modelagem de problemas como ferramenta ensino-aprendizagem algumas considerações finais

16
Modelagem de Problemas como ferramenta ensino- aprendizagem Algumas considerações finais

Upload: internet

Post on 18-Apr-2015

114 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Modelagem de Problemas como ferramenta ensino-aprendizagem

Algumas considerações finais

Page 2: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Ferramentas de modelagem de problemas estudados

• Sistemas Lineares• Programação Linear• Funções (Lineares, Afins, Escada, Quadrática,

Racional, Polinomial geral, Exponencial, Logarítmica)

• Equações de Recorrência Lineares

Page 3: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Um problema de população• Num país as taxas de nascimentos e mortes são, respectivamente 40 por

mil e 15 por mil, por ano, respectivamente. A população inicial é de 50 milhões de habitantes.

a) Deduza uma equacão de diferenças para a população no final de um ano, em relação à do final do ano anterior.

b) Resolva a equação e estime qual será a população em 10 anos.c) Se, devido à alta taxa de natalidade, ocorrer emigração a uma taxa de

10000 por ano, qual será a mudança nos resultados?

Page 4: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Solução do Problema

• Pn=Pn-1+4/100 Pn-1-1.5/100 Pn-1, P0= 50 milhões

• Pn= (102.5/100)n P0= (102.5/100)n 50 milhões

• P10=(102.5)10.50.106/(100)10=64. 106 habitantes aproximadamente.

• Pn=Pn-1+4/100 Pn-1-1.5/100 Pn-1-104, logo

• Pn=(102.5/100)Pn-1-104, equação não homogênea

• Pn=k1(102.5/100)n+k2, logo k2=0.4 x 106 e k1=49.6x106

• P10= 63.89 milhões de habitantes, aproximadamente

Page 5: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Sistema de Equações de Diferenças• Suponha que a população de um país é dividida em 2 grupos de idades:

G1= de 0 a 12 anos, G2= o resto. Suponha que os nascimentos só ocorrem no grupo 2, a uma taxa de 0.04 e cada grupo tem sua própria taxa de mortalidade, no G1, de 0.016 e no G2, de 0.03. Suponha que a população inicial de G1 é de 5 milhões e de G2 é de 15 milhões. É assumido que em cada ano 1/12 dos sobreviventes do G1 progridem para G2.

a) Qual a população em G1/G2 após 1 ano? b) E após 2 anos? c) Como deve ser obtida a população após 10 anos?

Page 6: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Solução do Problema• P1(t)= população de G1, P2(t)=população de G2

• Para G1: P1(t+1)=0.04P2(t)+11/12 P1(t)(1-0.016)= os nascidos do G2+ a parcela dos sobreviventes que não foram para o G2

• Para G2: P2(t+1)=1/12 P1(t)(1-0.016)+P2(t)(1-0.03)=os sobreviventes de G1 que foram para G2 e os sobreviventes de G2.

• Usando matrizes, se o vetor Pt for formado por P1(t) e P2(t), teremos

• Pt+1=A Pt, levando à resolução Pt=AtP0, onde as linhas de A são: 0.902 e 0.04 a primeira e 0.082 e 0.97 a segunda.

• P1(t)=5.11 e P2(t)=14.96, logo a população total será de 20.07 milhões.

• Para as demais deverá ser utilizado o recurso de produto de matrizes (pode ser implementado facilmente em MAPLE, por exemplo).

Page 7: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Porque resolver uma recorrência?• Utilizar a relação de recursividade é ineficiente em geral, porque

recalcula o mesmo valor várias vezes.• Recorrência de Fibonacci: Fn=Fn-1+Fn-2 (recursivo)

• Fn=1/√5(өn-(-ө)-n), onde ө=(1+√5)/2, razão de outro (iterativo)

• Comparação: se n=20, o recursivo leva 1s e o iterativo leva 1/2ms, se n=30, o recursivo leva 2 min e o iterativo leva ½ ms, se n=50, o

recursivo leva 21 dias e o iterativo leva ¾ ms, se n=100 o recursivo leva 109 anos e o iterativo leva 1,5ms.

• Recursividade= conceitual, Iteratividade = computacional.

Page 8: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Extensões dos tópicos estudados

• Programação não linear: a função objetivo e/ou as restrições são não lineares--- derivadas parciais de funções não lineares de várias variáveis+ Método de Multiplicadores de Lagrange (Teorema de Kuhn-Tucker)

• Equações de Recorrência não lineares yn+1=f(yn, yn-1,…), onde f função não linear

Page 9: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Exemplos de relação de recorrência não linear

• Xn+1=axn(1-xn)

Equação Logística Discreta ( May -1976)

• ∆Rn=aRn-bRnWn e ∆Wn=cRnWn-dWn

Sistema de Equações de Diferenças Predador x Presa, W=Lobos (predadores) e R=Coelhos (presas),

a,b,c,d constantes positivas – análise experimental

Page 10: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Outras ferramentas importantes

• Derivada de funções --máximos e mínimos de funções

• Integral (anti-derivada) de funções – equações diferenciais e sistemas de equações diferenciais

• Funções de Várias Variáveis, Derivadas parciais, Máximos e Mínimos de funções de várias variáveis, equações diferenciais parciais e sistemas de equações diferenciais parciais.

Page 11: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Exemplo 1

Page 12: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Solução do Exemplo 1

Page 13: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Exemplo 2

• Se U(x,y,z,t) for a temperatura num ponto (x,y,z) de um corpo sólido, num instante t, conhecendo as leis físicas que descrevem a evolução das trocas de calor, a temperatura inicial em cada ponto e a temperatura na superfície do sólido, determinar a temperatura em cada ponto do interior do corpo, em cada instante.

Modelagem utilizando EDP; solução utilizando séries de Fourier, implementação computacional utilizando aproximação por polinômio trigonométrico ou método de diferenças finitas

Page 14: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Exemplo 3

Page 15: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Solução do Exemplo 3

Page 16: Modelagem de Problemas como ferramenta ensino-aprendizagem Algumas considerações finais

Conclusão

• Método de Polya para Modelagem de Problemas: ainda útil nas áreas mencionadas e nos exemplos citados

• Compreensão do Problema,• Dedução de um modelo matemática que descreva o problema,• Solução do Modelo e verificação da solução,• Interpretação da Solução

• Tópicos estudados: são úteis para estudar problemas mais sofisticados (aproximação de problemas não lineares por famílias de problemas lineares, de forma iterativa- métodos de ponto fixo)