modeling and controller design of an inverted...

27
MODELING AND CONTROLLER DESIGN OF AN INVERTED PENDULUM SYSTEM USING AI APPROACH NAZILA NAJAFZADEH UNIVERSITI TEKNOLOGI MALAYSIA

Upload: letruc

Post on 17-May-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

MODELING AND CONTROLLER DESIGN OF AN INVERTED PENDULUM

SYSTEM USING AI APPROACH

NAZILA NAJAFZADEH

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

MODELING AND CONTROLLER DESIGN OF AN INVERTED PENDULUM

SYSTEM USING AI APPROACH

NAZILA NAJAFZADEH

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical - Mechatronics & Automatic Control)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JANUARY 2012

Page 3: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

iii

To my beloved Mother and Father

Any number of words cannot sufficiently express the love and

encouragement I received from them

Page 4: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

iv

ACKNOWLEDGEMENT

In the name of Allah, the most beneficent, the most merciful

I am profoundly grateful to my supervisor, Professor Dr Mohd Fua’ad bin Hj.

Rahmat, for his inspiration, sincerity, patience, and ongoing assistance and support

throughout my studies. His constructive guidance has greatly assisted me in carrying out

this research and in achieving the goals of my thesis.

It is my great pleasure to express my sincerest gratitude to my parents, the best

and most kind-hearted individuals I have ever known. Although we are living far away

from each other, my heart and thoughts are always with them. I will always remember

and greatly appreciate their endless devotions, prayers, and inspiration throughout my

life. Many thanks also to my brothers who have always supported me through their love,

encouragement and prayers.

Page 5: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

v

ABSTRACT

This project presents the simulation study of few different control approaches

that consist of modern controller and intelligent controller for an inverted pendulum

system. Inverted pendulum is a nonlinear and unstable dynamic system, which

continually moves toward an uncontrolled state. It consists of a cart, driven by a force

that can move along a horizontal track, and a pendulum attached to the cart which can

rotate freely in the vertical plane parallel to the track. The control problem is to drive

the pendulum to its upright position and remains it there as well as maintaining the

position of the cart. It involves the derivation of the mathematical modeling that

includes the linearization of the model in order to be used with the linear controller. The

work follows with designing linear quadric regulator (LQR) as modern controller; fuzzy

logic and adaptive neural network fuzzy for the intelligent controller. The simulation of

controllers has been done in MATLAB, and their performance is analyzed and compared

which is based on common criteria’s of the step response. Overall, LQR controller has

the fastest response, whereas adaptive neural network fuzzy controller gives more

flexibility in control action

Page 6: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

vi

ABSTRAK

Projek ini memaparkan kajian yang dijalankan melalui kaedah simulasi terhadap

beberapa kaedah pendekatan kawalan yang mengandungi kawalan moden dan kawalan

kepintaran untuk sistem ayunan bandul terbalik. Ayunan bandul terbalik merupakan

sistem dinamik yang tidak linear dan tidak stabil, selalunya akan menyumbang kepada

keadaan yang tidak terkawal. Ianya mengandungi pengangkut, dipandu oleh daya yang

boleh bergerak sepanjang landasan melintang, dan bandul yang dipasang pada

pengangkut yang berupaya untuk berputar di dalam satah menegak yang selari dengan

landasan. Projek ini dihasilkan bagi memastikan ayunan bandul berada di dalam posisi

yang menegak dan mengekalkan keadaan tersebut, dalam masa yang sama mengekalkan

posisi pengangkut tersebut. Ia melibatkan terbitan model matematik yang akan

digunapakai di dalam proses penglinearan model bagi menghasilkan pengawal linear.

Projek ini disusuli dengan merekacipta pengawal moden “linear quadric regulator

(LQR)” dan pengawal pintar “fuzzy logic” dan “adaptive neural network fuzzy”.

Simulasi terhadap pengawal-pengawal telah diuji dengan menggunakan “MATLAB”,

dan pelaksanaannya dianalisis dan dibandingkan. Secara keseluruhannya, pengawal

“LQR” mempunyai respon yang paling pantas, manakala pengawal “adaptive neural

network fuzzy” memberikan tindakan kawalan yang lebih fleksibel.

