modeling interfacial flux layer phenomena in the shell/mold gap using con1d

37
University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab Ya Meng 1 Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D Ya Meng Department of Materials Science &. Engineering University of Illinois at Urbana-Champaign October 15, 2002

Upload: shalin

Post on 18-Feb-2016

66 views

Category:

Documents


0 download

DESCRIPTION

Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D. Ya Meng Department of Materials Science &. Engineering University of Illinois at Urbana-Champaign October 15, 2002. Outline. Improvements to CON1D7 Ideal mold taper Funnel mold Specific heat in mushy zone Others - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 1

Modeling Interfacial Flux Layer Phenomena in the Shell/Mold

Gap Using CON1D

Ya Meng

Department of Materials Science &. Engineering University of Illinois at Urbana-Champaign

October 15, 2002

Page 2: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 2

Outline Improvements to CON1D7

Ideal mold taperFunnel moldSpecific heat in mushy zoneOthers

Friction model description Sample cases discussion and results Conclusions Experiment: measure friction coefficient Future work

Page 3: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 3

Improvements to CON1D7 Ideal taper calculation, including the effect of

mold distortion, flux layer thickness and funnel mold extra length (if present)

Specific heat in mushy zone based on phase fraction

Update phase diagram according to user input solidus/liquidus temperature

Heat flux input above meniscus Curved mold for 2D mold temperature model Friction model

Page 4: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 4

Ideal Taper Ideal taper for slab and billet:

xtaper: ideal taper (mm)

xshell: steel shell shrinkage (mm)

xmold: mold wall disortion (mm)

xgap: flux layer thickness (=dliquid+dsolid) (mm)

xother: extra mold geometry change, e.g. funnel mold (mm)

supscript “o” means value at the reference position, where shell shrinkage begins

o o otaper shell mold mold gap gap other otherx x x x x x x x

Page 5: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 5

Mold Distortion: Billet Billet mold distortion:

mold: mold expansion coefficient (K-1)

W: mold width (mm)Thot: mold hot face temperature (oC)

Tcold: mold cold face temperature (oC)

2 2hot cold

mold moldT TWx

Page 6: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 6

Mold Distortion: Slab Slab mold distortion:

Wide face distortion, xWF :

T’hot, T’cold : linearized mold hot face and cold face temperature (oC)

Narrow face distortion, xNF :

thot, tcold : mold hot layer and cold layer thickness (mm)

Ehot, Ecold : mold hot layer and cold layer elastic modulus (Pa)

' '

2 2hot cold

WF moldT TWx

mold NF WFx x x

2_2

2 3

3

4 6 4

hot cold hot cold hot coldNF total mold

cold

hot hot hot hot cold cold

cold cold cold cold hot hot

T T t tx Z z z

t K

t t E t E tKt t E t E t

Page 7: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 7

Funnel Mold - Perimeter Calculation Funnel mold (Nucor Steel)

a: half funnel width

b: funnel depth at given position

R: funnel radius

D: total funnel height

1sin

2 2

2 2

2 2

a +bR=4b

Total perimeter = 2 N +W +2x

extra length x= 2R - a

a +b 2abx a2b a +b

a b

R A

A

D

b

A-A

W

W+2x

Page 8: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 8

Specific HeatSpecific heat in mushy zone based on phase fraction

1

10

800 1000 1200 1400 1600 1800

Micro Segregation ModelMeasured Data

Spe

cific

Hea

t (kJ

/kgK

)

Temperature (K)

Material: AISI 1026

Page 9: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 9

Previous Work

Pseudo-transient analytical model of heat flux and flow in interfacial liquid flux layer

Stress model in solid flux layer Mold friction depends on powder flux

consumption rate and solid flux velocity Predicting mold flux critical consumption rate

Page 10: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 10

Review: Liquid Layer Transient Model

-40

-20

0

20

400 0.05 0.1 0.15 0.2

CON1DFDM Flux Model

Vel

ocity

(mm

/s)

x (mm)

upstroke

Vmold

=0, average solid flux velocity

downstroke

Page 11: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 11

Review: Solid Layer Stress Model zb

static

z0 (z+z)

s/l

ds

z0 (z)

y y

Upstroke

Maximum static friction limits stress

When friction on mold side can not compensate the shear stress on flux solid/liquid interface, axial stress builds up in solid flux layer.If the axial stress exceeds the flux fracture strength, solid flux breaks and moves along the mold wall.

