model seed tutorial part 1: technical primer · 2010. 10. 26. · model seed tutorial part 1:...

34
Model SEED Tutorial Part 1: Technical Primer Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek, and Rick Stevens Presented by: Christopher Henry August 31-September 2

Upload: others

Post on 26-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED Tutorial Part 1:Technical Primer

Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek, and Rick Stevens

Presented by: Christopher Henry

August 31-September 2

Page 2: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Environment

Genome + Environment = Phenotype

Transcription

Translation

Proteins

Biochemical Circuitry

Phenotypes (Organism Properties)

DNA (storage)

Gene Expression

Metabolomics

Proteomics

Adapted From Bruno Sobral VBI

Predicting Phenotypes from Genotypes the prediction of system level behavior from collections of functional components

Page 3: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Metabolic Modeling is One Key to Predicting Phenotype from Genotype

What is a metabolic model?1.) A list of all reactions involved in the metabolic pathways

2.) A list of rules associating reaction activity to gene activity

3.) A biomass reaction listing essential building blocks needed for growth and division Gene A

Function

Gene B

Function

Enzyme

Biomass

Amino acids

Nucleotides

Lipids

CofactorsCell walls

Energy

Nutrients

Page 4: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Metabolic Modeling is One Key to Predicting Phenotype from Genotype

What can a metabolic model do?1.) Predict culture conditions and possible responses to environment changes.2.) Predict metabolic capabilities from genotype.3.) Predict impact of genetic perturbations

Gene A

Function

Gene B

Function

Enzyme

Biomass

Amino acids

Nucleotides

Lipids

CofactorsCell walls

Energy

Nutrients Byproducts

Page 5: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Metabolic Modeling is One Key to Predicting Phenotype from Genotype

What can a metabolic model do?1.) Predict culture conditions and possible responses to environment changes.2.) Predict metabolic capabilities from genotype.3.) Predict impact of genetic perturbations4.) Linking annotations to observed organism behavior enabling validation and correction of annotations

BiomassMODEL

ANNOTATION PREDICTION

PHENOTYPE

RECONCILIATION

Page 6: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

1

10

100

1000

Num

ber o

f gen

omes

Sequenced prokaryotes in NCBI

Manually curated published models

Total published models

Num

ber o

f mod

els

Automatically generated SEED models

Model reconstruction lags behind genome sequencing

Year

Num

ber o

f gen

omes

100

101

102

103

104

105Manually curated modelsAutomatically reconstructed models

Sequenced prokaryotes

0

30

60

90

120

150

180

•≈1000 completely sequenced prokaryotes vs ≈30 published genome-scale models

•Models are often constructed one-at-a-time by individuals working independently

•Model building typically begins by identifying bidirectional best hits with E. coli

•Current process results in replication of work, propagation of errors, and extensive manual curation

•Bottom line: it previously required approximately one year to produce a complete model

www.theseed.org/models/

Page 7: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

Preliminary reconstruction

Annotated genome in SEED

RAST annotation server

Page 8: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

•A biochemistry database was constructed combining content from the KEGG and 13 published genome-scale models into a non-redundant set of compounds and reactions

•Reactions were then mapped to the functional roles in the SEED based on EC number, substrate names, and enzyme names:

Acetinobacter: iAbaylyiv4 (874 rxn) M. barkeri: iAF692 (620 rxn)

Combined SEED Database

(12,103 rxn)

M. genitalium: iPS189 (263 rxn)

M. tuberculosis: iNJ661 (975 rxn)

P. putida: iJN746 (949 rxn)

S. aureus: iSB619 (649 rxn)

S. cerevisiae: iND750 (1149 rxn)

B. subtilis: iAG612 (598 rxn)

E. coli: iAF1260 (2078 rxn)

E. coli: iJR904 (932 rxn)

H. pylori: iIT341 (476 rxn)

L. lactis: iAO358 (619 rxn)

B. subtilis: iYO844 (1020 rxn)

(8000 rxn)

NAD+ + NADPH NADH + NADP+

NAD(P) transhydrogenase alpha subunit (EC 1.6.1.2)

NAD(P) transhydrogenase subunit beta (EC 1.6.1.2)

REACTION FUNCTIONAL ROLE GENE

peg.100

peg.101

COMPLEX

Gene complex

Biochemistry Database in the SEED

www.theseed.org/models/

Page 9: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Biomass Objective Function•To test growth of the model, we build a biomass objective function template

Biomass

DNA

RNA

Protein

Cell wall

Lipids

Cofactors and ions

Energy

dATP, dGTP, dCTP, dTTP

ATP+H2O→ADP+Pi

ATP, GTP, CTP, UTP

Amino acids

Peptioglycan

Various acylglycerols

Nutrients

•Each biomass component may be rejected from the biomass reaction of a model based on the following criteria:

•Subsystem representation

•Functional role presence

•Taxonomy

•Cell wall types

Misc

Cell wallTeichoic acid

Cell wallCore lipid A Gram negative

Universal

Universal

Universal

Universal

Depends on genome

Gram positive

Any genome with cell wall

Depends on genome

www.theseed.org/models/

Page 10: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

? Biomass

?

