modal modelling of nonlinear sloshing in moving tanks

42
Introduction to Modal Modelling of Nonlinear Sloshing in Moving Tanks by Alexander Timokha (Jena-Kiev-Trondheim)

Upload: others

Post on 26-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Introduction toModal Modelling of Nonlinear Sloshing in 

Moving Tanks

by

Alexander Timokha (Jena­Kiev­Trondheim)

Page 2: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Swirling – 3D rotational wave motion

Page 3: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Overview

• Motivation• Basic free boundary problem• Coupling with tank motions • Multimodal method • Simplest example of the modal systems for 2D 

flows 

• 3D sloshing in a square base tank• Problems and perspectives

Page 4: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Motivation

Page 5: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Historical Industry MotivationsHistorical Industry Motivations

• Air­ and Spacecraft (dynamics and control)• Petroleum Storage Tanks (safety due to earthquake)• Oil Ship Tanker (dynamics and safety)• (LNG) Liquefied Natural Gas Carriers (dynamics and safety)• (TLD) Tuned Liquid Damper (safety, active control)

Sloshing liquid as a subsystem: COUPLING

Page 6: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Moss type LNG Carriers

Membrane type LNG Carriers

Page 7: Modal Modelling of Nonlinear Sloshing in Moving Tanks

GT NO96

Gas Transport Containment (aft end)

Page 8: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Tuned Liquid Dampers

Page 9: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Free boundary problem

Page 10: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Fluid Sloshing in a Moving Tank

Page 11: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Free Boundary Problem

Page 12: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Coupling with tank‘s dynamics

Page 13: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Coupling

• Functions vo(t) and ω(t) determine tank‘s motions• The tank motions are affected by hydrodynamic 

forces and moments F(t) and M(t), which are computed by integrals over Φ(x,y,z,t) and their derivatives

• ODE (tank‘s dynamics) + PDE (fluid)• Difficulties for coupled modelling

Page 14: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Multimodal method

Page 15: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Multimodal method as an analytically­oriented approach to sloshing and coupling

• Potential flow, no overturning waves (statement described)• Vertical wall and no roof impact• Free surface elevation as a Fourier series by natural modes (example 

for 2D flow)

∀ βi (t) represent free surface modes

• Variational formulation to derive a discrete model, which leads to system of nonlinear ordinary differential equations in time for βi (t)

Page 16: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Importance of filling level

• Finite water depth sloshing (filling height/tank length>0.24)– Resembles standing wave

• Shallow water sloshing (filling height/tank length<0.1)– Hydraulic jump / bore– Thin vertical jet – run­up

• Intermediate depth

Page 17: Modal Modelling of Nonlinear Sloshing in Moving Tanks

General modal system by Miles­Lukovsky

May be reduced to ODE in the modal functions βi, finite­dimensional when ordering modal functions

Page 18: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Hydrodynamic Forces 

and Moments

This makes hydrodynamic forces/moments by function of generalised coordinates and provides a efficient coupling, i.e. derives a dynamic system for the entire object)

Page 19: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Examples of the modal systems for 2D flows 

Page 20: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Asymptotic multimodal systems

• Physically defined ordering between modal functions βi(t) relative to the forcing τ

• Finite depth – Narimanov­Moiseyev ordering: β1=O(τ1/3), β2=Ο(τ2/3),β3=Ο(τ)

• Secondary resonance ordering with decreasing depth and increasing excitation ε implies: βi(t)=Ο(τ1/3), i=1,N; βi(t)=O(τ2/3), i=N+1,2N; βi(t)=O(τ), i=2N+1,3N

• Boussinesq ordering for intermediate and shallow depth

Page 21: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Narimanov­Moiseyev ordering

• Resonant problem as a test, i.e. the forcing frequency/period is close to the lowest natural frequency/period

• Excitation amplitude­tank length ratio is τ• Generalized free surface coordinate  β1=O(τ1/3);  

β2=Ο(τ2/3);  β3=Ο(τ)

Page 22: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Differential equations for finite depth

Page 23: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Steady­state (periodical) solutions.Duffing­like responce and secondary resonance 

Page 24: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Transient response (most popular example !!!)