Page 12: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 12

Review: Critical Consumption Rate

Crystalline mold flux: lower consumption causes fracture near meniscus

Critical consumption rate: 0.28kg/m2 for 1.0m/min casting speed

-2 104

0

2 104

4 104

6 104

8 104

0 100 200 300 400 500 600 700 800

Maximum Up StrokeMaximum Down Stroke

Axi

al S

tress

in S

olid

Flu

x (P

a)

Distance Below Meniscus (mm)

flux fracture strength: 80KPa

-2000

-1000

0

1000

2000

3000

0 20 40 60 80 100

up, sol/liq interfaceup, mold sidedown, sol/liq interfacedown, mold sideMaximum Static Friction on Mold Wall

She

ar S

tress

(Pa)

Distance Below Meniscus (mm)

axial stress builds up

Page 13: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 13

Review: Critical Consumption Rate

Glassy mold flux: lower consumption causes fracture near mold exit

Critical consumption rate: 0.35kg/m2 for 1.0m/min casting speed

-2 104

0

2 104

4 104

6 104

8 104

0 100 200 300 400 500 600 700 800

Maximum Up StrokeMaximum Down Stroke

Axi

al S

tress

in S

olid

Flu

x (P

a)

Distance Below Meniscus (mm)

flux fracture strength: 80KPa

-1 104

-5000

0

5000

1 104

1.5 104

2 104

2.5 104

3 104

0 100 200 300 400 500 600 700 800

up, sol/liq interfaceup, mold sidedown, sol/liq interfacedown, mold sideMaximum Static Friction on Mold Wall

She

ar S

tress

(Pa)

Distance Below Meniscus (mm)

axial stress builds up

Page 14: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 14

Objectives

What will happen if the flux fractures? Solid flux layer moves down the mold

What is the solid flux velocity? liquid fills the gap between the top attached part and

bottom moving part What is the gap size? Can liquid fill in the gap?

solid flux re-attaches to mold wall Will it break again? Where and when?

liquid flux runs out Will flux move with the steel shell?

Page 15: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 15

Phenomena Description

mold and solid flux rim move upward

liquid flux channel gap at meniscus increases

pressure in the channel gap decreases

liquid flux fills in the channel gap

liquid layer thickness below meniscus decreases

flux consumption to meniscus region occurs

Page 16: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 16

Phenomena Description

mold and solid flux rim move downward

liquid flux channel gap at meniscus decreases

pressure in the channel gap increases

liquid flux is squeezed out of the channel gap

liquid layer thickness below meniscus increases

flux consumption to lower shell region occurs

Page 17: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 17

Fracture Model Description Fracture happens at the maximum up-stroke due to axial tensile stress After fracture, solid flux moves down the mold wall, with a velocity that

depends on force balance between the two sides:

Mold/solid flux interface:

/mold solid flux moving steelgz

Solid/liquid flux interface:

/

1 12

s l

c ss flux steel l

l

n V V ngd

d n

m/s=s/l Vs can be calculated

-40

-30

-20

-10

0

10

20

30

40-0.2 0 0.2 0.4 0.6 0.8

VmoldVsolidVc

Vel

ocity

(mm

/s)

Time (s)

Page 18: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 18

Fracture Model Description Gap occurs when solid flux layer fractures, gap size:

Part of liquid flux is consumed to fill in the gap:

where q is consumption rate (m2/s)

_

_

t reattach

solid moldt fractctureL V V dt

_total fill in liquid oscq q q q

_solid c

fill inmold

L d Vq

Z

0

liquidd

liquid liquidq V dx,liquid solidd d

Page 19: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 19

Sample Cases

Case 1: dliquid=constant, never fractures Case 2: dliquid fluctuates from meniscus to 100mm below

meniscus, fractures once Case 3: dliquid fluctuates from meniscus to 150mm below

meniscus, frequently fractures near meniscus and mold exit, liquid flux nearly runs out at

mold exit Case 4: dliquid fluctuates from meniscus to 200mm below

meniscus, more frequently fractures near meniscus, also fractures at the bottom of mold, liquid flux runs out before mold exit

Page 20: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 20

Example Application: Input Conditions Casting Speed: 1.0 m/min Pour Temperature: 1550 oC Slab Geometry: 1500*230 mm2