Page 7: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS xvi

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Problem Statement 2

1.3 Objective of Project 3

1.4 Scope of Project 4

1.5 Thesis Outline 5

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Literature Research 7

Page 8: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

viii

2.2.1 Fuzzy Logic Controller 8

2.2.2 Hybrid Controller 10

2.2.3 Adaptive Neural Network Fuzzy Controller 11

2.2.4 Fusion Function Based Controller 12

2.3 Summary of Chapter 2 14

3 RESEARCH METHODOLOGY 15

3.1 Introduction 15

3.2 Understanding the Inverted Pendulum System 16

3.3 Mathematical Modeling of Nonlinear Plant 16

3.3.1 Newton’s Law of Motion 16

3.3.2 The Energy Method 17

3.4 Deriving the Dynamics of the Linearized System 17

3.5 Controller Design 18

3.6 Simulation and Evaluation of Performance 19

3.7 Comparative Assessment of Results 19

3.8 Methodology 20

3.9 Summary of Chapter 3 21

4 MODELING OF AN INVERTED PENDULUM 22

4.1 Introduction 22

4.2 Inverted Pendulum Parameters 23

4.3 Mathematical Modeling 24

4.3.1 Generalized Coordinate System 25

4.3.2 Kinetic and Potential Energy Functions 26

4.3.3 Lagrangian Function 28

4.3.4 Lagrange’s Equation 28

4.4 Linear Model of the Inverted Pendulum System 31

4.5 Transfer Function 32

4.6 State-Space 34

4.7 Summary of Chapter 4 35

Page 9: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

ix

5 CONTROLLER DESIGN FOR INVERTED PENDULUM

SYSTEM 36

5.1 Introduction 36

5.2 State-space Controller Theory and Design Implementation 37

5.2.1 Introduction 37

5.2.2 State Variable 37

5.2.3 State Space Representation for Linear System 38

5.2.4 State Space Controllability and Observability 39

5.2.5 Controller Design Using Full State Feedback 40

5.2.6 Full State Feedback with Reference Input 41

5.2.7 Full State Feedback with Reference Input for LQR 42

5.3 LQR Controller Design for Inverted Pendulum System 43

5.4 Fuzzy Logic Controller Theory and Design Implementation 45

5.4.1 Introduction 45

5.4.2 Components of Fuzzy Logic Controller 46

5.4.3 Methodology of Designing Fuzzy Controller 47

5.4.3.1 Fuzzy Logic Control Variables 48

5.4.3.2 Fuzzification 49

5.4.3.3 Knowledge Base Design 50

5.4.3.4 Inference Encoding Procedure 52

5.4.3.5 Deffuzification 53

5.4.3.6 Tuning Parameters 54

5.5 Fuzzy Logic Controller Design for Inverted Pendulum

System 55

5.6 Adaptive Neural Network Fuzzy Controller Theory and

Design Implementation 61

5.6.1 Introduction 61

5.6.2 Fuzzy Inference System 62

5.6.2.1 Sugeno Type Fuzzy Inference System 62

5.6.3 Adaptive Networks 64

Page 10: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

x

5.6.3.1 Adaptive Network Architecture and Basic

Learning Rule 65

5.6.4 Adaptive Neuro Fuzzy Inference System (ANFIS) 66

5.6.4.1 ANFIS Architecture 67

5.6.5 ANFIS Learning Algorithm 70

5.6.5.1 Learning of Premise Parameters 70

5.6.5.2 Learning of Consequent Parameters 70

5.6.5.3 Hybrid Learning Algorithm 71

5.6.6 ANFIS Editor GUI 72

5.7 Adaptive Neural Network Fuzzy Logic Controller Design

for Inverted Pendulum System 74

5.7.1 State Variables Fusion 75

5.7.2 Adaptive Neural Network Fuzzy Control 76

5.8 Summary of Chapter 5 81

6 RESULTS AND ANALYSIS 82

6.1 Introduction 82

6.2 Results of Different Designed Controllers for Inverted Pendulum

System 83

6.2.1 Results for State Feedback Controller: LQR 83

6.2.2 Results for Fuzzy Logic Controller 85

6.2.3 Results for Adaptive Neural Fuzzy Controller 87

6.3 Overall Comparison of the Controllers’ Performance 89

6.3.1 Comparison of Output Response for Position 89

6.3.2 Comparison of Output Response for Angle 90

6.4 Summary of Chapter 6 92

7 CONCLUSION AND FUTURE WORK 93

7.1 Introduction 93

7.2 Conclusion 94

7.3 Suggestion for the Future Works 95

Page 11: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

xi

REFERENCES 96-99

Page 12: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 Properties of the inverted pendulum system 24

