modeling and digital control of dc-dc converters -...

26
10/1/2015 1 Modeling and Digital Control of DC-DC Converters Liping Guo, Department of Engineering Technology Northern Illinois University, DeKalb, IL 60115, USA [email protected] Outline Introduction Digital control buck converter Adaptive sliding mode control boost converter Evaluation of Silicon IGBT vs. SiC MOSFET for a buck converter Test and comparison Summary Sept 24, 2015 IEEE Rock River Valley Section Meeting 2

Upload: vokhuong

Post on 15-Jul-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

1

Modeling and Digital Control of DC-DC Converters

Liping Guo,

Department of Engineering Technology Northern Illinois University, DeKalb, IL 60115, USA

[email protected]

Outline • Introduction

• Digital control – buck converter

• Adaptive sliding mode control –boost converter

• Evaluation of Silicon IGBT vs. SiC MOSFET for a buck converter

• Test and comparison

• Summary

Sept 24, 2015 IEEE Rock River Valley Section Meeting 2

Page 2: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

2

Introduction • DC-DC converters play a critical role in the energy conversion

• Design and component selection • Circuit and controller design

• Component selection

• Selection of switching frequency

• Loss estimation

Sept 24, 2015 IEEE Rock River Valley Section Meeting 3

DC-DC Converters • EMC analysis

• Analyze electromagnetic interference

• Determination of switching transients

• Optimal circuit layout to minimize parasitics

• Mechanical and thermal design • Thermal management

• Packaging

Sept 24, 2015 IEEE Rock River Valley Section Meeting 4

Page 3: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

3

Introduction (cont’d) • The Advanced Photon Source (APS) at Argonne National

Laboratory is a premier national research facility

• It provides the brightest x-ray beams in the Western Hemisphere to more than 5,000 scientists from the U.S. and around the world

Sept 24, 2015 IEEE Rock River Valley Section Meeting 5

DC-DC Converters • In order to develop the photon sources, a beam of high energy

electrons are guided through a storage ring using powerful magnets

• Currently more than 1,300 DC-DC converters are used • 15+ years old

• Analog control

Sept 24, 2015 IEEE Rock River Valley Section Meeting 6

Page 4: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

4

DC-DC Converters • The APS upgrade for 2020 may increase to nearly 3,000 DC-

DC converters

• These power supplies requires high resolution for output current regulation, and high reliability

• Digital upgrade • Higher reliability

• Less susceptible to aging and environmental variations

• Intelligence • Monitoring

• Self-diagnostics

• Communication to a host computer

Sept 24, 2015 IEEE Rock River Valley Section Meeting 7

Buck Converter • Long time constant

• Filter not needed

• Small signal analysis performed

Sept 24, 2015 IEEE Rock River Valley Section Meeting

IGBT

CVin

+

-

Rm

Lm

8

Page 5: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

5

Buck Converter

Sept 24, 2015 IEEE Rock River Valley Section Meeting

Parameter Value Unit

Input voltage Vin 62 V

Maximum output current 250 A

Magnet inductance Lm 28 mH

Magnet series resistance Rm 110 mΩ

Switching frequency 20 kHz

9

Small Signal Model

• Current to be controlled

• Current variations due to duty cycle

• Current variations due to source voltage

• Superposition

Sept 24, 2015 IEEE Rock River Valley Section Meeting 10

monm

fonm

inin

idRRdsL

VRR

dVV

sd

siG

0

0

)(ˆ

)(ˆ

monmiv

RRdsL

d

sv

siG

0

0

)(ˆ

)(ˆ

ˆˆ ˆ( ) ( ) ( )id ivi s G d s G v s

Page 6: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

6

Design Requirements • Low current variations

• 1 mA out of 250 A

• No overshoot

• Switch between two controls • Control I – Faster response

• Control II – Slower with no overshoot

Sept 24, 2015 IEEE Rock River Valley Section Meeting 11

PI Controller I

• PI compensator

• System dynamics • Phase margin 90.8

• Bandwidth 15.6 rad/s

• Digital Implementation (ZOH)

Sept 24, 2015 IEEE Rock River Valley Section Meeting 12

1

006999.0007.0)(1

z

zzGc

1

0.0259( ) 0.007cG s

s

-20

-10

0

10

20

30

Magnitude (

dB

)

100

101

102

-90

-89.5

-89

-88.5

-88

Phase (

deg)

Bode DiagramGm = Inf , Pm = 90.8 deg (at 15.6 rad/sec)