Nozzle Submergence depth: 265 mm Working Mold Length: 800 mm Time Step: dt=0.002 s Mesh Size: dx=0.5 mm Fraction Solid for Shell Thickness location: 0.3 Carbon Content: 0.05 % Mold Powder Solidification Temperature: 950 oC Mold Powder Conductivity (solid/liquid): 1.5/1.5 W/mK Mold Powder Density: 2500 kg/m3

Mold Powder Viscosity at 1300 oC: 4.2 poise Exponent for temperature dependency of viscosity: 1.6 - Fracture strength (tensile/compress): 80/8000 KPa Mold Powder Consumption Rate: 0.45 kg/m2

Mold/flux coefficient (static/moving): 0.4/0.4 - Oscillation Mark Geometry (depth*width): 0.45*4.5 mm2

Mold Oscillation Frequency: 83.3 cpm Oscillation Stroke: 7.8 mm Mold Thickness (including water channel): 51 mm Initial Cooling Water Temperature: 30 oC Water Channel Geometry (depth*width*distance): 25*5*29 mm3

Cooling Water Flow rate: 7.8 m/s

Page 21: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 21

Liquid Flux Layer Thickness: Case 1& 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800

transient

average

up stroke

down stroke

Liqu

id L

ayer

Thi

ckne

ss (m

m)

Diatance Below Meniscus (mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150

transient

average

up stroke

down stroke

Liqu

id L

ayer

Thi

ckne

ss (m

m)

Diatance Below Meniscus (mm)

Assume bi-linear liquid flux layer amplitude variation with time/distance

(average and frequency are calculated)

Case 1

Case 2

Page 22: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 22

Liquid Layer Thickness & Shear Stress During Oscillation Cycle: Case 1 &2

-40

-30

-20

-10

0

10

20

30

400 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Vmold

Vc

Vel

ocity

(mm

/s)

Time (s)

17mm below meniscus

-100

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Case 1Case 2

She

ar S

tress

(Pa)

Time (s)0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Case 1Case 2

Liqu

id L

ayer

Thi

ckne

ss (m

m)

Time (s)

Max. static friction (axial stress provides rest)

Liquid shear balance drag forces

Page 23: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 23

Axial Stress in Solid Flux LayerCase 1 & 2

-2 104

0

2 104

4 104

6 104

8 104

0 100 200 300 400 500 600 700 800

Case 1Case 2

Axi

al S

tress

in S

olid

Flu

x La

yer (

Pa)

Diatance Below Meniscus (mm)

-40

-30

-20

-10

0

10

20

30

400 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Vmold

Vc

Vel

ocity

(mm

/s)

Time (s)

0

1 104

2 104

3 104

4 104

5 104

6 104

7 104

8 104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Case 1Case 2

Axi

al s

tress

(Pa)

Time (s)

17mm below meniscus

Page 24: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 24

Liquid Flux Layer Thickness: 4 Cases

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

Case 1

Case 2

Case 3

Case 4

Liqu

id L

ayer

Thi

ckne

ss (m

m)

Diatance Below Meniscus (mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800

Case 1

Case 2

Case 3

Case 4

Liqu

id L

ayer

Thi

ckne

ss (m

m)

Diatance Below Meniscus (mm)

Page 25: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 25

Axial Stress in Solid Flux Layer: 4 Cases

-2 104

0

2 104

4 104

6 104

8 104

0 100 200 300 400 500 600 700 800

Case 1Case 2Case 3Case 4

Axi

al S

tress

in S

olid

Flu

x La

yer (

Pa)

Diatance Below Meniscus (mm)

Page 26: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 26

Flux Layer Thickness: 4 Cases

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800

Case1: dsolid

Case1: dtotal

Case 2: dsolid

Case 2: dtotal

Case 3: dsolidl

Case 3: dtotal

Case 4: dsolid

Case 4: dtotal

Thic

knes

s (m

m)

Diatance Below Meniscus (mm)

Page 27: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 27

Solid Flux Layer Dwell Time in Mold

0

40

80

120

160

0 100 200 300 400 500 600 700 800

Case 2

Case 3

Case 4

Tim

e to

Sta

y in

Mol

d (m

in)

Diatance Below Meniscus (mm)

0

5

10

15

20

0 100 200 300 400 500 600 700 800

Case 2

Case 3

Case 4

Tim

e to

Sta

y in

Mol

d (m

in)

Diatance Below Meniscus (mm)

Fracture(s) are assumed to occur once per mold residence time

Page 28: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 28

Heat Flux Comparison

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

Case 1Case 2Case 3Case 4

Hea

t Flu

x (M

w/m

2 )

Diatance Below Meniscus (mm)

Assume solid layer is squeezed to fill in gaps after liquid flux runs out:

resulting thinner layer produces a local heat flux increase.