4.2 Characteristics of the inverted pendulum system 24

5.1 State space model representation 39

5.2 Inputs and outputs of FLC 56

5.3 Standard labels of quantization 56

5.4 Fuzzy rule matrix for position/angle control 60

5.5 Two passes in hybrid learning algorithm 71

6.1 Summarization of the performance characteristics for

cart’s position 90

6.2 Summarization of the performance characteristics for

pendulum’s angle 91

Page 13: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

3.1 Flow chart of research methodology 20

4.1 Free body diagram of the inverted pendulum system 23

4.2 Velocity analysis of the pendulum 27

5.1 State feedback control configuration 40

5.2 State feedback control configuration with the input gain,

Nbar 42

5.3 Components in the fuzzy logic controller 47

5.4 Fuzzy logic control in the closed-loop system 48

5.5 Input and output for the fuzzy controller 49

5.6 Fuzzification procedure 50

5.7 Example of fuzzy inference using Mamdani method 52

5.8 Defuzzification by center of gravity 54

5.9 Fuzzy logic controllers in the feedback loop of inverted

pendulum system 55

Page 14: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

xiv

5.10 Fuzzy set for the input ‘x’ 57

5.11 Fuzzy set for the input ‘delx’ 57

5.12 Fuzzy set for the output ‘Force-x’ 58

5.13 Fuzzy set for the input ‘theta’ 58

5.14 Fuzzy set for the input ‘deltheta’ 59

5.15 Fuzzy set for the output ‘Force-theta’ 59

5.16 Simulink implementation of FLC for the inverted pendulum

system 61

5.17 First order Sugeno fuzzy model 64

5.18 Adaptive Network 65

5.19 ANFIS architecture 67

5.20 ANFIS editor GUI 73

5.21 Simulation model of inverted pendulum based on ANFIS 77

5.22 Initialization of membership functions 78

5.23 The error curve of ANFIS training 79

5.24 The membership functions of variable E 79

5.25 The membership functions of variable EC 80

5.25 The ANFIS network structure 80

6.1 Step response of the pendulum’s angle with LQR controller 84

6.2 Step response of the cart’s position with LQR controller 84

Page 15: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

xv

6.3 Step response of the pendulum’s angle with Fuzzy Logic

Controller 86

6.4 Step response of the cart’s position with Fuzzy Logic

Controller 86

6.5 Step response of the pendulum’s angle with ANFIS

Controller 88

6.6 Step response of the cart’s position with ANFIS controller 88

6.7 Comparison of output response of cart’s position 90

6.8 Comparison of output response of pendulum’s angle 91

Page 16: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

xvi

LIST OF SYMBOLS

b - Friction of cart

l - Length to pendulum centre of mass

x - Cart position coordinate

x - cart acceleration

θ - Pendulum angle from the vertical

- Pendulum angular acceleration

r(s) - Reference signal

e(s) - Error signal

u(s) - Plant input

x - State vector

u - Input vector

y - Output vector

Ts - Settling time

Tr - Rising time

ess - Steady state error

NS - Negative small

NM - Negative medium

NL - Negative large

ZE - Zero

PS - Positive small

PM - Positive medium

PL - Positive Large

Page 17: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

xvii

LQR - Linear Quadratic Regulator

FLC - Fuzzy Logic Controller

ANFIS Adaptive Neural Fuzzy Inference System

GUI Graphic User Interface

AI - Artificial Intelligence

M - Mass of cart

m - Mass of pendulum

CV - Control variable

E - Error

SP - Set point

PV - Process variable

R - Step input to the cart

A - State matrix

B - Input matrix

C - Output matrix

D - Direct transmission matrix

%OS - Percent overshoot

I - Inertia of the pendulum

F - Force applied to cart

Page 18: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

CHAPTER 1

INTRODUCTION

1.1 General Introduction

An early study of the inverted pendulum system was motivated by the need to

design controllers to balance rockets during vertical take-off. At the instance of time

during launch, the rocket is extremely unstable. Similar to the rocket at launch, the

inverted pendulum requires a continuous correction mechanism to stay upright, since the

system is unstable at open loop configuration. This problem can be compared to the

rocket during launch. Here, rocket boosters have fired in a controlled manner, to

maintain the rocket upright.

