mmj1133-e fracture mechanicstaminmn/mmj1133_lecture slides-pdf/mmj1133-e...•fracture mechanics...

37
MMJ1133 –FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM E ENGINEERING FRACTURE MECHANICS

Upload: buixuyen

Post on 04-Apr-2018

234 views

Category:

Documents


3 download

TRANSCRIPT

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

E – ENGINEERING FRACTURE MECHANICS

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

E – ENGINEERING FRACTURE MECHANICS

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

WWII: Liberty ships

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture

Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 262, John Wiley

and Sons, Inc., 1996. (Orig. source: Earl R. Parker, "Behavior of Engineering

Structures", Nat. Acad. Sci., Nat. Res. Council, John Wiley and Sons, Inc., NY,

1957.)

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Course Content:

A - INTRODUCTION

Mechanical failure modes; Review of load and stress analysis –

equilibrium equations, complex stresses, stress transformation,

Mohr’s circle, stress-strain relations, stress concentration; Fatigue

design methods; Design strategies; Design criteria.

B – MATERIALS ASPECTS OF FATIGUE AND FRACTURE

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 3

Static fracture process; Fatigue fracture surfaces; Macroscopic features; Fracture mechanisms; Microscopic features.

C – FATIGUE: STRESS-LIFE APPROACH

Fatigue loading; Fatigue testing; S-N curve; Fatigue limit; Mean

stress effects; Factors affecting S-N behavior – microstructure, size

effect, surface finish, frequency.

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

D – FATIGUE: STRAIN-LIFE APPROACH

Stress-strain diagram; Strain-controlled test methods; Cyclic

stress-strain behavior; Strain-based approach to life estimation;

Strain-life fatigue properties; Mean stress effects; Effects of surface

finish.

E – LINEAR ELASTIC FRACTURE MECHANICS

Fundamentals of LEFM – loading modes, stress intensity factor, K;

Geometry correction factors; Superposition for Mode I; Crack-tip

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 4

Geometry correction factors; Superposition for Mode I; Crack-tip

plasticity; Fracture toughness, KIC ; Plane stress versus plane strain

fracture; Extension to elastic-plastic fracture.

F – FATIGUE CRACK PROPAGATION

Fatigue crack growth; Paris Law; da/dN-∆K; Crack growth test method; Threshold ∆Kth ; Mean stress effects; Crack growth life

integration.

.

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

A branch of mechanics that studies the relationships

between external loads applied to a deformable

body and the intensity of internal forces acting

within the body.

Mechanics of Materials

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

within the body.

The mechanics that describes the response of

materials to loading in the presence of crack or

crack-like defects.

Fracture Mechanics

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

• Introduction

Historical Review

Fracture mechanics approaches

• Linear Elastic Fracture Mechanics

Elastic stress field approach

Crack tip plasticity

Energy balance approach

LEFM testingA Short Course in

Fracture Mechanics

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

LEFM testing

• Elastic-Plastic Fracture Mechanics

J-integral

COD approach

• Fracture Mechanics Concept for Crack Growth

Fatigue crack growth

Dynamic crack growth and arrest

• Time-Dependent Fracture

• Fracture Mechanisms in Metals and Nonmetals

Fracture Mechanics

(Typical course content)

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

References:

• Anderson, T.L., Fracture Mechanics – Fundamentals and Applications, 3rd

edition, CRC Press, FL, USA, 2005.

• Broek, D., Elementary Engineering Fracture Mechanics, Kluwer Academic

Publishers, 1991.

•Atkins, A.G. and Mai, Y.W., Elastic and Plastic Fracture – Metals, Polymers,

ceramics, Composites, Biological Materials, Ellis Horwood Ltd., UK, 1985.

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 7

ceramics, Composites, Biological Materials, Ellis Horwood Ltd., UK, 1985.

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Linear Elastic Fracture Mechanics (LEFM)

� Fracture mechanics within the confines of the theory of

linear elasticity.

� Analytical procedure that relates the stress magnitude and

distribution in the neighborhood of a crack to:

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

� the nominal applied stress

� crack geometry (size, shape) and orientation

� material properties

� An underlying principle is that unstable fracture occurs

when the stress-intensity factor at the crack tip reaches a

critical value.