Preliminary reconstruction

Predicted 56 missing metabolic functions/

model

Predicted cell-host

interactions

Annotated genome in SEED

RAST annotation server

Auto-completion

Page 11: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Assuming Steady State:

No internal metabolite is allowed to accumulate

Thus, reaction rates are constrained by mass balances

For example:

v3 = v4

At Steady State:

v1 = v2

v4+v5 = v6

v2 =v3+v5+v7

A B

C

D1 2

3

5

4

6

7

The Cell

By product

BiomassNutrient

www.theseed.org/models/

Flux Balance Analysis

Page 12: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Flux Balance Analysis

A B

C

D1 2

3

5

4

6

7

The Cell

7

6

5

4

3

2

1

vvvvvvv

1 -1 0 0 0 0 00 1 -1 0 -1 0 -10 0 1 -1 0 0 00 0 0 1 1 -1 0

A

B

C

D

1 2 3 54 6 7

V

• =

0000

By product

BiomassNutrient

www.theseed.org/models/

Page 13: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Genome Annotations Contain Knowledge Gaps

chromosome

mRNA

proteinchaperone ribosome

flagella

transcription factor

??

?

?

?

?

www.theseed.org/models/

Page 14: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Flux Balance Analysis

A B

C

D1

3

5

4

6

7

The Cell

7

6

5

4

3

2

1

vvvvvvv

1 -1 0 0 0 0 00 1 -1 0 -1 0 -10 0 1 -1 0 0 00 0 0 1 1 -1 0

A

B

C

D

1 2 3 54 6 7

V

• =

0000

By product

BiomassNutrient

?

www.theseed.org/models/

Page 15: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model Auto-completion Optimization

Objective:

Subject to:

Mass balance constraints: Compounds in model

Compounds not in model

Ncore vcore

vdb

0Ndb

Ndb0

Use variable constraints: ≤ ≤, ,0 i forward Max i forwardv v z

≤ ≤, ,0 i reverse Max i reversev v z0biomassv >Forcing positive growth:

=

+ + + ∑ , ,not in model , ,reversible not in model , ,irreversible not in model , ,irreversible in model1

Minimize 2r

i forward i reverse i reverse i reversei

z z z z

Penalizing addition of reactions to the model

Penalizing reversibility adjustments

www.theseed.org/models/

Page 16: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Genome Annotation: the Subsystems Approach

chromosome

mRNA

proteinchaperone ribosome

flagella

transcription factor

?

?

?

www.theseed.org/models/

Page 17: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

? Biomass

?

130 new metabolic models

Analysis-ready models

Preliminary reconstruction

Predicted 56 missing metabolic functions/

model

Predicted cell-host

interactions

Predicted growth media

66%

Model accuracy

Predicted gene essentiality

Predicted phenotypes

•965 reactions•688 genes•876 metabolites

*

Annotated genome in SEED

RAST annotation server

Auto-completion

Page 18: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

•SEED models were used to predict the output of 14 biolog phenotyping arrays

•Average accuracy: 60%

•SEED models were used to predict essential genes for 14 experimental gene essentiality datasets

•Average accuracy: 72%

Overall accuracy: 66%

Essentiality data

Biolog phenotype dataAccuracy Before Optimization

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Esse

ntia

lity

pred

ictio

n ac

cura

cyBi

olog

pre

dict

ion

accu

racy

www.theseed.org/models/

Page 19: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

? Biomass

?

130 new metabolic models

Analysis-ready models

Preliminary reconstruction

Predicted 56 missing metabolic functions/

model

Predicting 69 missing transporters/model

Predicted cell-host

interactions

Predicted growth media

66%

71%

Model accuracy

Predicted gene essentiality

Predicted phenotypes

•965 reactions•688 genes•876 metabolites

*

Annotated genome in SEED

RAST annotation server

Auto-completion

Biolog consistency analysis

Page 20: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Esse

ntia

lity

pred

ictio

n ac

cura

cyBi

olog

pre

dict

ion

accu

racy

•Add transporters for Biolog nutrients if missing from models

•69 transporters added to each model on average

•Average accuracy: 70%

•Accuracy unchanged: 72%

Overall accuracy: 71%

Essentiality data

Biolog phenotype data

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%Biolog Consistency Analysis

www.theseed.org/models/

Page 21: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

? Biomass

?