The inverted pendulum offers a particularly compelling example for control

engineers to verify a modern control theory. This can be explained by the facts that

inverted pendulum is marginally stable, in control sense, has distinctive time variant

mathematical model.

Page 19: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

2

Inverted Pendulum is a remarkably convenient model for the attitude control of a

space booster rocket and a satellite, an automatic aircraft landing system, aircraft

stabilization in the turbulent air-flow, stabilization of a cabin in a ship etc. To solve

such a problem with non-linear time variant system, there are alternatives such as real

time computer simulation of these equations or linearization [1].

1.2 Problem Statement

The inverted pendulum represents a challenging control problem, which

continually moves toward an uncontrolled state and must be actively balanced in order

to remain upright.

The inverted Pendulum is a highly nonlinear, and open loop unstable system, in

order to keep the system stable, force must be properly applied. To achieve a stable

system, control theory is required. The principles and theories of an inverted pendulum

must be understood clearly to obtain the right and more accurately controlled inverted

pendulum model. Standard linear techniques cannot model the nonlinear dynamics of

the system. When the system is simulated the pendulum falls over quickly.

Common control approaches such as Proportional-Integral-Derivative (PID)

control and Linear Quadratic control (LQ) require a good knowledge of the system and

accurate tuning in order to obtain desired performances. However, it is often impossible

to specify an accurate mathematical model of the process, or the description with

differential equations is extremely complex [2].

Page 20: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

3

In order to obtain control surface, the inverted pendulum dynamics should be

locally linearized. Moreover, application of these control techniques to a two or three

stage inverted pendulum may result in a highly critical design of control parameters and

difficult stabilization. However, using artificial intelligence controllers such as artificial

neural network and fuzzy logic controllers, the controller can be design without require

the model to be linearized. The nonlinear model can be simulated directly using the

MATLAB application to see result [1].

1.3 Objective of Project

The main objective of this project is to develop software for computer control to

model the inverted pendulum system. This process will begin with the derivation of a

mathematical model for the inverted pendulum system. Mathematical modeling

involves process to describe dynamics of system in a set of differential equations. The

process will be followed by designing several controllers, which are capable of driving

the pendulum to its upright position as well as maintaining the position of the cart. This

project uses three methods in designing a controller, which consists of state-space for

modern controller, fuzzy logic and adaptive neural network fuzzy for intelligent

controller.

The second objective is to develop simulation of the controllers by using

MATLAB SIMULINK. The purpose of simulation is to view results of controllers for

stabilizing the inverted pendulum system.

Page 21: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

4

The third objective is to perform comparison between controllers for the inverted

pendulum system. The performance of modern and intelligent controllers will be

compared to identify the most suitable controller design that satisfies all design

requirements. The most common characteristics to be compared are steady state error,

percentage of overshoot and the settling time in order to identify how good the response

of the controller is.

1.4 Scope of the Project

The purpose of this project can be divided into four main parts; the first part is to

derive the mathematical dynamic model that represents the inverted pendulum system.

This includes the nonlinear model of the system as well as the linear model of the

system in transfer function and state-space form.

After testing the performance of the inverted pendulum system, the second part

involves the design of a conventional controller that is linear quadric regulator (LQR)

controller as a mean of comparison. The design of intelligent controllers consists of

fuzzy logic controller (FLC) and adaptive neural fuzzy controller (ANFIS). All

controllers will be designed to control angle of the pendulum and the position of the cart.

The third part will be focused on implementation of controllers in simulation by

using MATLAB to verify the effectiveness of the designed controllers.

Page 22: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

5

The final part will be focused on detail analysis and justification of suitable

controller for the system by performing a comparison base on the common criteria‟s of

the step response to identify the best controller

1.5 Thesis Outline

The thesis consists of seven chapters. It begins with the introductory chapter.

This chapter gives the brief description of the problem for inverted pendulum system,

objectives of the project and scope of the project.

Chapter two discusses the literature review and related works from existing

controller approaches to stabilize the inverted pendulum system.