Frequency (rad/sec)

Page 7: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

7

PI Controller II

• PI compensator

• System dynamics • Phase margin 91.4,

• Bandwidth 7.66 rad/s

• Digital Implementation (ZOH)

Sept 24, 2015 IEEE Rock River Valley Section Meeting 13

-5

0

5

10

15

20

Ma

gn

itu

de

(d

B)

10

0

10

1

-89.2

-89

-88.8

-88.6

-88.4

-88.2

Ph

as

e (

de

g)

Bode Diagram

Gm = Inf , Pm = 91.4 deg (at 7.66 rad/sec)

Frequency (rad/sec)

1

003499.00035.0)(2

z

zzGc

ssGc

01295.00035.0)(2

Noise in Output Current

• Prototype converter implementation

• Undesirable noise observed

Sept 24, 2015 IEEE Rock River Valley Section Meeting 14

7.8 7.85 7.9 7.95 9.99

10

10.01

Time (sec)

cu

rren

t(A

)

Page 8: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

8

FFT Analysis of Noise

• Frequency components • 360 Hz, 720 Hz, 20 kHz

Sept 24, 2015 IEEE Rock River Valley Section Meeting 15

Analysis of Noises • Coupled through current sensor

• Circuit techniques used

• Grounding

• Shielding

• Filter required

Sept 24, 2015 IEEE Rock River Valley Section Meeting 16

Page 9: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

9

Filter Design

• Pass band

• 100 Hz

• 0.1db

• Stop band

• 300 Hz

• 65 db

• Filter has little effect on system

• System bandwidth about 2.5 Hz

Sept 24, 2015 IEEE Rock River Valley Section Meeting 17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-100

-80

-60

-40

-20

0

Frequency (kHz)

Ma

gn

itu

de

(d

B)

Butterworth Magnitude Response (dB)

Astop = 65dB

Apass = 0.1dB

Fstop = 300 Hz

Fpass = 100 Hz

Results of Filtering

• Noise signals considerably reduced

Sept 24, 2015 IEEE Rock River Valley Section Meeting 18

Page 10: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

10

Comparison of Different Types of Digital Filters Buttorworth Chebyshev

-I

Chebyshev

-II

Elliptic Maximally

Flat

Stop band

attenuation (dB)

69.5

69.5

69.5

78.28

49

Filter order

9

6

6

5

5

Multiplication

18

12

12

10

14

Addition

18

12

12

10

10

Delay

9

6

6

5

5

Sept 24, 2015 IEEE Rock River Valley Section Meeting 19

Step Response of Digital Simulation using Different Filters

Sept 24, 2015 IEEE Rock River Valley Section Meeting 20

Page 11: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

11

Voltage Feedforward Control

• Input voltage variations create disturbances

• Duty cycle adjusted • Based on variation from nominal voltage

Sept 24, 2015 IEEE Rock River Valley Section Meeting 21

Vin= nominal voltage

d= nominal duty cycle

Vin’= actual voltage

d’= actual duty cycle

dV

Vd

in

in '

'

System Block Diagram • Simplified diagram

Sept 24, 2015 IEEE Rock River Valley Section Meeting 22

Controller I

IIR

Filter

Controller II

Feed-

forward

Giv

Gid

Iref

d

d’

Vin

Vin’

Disturb-

ance

Page 12: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

12

Digital Control System Simulation

Sept 24, 2015 IEEE Rock River Valley Section Meeting 23

Simulation Results • Fast rise at startup transient

• No overshoot

Sept 24, 2015 IEEE Rock River Valley Section Meeting 24

Page 13: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

13

Digital Control – Buck Converter • Summary

• A digital control system has been designed and evaluated for buck converters at the Advanced Photon Source at the Argonne National Lab

• PI controllers were designed for the converter using frequency response techniques

• A digital controller can easily switch between two sets of gains based on the output current error • First set of PI controller: fast transient response

• Second set of PI controller: better steady state response

Sept 24, 2015 IEEE Rock River Valley Section Meeting 25

Adaptive Sliding Mode Control – Boost Converter

Sept 24, 2015 IEEE Rock River Valley Section Meeting 26

Boost converter

Page 14: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

14

Averaged Model of Boost Converter

Sept 24, 2015 IEEE Rock River Valley Section Meeting 27

21

2

21

)1(

)1(

xCC

xux

L

V

L

xux in

x1 – Average inductor current iL

X2 – Average capacitor voltage vo

L – Inductor

C – Capacitor

RO – Load resistor

θ – 1/RO

Vin – Input voltage

Control for Boost Converter • Boost converter’s model is nonlinear

• Inherently variable structured because of the switching action

• Sliding mode control • A systematic design method

• Can yield a closed loop system that is very robust against plant uncertainties and external disturbances