130 new metabolic models

Gene essentiality consistency analysis

Analysis-ready models

Preliminary reconstruction

Predicted 56 missing metabolic functions/

model

Predicting 69 missing transporters/model

Correction for 202 annotations inconsistent with essentiality data

Predicted cell-host

interactions

Predicted growth media

66%

71%

74%

Model accuracy

Predicted gene essentiality

Predicted phenotypes

•965 reactions•688 genes•876 metabolites

Essential gene A

Essential gene B

Nonessential gene C

Reaction

Original GPR

Corrected GPR

*

Annotated genome in SEED

RAST annotation server

Auto-completion

Biolog consistency analysis

Page 22: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Essential gene

Nonessential gene

A B

Essential gene A

Essential gene B

A B

•Reconciling annotation inconsistent with essentiality data

Essentiality data

•Accuracy 78%

Biolog phenotype data

•Accuracy unchanged: 70%

Overall accuracy: 75%

Esse

ntia

lity

pred

ictio

n ac

cura

cyBi

olog

pre

dict

ion

accu

racy

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%Annotation Consistency Analysis

www.theseed.org/models/

Page 23: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

? Biomass

?

130 new metabolic models

Model opt: GapFill

Gene essentiality consistency analysis

Analysis-ready models

Preliminary reconstruction

Predicted 56 missing metabolic functions/

model

Predicting 69 missing transporters/model

Correction for 202 annotations inconsistent with essentiality data

Correcting reversibility constraints

Predicted cell-host

interactions

Predicted growth media

A B

A B

A B

66%

71%

74%

82%

Model accuracy

Predicted gene essentiality

Predicted phenotypes

•965 reactions•688 genes•876 metabolites

? Biomass

?

Predicted missing and

extra metabolic functions

Essential gene A

Essential gene B

Nonessential gene C

Reaction

Original GPR

Corrected GPR

*

Annotated genome in SEED

RAST annotation server

Auto-completion

Biolog consistency analysis

Page 24: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Additional gap filling:

Biolog accuracy

•Average accuracy: 83%

Essentiality accuracy

•Average accuracy: 81%

Overall accuracy: 82%

GrowthNo growth

In vivo

In s

ilico No

grow

thG

row

th

•Fix false negative predictions by adding reactions to models

Esse

ntia

lity

pred

ictio

n ac

cura

cyBi

olog

pre

dict

ion

accu

racy

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%Model Optimization: Gap Filling

www.theseed.org/models/

Page 25: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

? Biomass

?

130 new metabolic models

Model opt: GapFill

Model opt: GapGen

Gene essentiality consistency analysis

Analysis-ready models

Preliminary reconstruction

Predicted 56 missing metabolic functions/

model

Predicting 69 missing transporters/model

Correction for 202 annotations inconsistent with essentiality data

Correcting reversibility constraints

Predicted cell-host

interactions

Predicted growth media

A B

A B

A B

66%

71%

74%

82%

87%

Model accuracy

Predicted gene essentiality

Predicted phenotypes

•965 reactions•688 genes•876 metabolites

? Biomass

?

Predicted missing and

extra metabolic functions

Essential gene A

Essential gene B

Nonessential gene C

Reaction

Original GPR

Corrected GPR

*

Annotated genome in SEED

RAST annotation server

Auto-completion

Biolog consistency analysis

Page 26: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model Optimization: Gap GenerationAdditional gap filling:

Biolog accuracy

•Average accuracy: 88%

Essentiality accuracy

•Average accuracy: 85%

Overall accuracy: 87%

GrowthNo growth

In vivo

In s

ilico No

grow

thG

row

th

•Fix false positive predictions by removing reactions from models

Esse

ntia

lity

pred

ictio

n ac

cura

cyBi

olog

pre

dict

ion

accu

racy

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

www.theseed.org/models/

Page 27: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model SEED: Converting Annotated Genomes into Genome-scale Metabolic Models

? Biomass

?

130 new metabolic models

Model opt: GapFill

Model opt: GapGen

Optimized models

Gene essentiality consistency analysis

Analysis-ready models

Preliminary reconstruction

22 optimized models

Predicted 56 missing metabolic functions/

model

Predicting 69 missing transporters/model

Correction for 202 annotations inconsistent with essentiality data

Correcting reversibility constraints

Predicted cell-host

interactions

Predicted growth media

A B

A B

A B

66%

71%

74%

82%

87%

Model accuracy

Predicted gene essentiality

Predicted phenotypes

•965 reactions•688 genes•876 metabolites

? Biomass

?

