modeling arterial wall transport for drug-eluting … arterial wall transport for drug-eluting...

24
Modeling Arterial Wall Transport For Drug-Eluting Stents Franz Bozsak Abdul I. Barakat Jean-Marc Chomaz Laboratoire d’Hydrodynamique (LadHyX) Ecole Polytechnique, France "Mechanics and Living Systems Initiative" LadHyX-LMS COMSOL Conference Stuttgart 2011 October 26, 2011

Upload: lamthien

Post on 08-Apr-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

  • Modeling Arterial Wall TransportFor Drug-Eluting Stents

    Franz Bozsak

    Abdul I. BarakatJean-Marc Chomaz

    Laboratoire dHydrodynamique (LadHyX)Ecole Polytechnique, France

    "Mechanics and Living Systems Initiative" LadHyX-LMS

    COMSOL Conference Stuttgart 2011October 26, 2011

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Why Drug-Eluting Stents?

    Initial problem: re-occlusion of Bare-metal stents quickly afterimplantationTodays common solution: Drug-eluting stents (DES) for treatingcoronary atherosclerosis

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 2 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Atherosclerosis and Drug-Eluting Stents

    Many different DES designshave been proposed.Clinical trials and animalstudies of different stents showdiverse responses of the targetvessel.The underlying causes are notwell understood.

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 3 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Modeling the Arterial Wall and Drug Transport

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 4 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Modeling the Arterial Wall and Drug TransportModel of the Arterial Wall

    Multi-LayerSES and mediadescribed as porouslayersET and IEL expressedas Kedem-Katchalskymembranes (Prosi et al.(2005))Commonly used formacromoleculartransport simulations

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 4 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Baseline Model of the Stented Artery

    Layers: multi-layer model +Reaction: reversible binding model +Drug: paclitaxel

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 5 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Baseline Model of the Stented Artery

    Implemented in COMSOL Multiphysics 4.2

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 5 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Baseline Model of the Stented Artery: Intima

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 6 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Solute Dynamics Model: Reaction Model

    Reaction Model of Specific Binding and Differential Equation Representation

    L + Skfkr

    B dbdt

    = Da2(c (1 b)

    forward

    bMc0Bp

    b reverse

    )

    b : Concentration of Bound Drug c : Concentration of Free Drug

    Da2: 2nd Damkhler number = reactiondiffusion Bp : Binding Potential:hydrophilic drugs: small Bphydrophobic drugs: large Bp

    Drug Properties: Paclitaxel vs. Sirolimus

    Drug Pe Da1 = reactionconvection Da2 Bp =bmKd

    Kd =krkf

    [molm3

    ]bM

    [molm3

    ]Paclitaxel 13.0 0.5 6.8 41 3.1 103 0.127Sirolimus 3.7 33.8 125.0 139 2.6 103 0.366

    (Tzafriri et al. (2009))Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 7 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Solute Dynamics Model: Reaction Model

    Reaction Model of Specific Binding and Differential Equation Representation

    L + Skfkr

    B dbdt

    = Da2(c (1 b)

    forward

    bMc0 Bp

    b

    reverse

    )

    b : Concentration of Bound Drug c : Concentration of Free Drug

    Da2: 2nd Damkhler number = reactiondiffusion Bp : Binding Potential:hydrophilic drugs: small Bphydrophobic drugs: large Bp

    Drug Properties: Paclitaxel vs. Sirolimus

    Drug Pe Da1 = reactionconvection Da2 Bp =bmKd

    Kd =krkf

    [molm3

    ]bM

    [molm3

    ]Paclitaxel 13.0 0.5 6.8 41 3.1 103 0.127Sirolimus 3.7 33.8 125.0 139 2.6 103 0.366

    (Tzafriri et al. (2009))Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 7 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Solute Dynamics Model: Reaction Model

    Reaction Model of Specific Binding and Differential Equation Representation

    L + Skfkr

    B dbdt

    = Da2(c (1 b)

    forward

    bMc0 Bp

    b

    reverse

    )

    b : Concentration of Bound Drug c : Concentration of Free Drug

    Da2: 2nd Damkhler number = reactiondiffusion Bp : Binding Potential:hydrophilic drugs: small Bphydrophobic drugs: large Bp

    Drug Properties: Paclitaxel vs. Sirolimus

    Drug Pe Da1 = reactionconvection Da2 Bp =bmKd

    Kd =krkf

    [molm3

    ]bM

    [molm3

    ]Paclitaxel 13.0 0.5 6.8 41 3.1 103 0.127Sirolimus 3.7 33.8 125.0 139 2.6 103 0.366

    (Tzafriri et al. (2009))Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 7 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Study Objectives

    Assess the advantages of a multi-layer modelInvestigate the transport dynamics of the two commonly appliedhydrophobic drugs paclitaxel and sirolimus.