Chapter three presents the research framework of this study. It will describe each

phase of the research, beginning from deriving the mathematical model of the inverted

pendulum, followed by design and simulation of controllers in order to have a detailed

analysis for identifying the best approach for stabilizing the system.

Chapter four contains the overview of the inverted pendulum system with

nonlinear factor, followed by comprehensive description for deriving the mathematical

model for the dynamic of the system in differential form, transfer function form, and

state space form.

Page 23: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

6

Chapter five includes a discussion of the control theory and topologies that could

be used to drive the pendulum to its upright position as well as maintaining the position

of the cart. Three approaches will be described which are state-space controller, and two

different methods of intelligent controller. This section as well discusses the procedure

or steps to the realization of the entire controllers in the inverted pendulum system.

Chapter six will present the entire results from applied controllers. In this stage,

analysis and comparison on the controllers‟ performance based on controlling angle of

the pendulum and position of the cart will be presented. It will be based on the common

criteria‟s of the step response such as a percentage of overshoot, rise time, settling time,

and the steady state error.

Final chapter will give the conclusion of this thesis. All the problems occurred

during this project will be emphasized; several recommendations and suggestions will be

proposed to improve this project.

Page 24: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

96

REFERENCES

1 Ahmad Nor Kasruddin Bin Nasir “Modeling and Controller Design For an

Inverted Pendulum System,” Universiti Teknologi Malaysia: Master's Thesis,

2007.

2 Chen Wei Ji Fang Lei Lei Kam Kin, “Fuzzy logic Controller for an Inverted

Pendulum System”, Faculty of Science and Technology, University of Macau.

3 L A Zadeh. “Fuzzy Sets,” Information and Control , Vol. 8, pp. 353-383, 1965.

4 P J King and E H Mamdani “The Application of Fuzzy Control System to

Industrial Process”, Automatica Vol. 13 pp. 235-242, 1977.

5 E H Mamdani “Application of Fuzzy algorithms for control of simple dynamic

plant”, Proceeding of IEEE Vol. 121, pp. 1585-1588, 1977.

6 Lawrence Bush, “Fuzzy Logic Controller for the Inverted Pendulum Problem”,

IEEE Control System Magazine, pp. 238-245, November 27, 2001.

7 Mohanlal, P.P. Kaimal, and M.R. Vikram “Decision and Control”, in Proc. of the

41st IEEE Conference Sarabhai Space Centre, Vol. 3, pp. 3255-3260, Dec.

2002.

8 Yu and Li Xu “Development of Inverted Pendulum System and Fuzzy Control

Based on MATLAB”, in Proc. of the 5th World Congress on Intelligent Control

and Automation, pp. 298-307, June 2004.

9 Hong Liu and Huadong Yu “ Study of Fuzzy Control of Inverted Pendulum

System in the Simulink Environment”, in Proc. of the IEEE Int. Conference on

Mechatronic and Automation, pp.937-942, August 2007.

Page 25: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

97

10 Moon Gjoo, Jin S. Leet “Hierarchical Fuzzy Control Scheme using Structured

Takagi-Sugeno Type Fuzzy Inference,” IEEE Int. Fuzzy Systems Conference

Proceedings, pp. 78-83, 1999.

11 Atsushi Yamada, Satoko, and etc “Switching Control for Inverted Pendulum

System Based on Energy Modification”, SICE Annual Conference in Sapporo

Hokkaido Institute of Technology, pp. 2316-2321, 2004.

12 T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications

to modeling and control”, IEEE Trans. on System, Man, Cybernetics, Vol. SMC-

15, no. 1, pp. 116–132, Jan. 1985.

13 Derrick H Nguyen and Bernard Widrow “Neural Network for self learning

Control System,” IEEE Trans. on Control System Magazine, Vol. 15 pp.18-23,

April 1990.

14 M.Y. Shieh, C.W. Huang “A GA-based Sugeno-Type Fuzzy Logic Controller for

the Cart-Pole System,” IEEE Trans. on Industrial Electronics, Vol. 39, No.2, pp.

1028-1033, 1994.

15 Dario Maravall, Changjiu Zhou, and Javier Alonso “Hybrid Fuzzy Control of the

Inverted Pendulum via Vertical Forces”, Wiley Periodicals Inc., pp. 635-641,

March 2005.