Page 29: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 29

Mold Temperature Comparison

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800

Case 1: Hot FaceCase 1: Cold FaceCase 2: Hot FaceCase 2: Cold FaceCase 3: Hot FaceCase 3: Cold FaceCase 4: Hot FaceCase 4: Cold Face

Tem

pera

ture

(o C)

Diatance Below Meniscus (mm)

Page 30: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 30

Shell Temperature Comparison

900

1000

1100

1200

1300

1400

1500

1600

0 100 200 300 400 500 600 700 800

Case 1Case 2Case 3Case 4

Tem

pera

ture

(o C)

Diatance Below Meniscus (mm)

Page 31: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 31

Shell Thickness Comparison

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800

Case 1Case 2Case 3Case 4

Thic

knes

s (m

m)

Diatance Below Meniscus (mm)

Page 32: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 32

ResultsCase 1 Case 2 Case 3 Case 4 unit

Heat Flux 1.189 1.202 1.367 1.456 MW/m2

Friction amplitude 0.56 0.66 7.79 18.32 kPa

dliquid at mold exit 0.35 0.32 0.07 0.0 mm

Liquid layer consumption 0.324 0.309 0.151 0.093 kg/ton

Solid layer consumption 0.0 0.015 0.173 0.278 kg/ton

Osc. marks consumption 0.286 0.286 0.286 0.239 kg/ton

Page 33: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 33

Solid Flux Consumption Mechanism When friction on mold side can not compensate the shear

stress on flux solid/liquid interface, axial stress builds up in solid flux layer. If the axial stress exceeds the flux fracture strength, solid flux breaks and moves along the mold wall.

After fracture the solid flux moves down the mold wall, the velocity is calculated according to force balance.

When mold velocity equals to solid flux’s, the solid flux re-attaches to the mold wall.

The above procedure may repeat, when accumulated axial stress exceeds the fracture strength.

When solid flux layer fractures, part of liquid flux fills in the gap due to the fracture, which decreases liquid flux layer thickness.

Page 34: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 34

Conclusions Solid flux consumption implies flux fracturing, which can be caused

by drops in either consumption rate or liquid layer thickness. Liquid layer thickness fluctuation at meniscus due to mold oscillation

may cause solid flux layer to fracture. The fracture frequency depends on liquid layer thickness fluctuation region and amplitude.

Fracture happens at the maximum up stroke and when liquid layer thickness is thin.

Gaps due to fracture near meniscus can be re-filled, while gaps due to fracture near mold exit might not due to liquid flux shortage.

When liquid flux nearly runs out, solid flux layer fractures frequently. It may lead to a heat flux peak, and corresponding mold temperature increase and shell temperature decrease (if solid flux can be squeezed).

Page 35: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 35

Experiment: Flux Friction Coefficient

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Fric

tion

Coe

ffici

ent

Temperature (oC)

Mold Powder: M622/G, 1300=1.32Poise, Tcrystal=1180oC

Experiment Procedure:

1. powder melt in crucible at 1400oC, poured into sample holder

2. sample was in HTT, measure friction coefficient with increasing temperature

Page 36: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 36

Experiment: Flux Friction Coefficient

Mold Powder: M622-C20, 1300=2.0Poise, Tcrystal=1135oC

Experiment Procedure:

1. powder melt in crucible at 1400oC, poured into sample holder

2. sample was in HTT, measure friction coefficient with decreasing temperature

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

Fric

tion

Coe

ffici

ent

Temperature (oC)

two 100rpm, others 50rpm

Page 37: Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ya Meng 37

Future Work

Hydro-dynamic model to predict pressure in liquid flux layer over a cycle, therefore, predict consumption rate and flux layer thickness change over a cycle.

Solid flux layer behavior when liquid flux runs out. Measure flux viscosity and friction coefficient at low

temperature using High Temperature Tribometer. Calculate friction force due to mismatch taper using

normal stress calculation from CON2D.