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 8 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Arterial Wall Dynamics: Drug Transport

    Total Drug Concentration

    0

    2 103

    4 103

    6 103

    8 103

    0.0010.01 0.1 1N

    orm

    .m

    ean

    concentr

    ation

    (c c0

    )50 100 150

    Time (h)

    media

    SES

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 9 / 17

    VMP_2S_c.aviMedia File (video/avi)

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Effect of Flow Reynolds Number

    0

    2 103

    4 103

    6 103

    8 103

    100 300 500 700 900

    Max.

    norm

    .m

    ean

    Flow Reynolds number

    concentr

    ation( c /

    c0

    )

    mediaSES

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 10 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Effect of the Choice of Drug

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 11 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Arterial Wall Dynamics: Fast- vs. Slow-Release

    Fast-release

    0

    2 103

    4 103

    6 103

    8 103

    0.010.1 1

    Norm

    .m

    ean

    wall

    concentr

    ation( c /

    c0

    )

    50 100 150Time (h)

    paclitaxel

    sirolimus

    Slow-release

    0

    0.5 103

    1.5 103

    2.5 103

    1 103

    2 103

    0 10 20 30 40 50 60

    Norm

    .m

    ean

    wall

    Time (d)

    concentr

    ation( c /

    c0

    ) paclitaxelsirolimus

    Drug Pe 1st Da 2nd Da Bp =bmKd

    Kd =krkf

    [molm3

    ]bM

    [molm3

    ]Paclitaxel 13.0 0.5 6.8 41 3.1 103 0.127Sirolimus 3.7 33.8 125.0 139 2.6 103 0.366

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 12 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Arterial Wall Dynamics: Fast- vs. Slow-Release

    Fast-release

    0

    2 103

    4 103

    6 103

    8 103

    0.010.1 1

    Norm

    .m

    ean

    wall

    concentr

    ation( c /

    c0

    )

    50 100 150Time (h)

    paclitaxel

    sirolimus

    Slow-release

    0

    0.5 103

    1.5 103

    2.5 103

    1 103

    2 103

    0 10 20 30 40 50 60

    Norm

    .m

    ean

    wall

    Time (d)

    concentr

    ation( c /

    c0

    ) paclitaxelsirolimus

    Drug Pe 1st Da 2nd Da Bp =bmKd

    Kd =krkf

    [molm3

    ]bM

    [molm3

    ]Paclitaxel 13.0 0.5 6.8 41 3.1 103 0.127Sirolimus 3.7 33.8 125.0 139 2.6 103 0.366

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 12 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Arterial Wall Dynamics: Fast- vs. Slow-Release

    Fast-release

    0

    2 103

    4 103

    6 103

    8 103

    0.010.1 1

    Norm

    .m

    ean

    wall

    concentr

    ation( c /

    c0

    )

    50 100 150Time (h)

    paclitaxel

    sirolimus

    Slow-release

    0

    0.5 103

    1.5 103

    2.5 103

    1 103

    2 103

    0 10 20 30 40 50 60

    Norm

    .m

    ean

    wall

    Time (d)

    concentr

    ation( c /

    c0

    ) paclitaxelsirolimus

    Drug Pe 1st Da 2nd Da Bp =bmKd

    Kd =krkf

    [molm3

    ]bM

    [molm3

    ]Paclitaxel 13.0 0.5 6.8 41 3.1 103 0.127Sirolimus 3.7 33.8 125.0 139 2.6 103 0.366

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 12 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Arterial Wall Dynamics: Drug BindingPaclitaxel Sirolimus

    Occupied Binding Site Fraction

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 13 / 17

    VMP_2S_b.aviMedia File (video/avi)

    VMS_2S_b.aviMedia File (video/avi)

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Arterial Wall Dynamics: Transport Modes

    PaclitaxelMode I: Transport-dominatedMode II: Competition of transport and reaction (binding)Mode III: Reaction-dominated (unbinding)

    SirolimusMode I: Reaction-dominated (binding)Mode II: Competition of transport and reaction (binding)Mode III: Reaction-dominated (unbinding)

    Drug Pe Da1 Da2

    Paclitaxel 13.0 0.5 6.8Sirolimus 3.7 33.8 125.0

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 14 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Conclusions

    MULTI-LAYER MODEL INCREASES SPATIAL RESOLUTIONDifferent properties of intima and media have to be taken intoaccount.

    TRANSPORT DYNAMICS DIVIDED IN THREE DISTINCT MODESModes I+II: set distribution pattern and toxicity/efficacy levels.Mode III: determine the efficiency of the stent design.

    OPTIMIZATION POTENTIALAdjusting drug properties and release kinetics as part of the stentdesign with the goal of improving drug retention and distributionwithin the arterial wall.

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 15 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Acknowledgments

    PhD Fellowship: Ecole Polytechnique

    Sponsor: AXA Research Fund

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 16 / 17

  • Introduction Materials and Methods Results and Discussion Conclusions Epilogue

    Thank you for your Attention!

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 17 / 17

  • Numerical Model: Mesh

    lumen

    arterial wall

    polymer

    boundary layer elements

    300,000 elements

    Bozsak (LadHyX) Modeling Arterial Wall Transport COMSOL 2011 10/26/11 1 / 1

    IntroductionAtherosclerosis and DES

    Materials and MethodsMathematical/Physical ModelReaction Model

    Results and DiscussionObjectivesFlowReaction

    ConclusionsEpilogueAppendix

    conference-button: