneMW

    6H 4C 54g/mol

    NumberofofmolesofButadiene

    70g = 1.2963

    54g /mol

    Vulcanization

    3NumberofofmolesofSulphur= NumberofofmolesofButadiene

    100

    MassofSulphur=0.03 1.2963mol 32g/mol=1.24g

    Question6:(lecturehasntcovered)

    How does the presence of a methyl group

    polymer chain affect the glass transition temp

    polyethylene?

    Thesubstitutionofhydrogenatomswithmeth

    increasesthebondstrengthsbyrestrictingthe

    Consequently,polypropylenehasahigherglas

    [MaterialsScienceandEngineering:AnIntroduction

    Callister 7th edn.p.501 CLRBRTA403Cal2007]

    Question9:(lecturehasntcovered)

    Polyethylene

    [MaterialsScience

    andEngineering:An

    Introduction,byW.D.

    Callister 7th edn.

    p.548]

    CentralLibraryRBR

    Callnumber:

    TA403Cal2007

    Extra:FactorsthataffectGlassTransitionTemperatureTg :

    [MaterialsScienceandEngineering:AnIntrod

    For noncrystalline thermoplastic:

    The liquid, upon solidification, changes to a superco

    liquid that is in the solid state, which is rubbery or f

    leathery, at temperature below TmAs the temperature decreases, the polymer shows a

    decrease in specific volume until the temperature r

    Below Tg, the polymer becomes glassy and brittle.

    For partly crystalline polymer:

    Its specific volume drop abruptlyat Tm , due to more

    Extra:CharacteristicchangesduringGlassTra

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    35/40

    Chap.10CeramicsOx

    . , , , ,

    2. AXStructure( +chargebalance):

    3. FCCInterstitialsites:Octahedral Tetrahedral vs HCP

    r

    R

    0.410.2250.155

    CN=4

    ZnS

    4. CsCl,NaCl,ZnS,Antifluorite,CaF2

    FCC:4atoms4octahed 8tetrahed

    HCP:6atoms6octahed 12tetrahed

    5. Corundum(Al2O3):6O2 formFCCwithAl3+ at4among6octahed

    Li2ONa2O UO2NuclearFuel

    emptyoctohed 3 2 2a r R

    2 2a r R

    3

    4

    ar R

    3Graphite:3sp2formcovalentlayer,1pelectronbond btwlayers ,Spinel (

    6. Silicates(SiO42):tetrahedralislandchain/ring(2corners)

    2,

    7. MaterialspreparationFormDryingSinteringVitrification

    ~w S con_ ox e

    . 2 3, 3 4, , 2

    9. Toughness: ZrO2 9mol%MgO cubictetragona IC fK Y a

    10. Glasses: Structure,Composition, TemperedGlas

    * expoQ

    RT

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    36/40

    [BookbyCallister CLRBRTA403Cal2007]

    2

    3a

    3

    4

    a

    Tutorial6Questi

    Calculatethecriticalradius

    Calculatethedensity ingramspercubiccentimetreofCsI,whichhastheCsCl structure.

    IonicradiiareCs+ =0.165nmandI =0.220nm.

    3 2a r R

    Question2:

    8

    20.165nm 0.220nm

    3

    0.445n m 4.45 10 cm

    a

    22ll132.9

    g / mol 126.9

    g /mol

    un tcell 23 23 .

    6.02x10 ions/ mol 6.02x10 ion/ mol

    223

    3 38

    4.32 1 0 g4.90g/cm

    4.45 10 cm

    m mdensity

    v a

    4

    Calculate the planar densitie

    (111) and (110) planes for (a)

    Ionic radii are Co2+ = 0.082nm

    2

    (a)CoO

    Question3:

    2

    0.0820.621

    0.132

    r o

    r O

    0.414 0.732r

    R

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    37/40

    2

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    38/40

    Ce O2 4Ce4+ 8O2

    Question4:Calculate the linear density of Ce4+ and O2 in ions per nm2

    in the [111] and [110] directions for CeO2,

    which has the calcium fluorite (CaF2) structure.

    Ionic radii are Ce4+ = 0.102nm and O2 = 0.132nm.

    4 2Ce O

    3

    4

    40.102 0.132 0.540nm

    3

    a r R

    a

    4 24 2

    L

    12 Ce 2O

    1Ce 2O2111

    10

    4 23a 3 0.540nm

    1.07Ce 2.14O /nm

    44

    4L

    12 1 Ce

    2Ce2110 2.62Ce / nm

    2a 2 0.540nm

    CaF2

    4Ca2+ formsFCC

    8F occupytetrahedral

    Antifluorite

    e.g.Na2O,

    Li2O

    What causes the lack of plasticity in crystalline

    ceramics?

    Thelackofplasticity incrystallineceramics

    is attributed to their Ionic and Covalent

    Question5:

    chemicalbonds.

    InCovalentlybondedceramics,thebondingbetweenatomsis

    specific anddirectional.

    Specific:betweenthese2atoms,

    Directional:must

    be

    of

    certain

    angle 1

    2

    3

    4

    5

    67

    1

    2

    3

    4

    5

    6

    7

    [TBChap11p611613]

    Therefore,theywillundergobrittle

    fracturesascovalentbondsare

    brokenwithoutsubsequentreformation.(unlikeinmetallicmaterials)

    1 2 3 4 5 6 1 2 3 4 5 612

    For Ioniccrystals,theslipofoneplaneofions

    involvesionsofdifferentchintocontact,andthusattrac

    Question5(Cont

    repu s ve orcesmay epro

    Forexample,intheNaCltyp

    Sliponthe{110}familyofpslipplanesremainattracted

    Incontrast,sliponthe{100

    samechargeswillrepeleac Hence,therearelimitedsli

    lackofplasticity inionically

    Polycrystalline ioniccerami

    cannotcontinueacrossthe

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    39/40

    (110)

    (100)

    110

    (100)

    [010]

    (110)

    impossible

    14

    possible

    Explain the plastic deform

    solids such as NaCl and MgO

    What is the preferred slip sy

    Question6:

    Fo r some sin glecry

    compressive stresses at

    prior to fracture because

    other.

    These slip planes, wh

    110typ ca y pre er t e

    How do (a) porosity and (b) grain size affect the tensile strength of ceramic

    materials?

    a) Porosity: [LNChap10p24]

    Question7:

    Pores serve as stress concentration points and induce cracks at lower

    threshold values.

    They decrease the effective crosssectional area for load distribution as

    well.

    Consequently, as the porosity of a ceramic material increases, the material

    tensile strength decreases.

    b Grain Size:

    For a porosityfree ceramic, the flaw size, and thus the strength, is solely a

    function of grain size

    The finer the grain size, the smaller the flaws and the greater the ceramic

    tensile strength.

    16

    s

    (surfacedefects, void

    [LNlastyear]

  • 8/22/2019 MLE1101 AY1213 Sem2 Detailed Tutorial Solutions

    40/40