Predicted missing and

extra metabolic functions

Essential gene A

Essential gene B

Nonessential gene C

Reaction

Original GPR

Corrected GPR

*

Annotated genome in SEED

RAST annotation server

Auto-completion

Biolog consistency analysis

Page 28: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Seed Models vs Published ModelsOrganism name Published model Published reactions SEED Reactions Published genes SEED genesAcinetobacter iAbaylyiv4 868 1196 775 785B. subtilis iYO844 1020 1463 844 1041C. acetobutylicum iJL432 502 989 432 721E. coli iAF1260 2013 1529 1261 1083G. sulfurreducens iRM588 523 721 588 468H. influenzae iCS400 461 969 400 575H. pylori iIT341 476 731 341 421L. plantarum iBT721 643 908 721 699L. lactis iAO358 621 965 358 646M. succiniciproducens iTK425 686 1048 425 659M. tuberculosis iNJ661 939 1021 661 728M. genitalium iPS189 264 294 189 214N. meningitidis iGB555 496 903 555 560P. gingivalis iVM679 679 744 0* 399P. aeruginosa iMO1056 883 1386 1056 1094P. putida iNJ746 950 1261 746 1053R. etli iOR363 387 1264 363 1242S. aureus iSB619 641 1115 619 770S. coelicolor iIB700 700 1159 700 987

•Single-genome Seed models compare favorably with published single genome models

www.theseed.org/models/

Page 29: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Assessing Subsystem Annotations From Auto-completion

•We identify how complete the annotations are for each of the Seed subsystems by calculating the following ratio:

auto-completion reactions in subsystem

total reactions in subsystem

•Highest scoring subsystems:

•Cell Wall and Capsule Biosynthesis (15%)•21 reactions per model added during auto-completion•LOS Core Oligosaccharide Biosynthesis (Gram negative)•Teichoic and Lipoteichoic Acids Biosynthesis (Gram positive)•KDO2-Lipid A Biosynthesis

•Cofactors, Vitamins, and Prosthetic Group Biosynthesis (5%)•10 reaction per model added during auto-completion•Ubiquinone Biosynthesis•Menaquinone and Phylloquinone Biosynthesis•Thiamin Biosynthesis

•Six subsystems account for 31/56 reactions added to each model during the auto-completion process

Fraction of subsystem reactions with missing genes

=

www.theseed.org/models/

Page 30: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Model statistics across the phylogenetic tree

www.theseed.org/models/

1125/795/46γ-proteobacteria (34)

α-proteobacteria (18)944/705/64

δ-proteobacteria (5)951/663/54

spirochaetes (3)528/346/82

bacteroidetes (4)931/648/70

ε-proteobacteria (6)788 /471/61

β-proteobacteria (12)1115/870/39

elusimicrobium (1)737/415/88

fusobacteria (1)786/534/64

mollicutes (3)295/210/50

bacilli (21)1051/757/47

clostridia (5)997/728/59

572/296/86chlamydia (2)

dehalococcoides (1)600/381/105

actinobacteria (9)949/696/74

deinococcus/thermus (2)976/657/53

aquificae (1)741/493/74

thermotogae (1)855/516/60

firmicutes proteobacteria

Bacteria group (number of models)Reactions/genes/auto-completion reactions

1041/751/51963/695/49

0

400

800

1200

1600

0 20 40 60 80 100 120 140Tota

l Re

actio

ns i

n M

odel

Auto-completion reactions

2.5% 5%10%

30%

Page 31: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

Reaction Activity Across All Models

www.theseed.org/models/

0

200

400

600

800

1000

0 400 800 1200 1600Reactions in models

Reac

tions

in e

ach

clas

s EssentialActive nonessentialInactive

80%

40%

20%

5%

Page 32: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

www.theseed.org/models/

0

400

800

1200

1600

0 3000 6000 9000

Gen

es in

eac

h cl

ass

Genes in modeled genomes

Essential genesGenes in model

10%

15%25%40%

Essential Genes Across All Models

Page 33: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

www.theseed.org/models/

0

10

20

30

40

50

0 400 800 1200 1600

Esse

ntia

l nut

rien

ts

Reactions in models

Essential Nutrients Across All Models

Page 34: Model SEED Tutorial Part 1: Technical Primer · 2010. 10. 26. · Model SEED Tutorial Part 1: Technical Primer. Christopher Henry, Scott Devoid, Matt DeJongh, Aaron Best, Ross Overbeek,

www.theseed.org

AcknowledgementsANL/U. Chicago Team- Robert Olson- Terry Disz- Daniela Bartels- Tobias Paczian- Daniel Paarmann- Scott Devoid- Andreas Wilke- Bill Mihalo- Elizabeth Glass- Folker Meyer- Jared Wilkening- Rick Stevens- Alex Rodriguez- Mark D’Souza- Rob Edwards- Christopher Henry

FIG Team- Ross Overbeek- Gordon Pusch- Bruce Parello- Veronika Vonstein- Andrei Ostermann- Olga Vassieva- Olga Zagnitzko- Svetlana GerdesHope College Team- Aaron Best- Matt DeJongh- Nathan Tintle - Hope college students