Comparison of experimental data (elevation near the wall)  

Page 25: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Periodical solutions as a perturbed bifurcation problem (Τ(β,λ,τ)=0, λ=λ(ω))

Unperturbed bifurcations τ=0

Page 26: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Periodical solutions as a perturbed bifurcation problem (Τ(β,λ,τ)=0, λ=λ(ω))Perturbed bifurcations τ>0

Page 27: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Periodical solutions as a perturbed bifurcation problem (Τ(β,λ,τ)=0, λ=λ(ω))

Perturbed secondary bifurcation τ>0

Page 28: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Modal system accounting for secondary resonanceComparison with experiments and CFD calculations 

(Smoothed Particles, Flow3D fails) for large­amplitude forcing; fluid depth/tank length=0.35

Page 29: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Shalow sloshing ordering: comparison with experiments

Page 30: Modal Modelling of Nonlinear Sloshing in Moving Tanks

3D sloshing in a square base tank

Page 31: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Free surface elevation for square based tank with finite depth.

Modal system by Faltinsen­Timokha (2003)

• ζ=∑∑βik(t) cos(πi(x+0.5L))cos(πk(y+0.5L)   

• β10=O(τ1/3) β01=O(τ1/3)      

• β20=O(τ2/3) β11=O(τ2/3) β02=O(τ2/3)   

• β30=O(τ) β21=O(τ) β12=O(τ) β03=O(τ)

Page 32: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Planar, Square(diagonal) and swirling wave patterns

Page 33: Modal Modelling of Nonlinear Sloshing in Moving Tanks

 Wave amplitudes A as a function of excitation frequency σ

Page 34: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Periodical waves in a square base tank for longitudinal excitation. Effect of fluid depth

Page 35: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Flow types (classified) in square based tank with longitudinal excitation. Effect of fluid depth

Page 36: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Periodical solutions (classified) in a square base tank for longitudinal excitation. Effect of fluid depth

Page 37: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Periodical solutions (classified) in a square base tank for longitudinal excitation. Effect of fluid depth

Page 38: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Perodical solutions (classified) in a square base tank for longitudinal excitation. Effect of fluid depth

Page 39: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Periodical solutions (classified) in a square base tank for longitudinal excitation. Effect of fluid depth

Page 40: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Problems and perspectives

Page 41: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Problems and perspectives• Modal systems exist for different types of the tanks. 

However… the problems consist of:• Rigorous bifurcation analysis of periodic solutions for 

existing multidimensional  systems and related numerical (path­following) schemes.

• Cauchy problem for modal system (transient waves) – numerical schemes for modal systems of large dimension including stiffness.

• Modal systems for non­cylindrical tanks• Etc.

Page 42: Modal Modelling of Nonlinear Sloshing in Moving Tanks

Thank you for your attentionReferences to some asymptotic modal systems

3. Gavrilyuk, I., Lukovsky, I., Timokha, A. 2000 A multimodal approach to nonlinear sloshing in a circular cylindrical tank. Hybrid Methods in Engineering. 2, # 4.

4. Faltinsen, O., Rognebakke, O., Lukovsky, I., Timokha, A. 2000 Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth.    J. Fluid Mech. 407.

5. Faltinsen, O., Timokha, A. 2001 An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432.

6. Lukovsky, I., Timokha, A. 2001 Sound effect on dynamics and stability of fluid sloshing in zero­gravity. Int. J. of Fluid Mech. Res. 28.

7. Faltinsen, O., Timokha, A. 2002 Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J. Fluid Mech. 470.

8. Faltinsen, O., Rognebakke, O., Timokha, A. 2003 Resonant three­dimensional nonlinear sloshing in a square­base basin. J. Fluid Mech. 487.

available at http://www.imath.kiev.ua/~tim