16 Songmoung Nundrakwang, Taworn Benjanarasuth, Jongkol Ngamwiwit and

Noriyuki Komine, “Hybrid controller for Swinging up Inverted Pendulum

system”, in Proceeding IEEE of System Man and Cybernetics, Vol. 4, pp 750-

758, June2008.

17 Jyh-Shing and R. Jang. “Self-Learning Fuzzy Controllers Based on Temporal

Back propagation,” IEEE Trans on Neural Networks , Vo1.3, No.5, pp. 714-723,

1992.

18 Derrick H Nguyen and Bernard Widrow “Neural Network for self learning

Control System”, IEEE Transactions on Control System Magazine, Vol. 15 pp.

18-23, April 1990.

19 J.S. Roger Jang, “Fuzzy Controller Design without Domain Expert”, in

Proceeding of AAAI of Control System Design, Vol. 27, No. 3, pp. 205-213, June

2001.

Page 26: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

98

20 Chinta Srikanth, “Design of an Adaptive Neuro Fuzzy Controller for an Inverted

Pendulum System,” Master’s thesis, 2005.

21 Ravi Chandra Tatikonda, Venkata Praveen Battula “Control of Inverted

Pendulum using Adaptive Neuro Fuzzy Interface Structure (ANFIS),” Int.

Conference and Workshop on Emerging Trends in Technology, ICWET 2010.

22 Sehng Qiang, Qing Zhou, and Shuanghe Yu “ANFIS Controller for Double

Inverted Pendulum,” 6th IEEE Int. Conference on Industrial Informatics, pp.

475-480, July 2008.

23 Wang Luhao, Sheng Zhanshi “LQR-Fuzzy Control for Double Inverted

Pendulum”, Int. Conference on Digital Manufacturing and Automation, pp. 900-

903, 2010.

24 Yuejuan Han, Yongxin Liu, “Reduced-Dimensional Fuzzy Controller Design

Based on Fusion Function and Application in Double Inverted Pendulum”, 2nd

Int. Conference on Industrial Mechatronics and Automation, pp. 337-340,

August 2010.

25 Suying Zhang, Ran An, and Shuman Shao “A New Type of Adaptive Neural

Network Fuzzy Controller in the Double Inverted Pendulum System,” Proc. of

the Third Int. Conference on Artificial intelligence and computational

intelligence, Vol. II, pp.149-157, 2011.

26 Xianran Jia,Yaping Dai, “Adaptive Neuro-Fuzzy Inference System Design of

Inverted Pendulum System on an Inclined Rail”, Second WRI Global Congress

on Intelligent Systems, pp. 137-141, 2010.

27 Carnegie Mellon, University of Michigan, www.engin.umich.edu/group/ctm/ex

28 Mohd Fuaad Rahmat, Herman Wahid, and Norhaliza Abdul Wahab,

“Application of Intelligent Controller in a Ball and Beam Control System”,

International Journal on Smart Sensing and Intelligent Systems, Vol. 3, No. 1,

March 2010

29 Xinmin Shi, and Zhengqing Hao, “Fuzzy Control and Matlab Simulink”,

Tsinghua University Press and Oxford University Press, 2008.

Page 27: MODELING AND CONTROLLER DESIGN OF AN INVERTED …eprints.utm.my/id/eprint/32284/5/NazilaNajafzadehMFKE2012.pdf · Ayunan bandul terbalik merupakan sistem dinamik yang tidak linear

99

30 C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part 1,”

IEEE Trans. on Systems, Man & Cybernetics, Vol.20, No. 2, pp. 404-419, March

1999.

31 J. S. R. Jang, “ANFIS: Adaptive-Network-based Fuzzy Inference Systems,”

IEEE Trans. On systems, Man, and cybernetics, Vol. 23, No, 3, pp. 665-685,

May 1993.

32 M. Ayoubi “Neuro-fuzzy Structure for Rule Generation and Application in the

Fault Diagnosis of Technical Processes,” Proceedings American Control

Conference, pp. 2757-2761, 1998.

33 J. S. R. Jang, “Neuro-Fuzzy Modeling and Control”, Proceedings Intelligent

Systems and Control, ACTA press, 2005.

34 A. Zilouchian, and M. Jamshidi “Intelligent Control Systems Using Soft

Computing Methodologies”, pp. 422-433, CRC Press, Inc. 2001.