modeling iso kinetic

Upload: wnew2me428

Post on 29-May-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Modeling Iso Kinetic

    1/13

    Comparison ofIsokinetic Stack Sampler Models

    Under a Variety of Sampling

    Conditions

    S. A. COLBY

    May 2009

  • 8/9/2019 Modeling Iso Kinetic

    2/13

    Washington State Radiation Protection Code Requires

    Radionuclide Potential Emissions Meet Applicable TechnologyStandards.

    Includes the ANSI N13.1 Sampling and Monitoring Releases ofAirborne Radioactive Substances from Stacks.

    ANSI N13.1 Requires Modeling of Stack Sampling Performance.

    -- Which is the subject of this paper --

    S. A. COLBY

    May 2009

    The Big Picture

  • 8/9/2019 Modeling Iso Kinetic

    3/13

    Models Stack Sampling Variations

    1. Aerosol Particle Size

    2. Turbulent Flow

    3. Variance Between a Stack and a Samplers Flow Velocity

    (i.e., Anisokinetic Conditions)

    S. A. COLBY

    May 2009

  • 8/9/2019 Modeling Iso Kinetic

    4/13

    Compares Two Isokinetic Sampler Models

    1. DEPO Freeware by McFarland et al., 2001a.

    2. Handbook Aerosol Sampling; Science, Standards, Instrumentation,

    and Applications, by Vincent et al., 2007.

    S. A. COLBY

    May 2009

  • 8/9/2019 Modeling Iso Kinetic

    5/13

    Isokinetic Sampler Design

    7.5 mm

    LT = 300 mm

    Stack Velocity (VT)= 10 m/s

    dT =

    Particle Diameter (dP)= 10E-6 m

    Gravity (g)= 9.8 m/s2

    Air Density (pa)= 1.2E3 g/m3

    Air Viscosity (ua)= 0.018 g/m-s

    Particle Density (pp)= 1.0E6 g/m3

    S. A. COLBY

    May 2009

  • 8/9/2019 Modeling Iso Kinetic

    6/13

    Vincent Isokinetic Equations(10 40 um Liquid Aerosol)

    1. Settling Velocity (Vs):

    Vs = gdp2pp

    18ua

    4. Gravitational Deposition (GT):GT = (LT/dT)(Vs/VT)

    3. Reynolds Number (Re):

    Re = VTdTpa

    ua

    2. Stokes Number (ST):

    ST = dp2ppVT

    18uadT

    5. Empirical Dimensional Argument (KT):

    KT = ST0.5

    GT0.5

    Re

    0.25

    6. Aerosol Penetration Through a Tube (PVincent):

    PVincent = exp(-4.7KT0.75)

    S. A. COLBY

    May 2009

  • 8/9/2019 Modeling Iso Kinetic

    7/13

    40.0%

    50.0%

    60.0%

    70.0%

    80.0%

    90.0%

    100.0%

    0 2 4 6 8 10 12 14 16 18 20

    Aerosol Aerodynamic Diameter (micron)

    AerosolPenetra

    tion(%)

    Vincent

    DEPO

    S. A. COLBY

    May 2009

    DEPO Model Predicts Substantially LessAerosol Penetration Compared to Vincent

    Nre = 5000

  • 8/9/2019 Modeling Iso Kinetic

    8/13

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    2500 3000 3500 4000 4500 5000 5500

    Reynolds Number

    AerosolPenetratio

    n(%)

    DEPO

    Vincent

    DEPO Predicts Substantial Aerosol LossDuring Turbulent Flow

    S. A. COLBY

    May 2009

    dp = 10 um

    Vs = 0.003

  • 8/9/2019 Modeling Iso Kinetic

    9/13

    Vincent Anisokinetic Equations(25-70 um Silica Aerosol)

    1. Stack Velocity/Sampler velocity (R):

    R= V/Vs

    2. Ratio Coefficient (G):

    G = 2 + 0.62/R09R0.1

    3. Impaction Efficiency (B):

    B = 1-(1/(1+STG))

    S. A. COLBY

    May 2009

    4. Anisotropic Aspiration through Nozzle (Aaspiration):

    Aaspiration =B(R-1)+1

    5. Aerosol Penetration Through a Nozzle & Tube (PVincent):

    PVincent = (Aaspiration)(PVincent)

  • 8/9/2019 Modeling Iso Kinetic

    10/13

    Models Predict Similar Affects FromAnisokinetic Sample Velocity Variations

    S. A. COLBY

    May 2009

    Nre = 5000

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 2 4 6 8 10 12 14 16 18 20

    Aerosol Aerodynamic Diameter (micron)

    AnisokineticAspiration

    Efficiency

    DEPO

    Superisokinetic Ratio = 0.8

    DEPO

    Isokinetic

    Ratio = 1.0

    DEPO

    Subisokinetic

    Ratio = 1.2

    Vincent

    Subisokinetic

    Ratio = 1.2

    Vincent

    Isokinetic

    Ratio = 1.0

    Vincent

    SuperIsokinetic

    Ratio = 0.8

  • 8/9/2019 Modeling Iso Kinetic

    11/13

    S. A. COLBY

    May 2009

    Both Models Have Limitations

    1. Liquid Particles vs. Solid Particles

    2. Based on Quasi-Steady State

    3. Large Model Extrapolations

    4. Compounding Conservatism

  • 8/9/2019 Modeling Iso Kinetic

    12/13

    Practical Considerations

    1. Upstream Rust

    - Settle In Sample Tube

    2. Filter Paper Limited Flowrate- Size Limited to 47 mm

  • 8/9/2019 Modeling Iso Kinetic

    13/13

    Recommend ANSI N13.1 RevisedTo Keep It Simple

    S. A. COLBY

    May 2009

    For Example Provide Probe Design Standards:

    1. 1/4 Inch Nozzle diameter.

    3. Nozzle Reynolds Number 2000.5. 5R Transport Tube Bends.

    7. Electrically Grounded.

    8. Conducting Materials of Construction.

    9. Periodic Inspection Criteria.