• PWM-based adaptive sliding mode control

Sept 24, 2015 IEEE Rock River Valley Section Meeting 28

Page 15: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

15

Sliding Mode Control

Sept 24, 2015 IEEE Rock River Valley Section Meeting 29

Estimator-Based Adaptation Laws Design

Sept 24, 2015 IEEE Rock River Valley Section Meeting 30

ininin

inin

in

VVVxxxxxx

KK

xxxx

VV

Where

xKxCC

xux

xKL

V

L

xux

ˆ~ ,ˆ

~ ,ˆ~ ,ˆ~

gainsobserver theare 0 and 0

lyrespective and of estimates theare ˆ and ˆ

lyrespective and of estimates theare ˆ and ˆ

~~~

)1(~

~~~

)1(~

222111

21

2121

2221

2

112

1

Page 16: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

16

Adaptation Law • To generate the adaptation laws, we consider the following

Lyapunov function

• Time derivative along the Lyapunov function

• Adaptation law

Sept 24, 2015 IEEE Rock River Valley Section Meeting 31

2

2

2

1

2

2

2

1

~

2

1~

2

1~

2

1~

2

1inVxCxLV

]ˆ1~[~

]ˆ1~[

~~~

2

1

1

22

2

22

2

11 inin VxVxxxCKxLKV

12

221

xV

xx

in

Sliding Mode Controller Design • Switching surface

• Control is derived by differentiating σ with time

Sept 24, 2015 IEEE Rock River Valley Section Meeting 32

ˆˆ

ˆ

2

1

in

ref

V

Vx

2

12

2

2

22

2

1

11

ˆ

)~ˆ

ˆˆ

~ˆ(

1x

xV

LVxx

V

LVxLKV

u in

ref

in

ref

in

eq

Page 17: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

17

Adaptive Sliding Mode Control System

Sept 24, 2015 IEEE Rock River Valley Section Meeting 33

Boost Converter

Sept 24, 2015 IEEE Rock River Valley Section Meeting

Parameter Value Unit

Input voltage Vin 6 V

Inductance L 180 μH

Capacitance C 150 μF

Output resistance 40 Ω

Switching frequency 200 kHz

34

Page 18: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

18

Transient Response with Step Reference Voltage Change – Vref from 7 V to 12 V

Sept 24, 2015 IEEE Rock River Valley Section Meeting 35

Output voltage

Sliding surface

Inductor current

Transient Response with the Load Resistor Ro Varying Between 40 Ω and 160 Ω

Sept 24, 2015 IEEE Rock River Valley Section Meeting 36

Output voltage

Sliding surface

Inductor current

Page 19: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

19

Transient Response with the Input Voltage Vin Varying From Nominal Value of 6 V to 10 V

Sept 24, 2015 IEEE Rock River Valley Section Meeting 37

Output voltage

Sliding surface

Inductor current

Adaptive Sliding Mode Control – Boost Converter

• Summary • Controller were designed to deal with unknown load resistance and

input voltage

• Closed-loop system is asymptotically stable

• Experimental results show excellent recovery to input voltage variations and unmodelled load variations

• The controller design can be easily extended to other DC-DC converters

Sept 24, 2015 IEEE Rock River Valley Section Meeting 38

Page 20: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

20

Wide Band Gap (WBG) Devices • Main advantages of WBG devices

• Much smaller switching losses

• Able to operate at higher temperature without much change in electrical properties, leading to better reliability

• High frequency of operation, leading to smaller passive components

• Allow power electronics components to be smaller, faster, more reliable and efficient

Sept 24, 2015 IEEE Rock River Valley Section Meeting 39

Modeling of SiC MOSFET • A level-1 SPICE model for the 1,200 V / 100 A half-bridge SiC

power MOSFET module was developed

• Circuit model parameters for the SiC MOSFET were extracted from the measured static I-V and C-V data.

• A double pulse gate switching circuit was used to validate the model

Sept 24, 2015 IEEE Rock River Valley Section Meeting 40

Page 21: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

21

Key Device Parameters

Sept 24, 2015 IEEE Rock River Valley Section Meeting

Parameter Silicon IGBT SiC MOSFET