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Scope of fracture mechanics

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Basic loading of cracked bodies

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Stress field ahead of crack tip

=2

3sin

2sin1

2cos

2

θθθσσ

r

ax

+

=2

3sin

2sin1

2cos

2

θθθσσ

r

ay

θθθ

Westergaard solution

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

=2

3cos

2sin

2cos

2

θθθστ

r

axy

KI is called stress

intensity factor (SIF)

( ) ( )termsorderhigherfr

Kij

Iij += θ

πσ

2

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Stress intensity factor

The stress intensity factor,

KI describes the crack tip

stresses.τxy

σyy

σ

σ

( )θπ

σ ijI

ijr

fr

K

2lim

0

=→

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

2a

Crack

σxy

θr

σ

β- dimensionless parameter

KI has dimension of MPa√m

aK I βσ=

aK I πσ=

For infinite cracked plate

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Stress field at notch tip

Compact tension C(T) specimen

σyy

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

von Mises

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Crack-tip stress

r

K

r

K

Iy

Iy

πσ

θθθπ

σ

2

2

3sin

2sin1

2cos

2

=

+

=

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Crack-tip plasticity

*2 p

IYS

r

K

πσ =

2

2

2

2

*

22

Ip

aKr

σσ

σπ==

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

2222 YSYS

pr σσπ==

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Shape of plastic zone

( )

++

= θθ

σπθ 2

2

sin2

3cos1

4

1

YS

Iy

Kr

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 16

( ) ( ) ( )

++−

= θθν

σπθ 22

2

sin2

3cos121

4

1

YS

Iy

Kr

Plane strain

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

aYK I πσ=

Meaningful parameters are σ and a

Finite width correction

aK I πσ= Infinite cracked plate

σ

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 17

I

w

aY

πsec=

σ

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Finite width correction for SIF

For 2a<<W,

aK I πσ=

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

SIF

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

SIF

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Condition for fracture

Fracture occurs when the applied stress intensity factor, KI

reaches the value of the fracture toughness, KIC of the material

ICI KK ≥

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

σ

aa

aK I πσ1.1=

ICc Ka =πσ1.1

ICc Ka =πσ1.1

At fracture:

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Graphite/ Ceramics/ Semicond

Metals/ Alloys

Composites/ fibers

Polymers

0.5

) Mg alloys

Al alloys

Ti alloys

Steels

20

30

C-C(|| fibers)1

40

506070

100

Al/Al oxide(sf)2

Fracture toughness

represents the resistance of

materials to resist cracking.

Fracture Toughness

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

5

KIc

(MP

a ·

m0

.5

1Si crystal

Glass-soda

Concrete

Si carbide

PC

Glass6

0.5

0.7

2

4

3

10

<100>

<111>

Diamond

PVC

PP

Polyester

PS

PET

0.6

67

Al oxideSi nitride

C/C( fibers)1

Al/Al oxide(sf)2

Al oxid/SiC(w)3

Al oxid/ZrO2(p)4

Si nitr/SiC(w)5

Glass/SiC(w)6

Y2O3/ZrO2(p)4

Based on data in Table B5,

Callister 6e.

materials to resist cracking.

Fracture toughness values

are determined from

fracture toughness tests.

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Effect of thickness

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

Ref. : T.L Anderson, CRC Press, 2005

Plane

stress

Plane

strain

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Plane Stress versus Plane Strain

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Plane stress versus plane strain fracture

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 25

Ref. : Atkins and Mai, 1985

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Stress triaxiality at crack-tip

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 26

Ref. : T.L Anderson, CRC Press, 2005

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Residual strength

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

K-controlled fracture• KI characterizes crack-tip

condition even though the 1/√ r

singularity does not apply to the

plastic zone.

• LEFM ceased to be valid when

the plastic zone size becomes

large relative to key dimensions

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 28

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Case I - Maximum flaw size dictates the design

stress.

σdesign <Kc

Y πamax

σ

fracture

Design considerations

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM

amaxno fracture

fracture

Case II - Design stress dictates the tolerable maximum

flaw size.

amax <1

πKc

Yσdesign

2

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Energy release rate

Change in energy, dU due to

crack growth from a to a+da is

represented by the shaded

area.

drudU

da

∫= σ

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 30

drudU yy∫=0

σ

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Energy release rate

drudU y

da

y∫=0

σ

r

ay

2σσ =

( ) ( )rdaaE

ur −−= 2122 σ

ν

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 31

( )daE

adU 2

2

1 νπσ

−=

( )22

1 νπσ

−=E

a

da

dU

Energy release rate, G

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Energy release rate

( )22

1 νπσ

−==E

a

da

dUG Plane strain

E

aG

πσ 2

= Plane stress

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 32

( )22

1 ν−=E

KG

E

KG

2

=

Plane strain

Plane stress

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Fracture Toughness Test

ASTM E399 Standard Test Method for Plane Strain Fracture Toughness of

Metallic Materials

Sample geometry

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 33

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Fracture Toughness Test

Direction of cut

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 34

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Fracture Toughness Test

Fatigue pre-cracking

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 35

∆=∆

W

af

WB

PK

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

Fracture Toughness Test

Load-gage displacement

=W

af

WB

PK

Q

Q

a

Validity requirements

for KIC

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 36

Q

YS

Q

PP

KaB

W

a

10.1

5.2,

55.045.0

max

2

≤≤

σ

MMJ1133 – FATIGUE AND FRACTURE MECHANICS

FRACTURE MECHANICS M.N.Tamin, CSMLab, UTM 37