Voltage Rating (V) 600 1,200

Current Rating (A) @ Tj = 25°C 400 168

Forward voltage drop (V) 2.1 @ Tj = 25°C and VGE = 15V

-

On resistance (mΩ) 16 @ Tj = 25°C and VGS= 20V

41

Tests #1 – Conduction Losses • Computation of the conduction and switching losses at 20 kHz

when the load current varies from 50 A to 400 A.

Sept 24, 2015 IEEE Rock River Valley Section Meeting 42

Page 22: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

22

Test #1 – Switching Losses

Sept 24, 2015 IEEE Rock River Valley Section Meeting 43

Test #2 • Computation of the conduction and switching losses for 4

different loads as the switching frequency is varied from 5 kHz to 25 kHz • 100 A, 200 A, 300 A, 400 A

Sept 24, 2015 IEEE Rock River Valley Section Meeting 44

Page 23: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

23

Sept 24, 2015 IEEE Rock River Valley Section Meeting

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

Co

nd

uc

tio

n L

oss

es

(W)

Switching Frequency (kHz)

Conduction Losses IGBT 100A Conduction Losses IGBT 200A

Conduction Losses IGBT 300A Conduction Losses IGBT 400A

Conduction Losses MOSFET 100A Conduction Losses MOSFET 200A

Conduction Losses MOSFET 300A Conduction Losses MOSFET 400A

45

0

20

40

60

80

100

120

0 5 10 15 20 25 30

Turn

-ON

Lo

sse

s (W

)

Switching Frequency (kHz)

Turn-ON Losses IGBT 100A Turn-ON Losses IGBT 200A Turn-ON Losses IGBT 300A Turn-ON Losses IGBT 400A Turn-ON Losses MOSFET 100A Turn-ON Losses MOSFET 200A Turn-ON Losses MOSFET 300A Turn-ON Losses MOSFET 400A Turn-ON Losses IGBT 100A Turn-ON Losses IGBT 200A Turn-ON Losses IGBT 300A Turn-ON Losses IGBT 400A Turn-ON Losses MOSFET 100A Turn-ON Losses MOSFET 200A

46 Sept 24, 2015 IEEE Rock River Valley Section Meeting

Page 24: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

24

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

Turn

-OFF

Lo

sse

s (W

)

Switching Frequency (kHz)

Turn-OFF Losses IGBT 100A Turn-OFF Losses IGBT 200A

Turn-OFF Losses IGBT 300A Turn-OFF Losses IGBT 400A

Turn-OFF Losses MOSFET 100A Turn-OFF Losses MOSFET 200A

Turn-OFF Losses MOSFET 300A Turn-OFF Losses MOSFET 400A

47 Sept 24, 2015 IEEE Rock River Valley Section Meeting

Test #3 • Varying the switching frequency of the SiC MOSFET to a

wider range from 30 kHz to 150 kHz

Sept 24, 2015 IEEE Rock River Valley Section Meeting 48

Page 25: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

25

49

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

Co

nd

uc

tio

n L

oss

es

(W)

Switching Frequency (kHz)

Conduction Losses 100A (W) Conduction Losses 200A (W) Conduction Losses 300A (W) Conduction Losses 400A (W)

Sept 24, 2015 IEEE Rock River Valley Section Meeting

50

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

Turn

-ON

Lo

sse

s (W

)

Switching Frequency (kHz)

Turn-ON Losses 100A (W) Turn-ON Losses 200A (W) Turn-ON Losses 300A(W) Turn-ON Losses 400A (W)

Sept 24, 2015 IEEE Rock River Valley Section Meeting

Page 26: Modeling and Digital Control of DC-DC Converters - IEEEsites.ieee.org/rockrivervalley/files/2015/10/2015IEEERockford_Sept... · Modeling and Digital Control of DC-DC Converters

10/1/2015

26

51

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160

Turn

-OFF

Lo

sse

s (W

)

Switching Frequency (kHz)

Turn-OFF Losses 100A (W) Turn-OFF Losses 200A (W) Turn-OFF Losses (W) Turn-OFF Losses 400A (W)

Sept 24, 2015 IEEE Rock River Valley Section Meeting

Conclusion • Buck converter

• PI controller with two sets of gains

• Digital filter

• Boost coverter • Adaptive sliding mode control

• SiC power MOSFET based dc-dc converters have the potential for significant improvement in the energy efficiency compared to silicon IGBT converters currently employed

Sept 24, 2015 IEEE Rock River Valley Section Meeting [email protected] 52