modeling the heat equation in 3d for grilling a steak

16
CE291F Gaetano Andreisek · Michael Nava MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

Upload: truongtu

Post on 11-Dec-2016

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

CE291F Gaetano Andreisek · Michael Nava

MODELING THE HEAT EQUATION IN 3D FOR

GRILLING A STEAK

Page 2: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡ Use Partial Differential Equations to model the heating properties of a 3D Object in Cartesian Coordinates

¡ Specifically, we wish to model the cooking process of

a piece of steak in three dimensions

OBJECTIVE

2/53

Page 3: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡ Precise modeling of temperature propagation in a three dimensional object allows us to

§ make predictions § optimize the cooking process to minimize time or energy

consumption § use differential flatness techniques to minimize waste of food

products

MOTIVATION

3/53

Page 4: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

Rate of internal energy accumulation =

Flow of energy into the system -

Flow of energy out of the system +

Rate of energy “generation” of some dif ferent source

cp – Specific Heat Capacity [J/(m3K)] k – Thermal Conductivity [W/(m K)] ρ – Material Density [kg/m3]

DERIVATION OF 3D HEAT EQUATION IN CARTESIAN COORDINATES

∂∂x

k ∂u∂x

"

#$

%

&'+

∂∂y

k ∂u∂y

"

#$

%

&'+

∂∂z

k ∂u∂z

"

#$

%

&'+ u = cpρ

dudt

4/53

Page 5: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡ Plugging into PDE:

¡ Solution:

SEPARATION OF VARIABLES (SOV)

u x, y, z, t( ) =Φ x, y, z( ) ⋅T t( )

∂2Φ∂x2

+∂2Φ∂y2

+∂2Φ∂z2

#

$%

&

'(T t( ) =

cpρkΦ x, y, z( ) ⋅

T t( )dt

⇔∂2Φ∂x2

+∂2Φ∂y2

+∂2Φ∂z2

#

$%

&

'(1Φ=cpρk⋅T 'T

⇔X"X+Y "Y+Z"Z=cpρk⋅T 'T= −λ 2

X x( ) = A ⋅sin µx( )+B ⋅cos µx( )Y y( ) =C ⋅sin νy( )+D ⋅cos νy( )Z z( ) = E ⋅sin γz( )+F ⋅cos γz( )

"

#$

%$

T t( ) =G ⋅e−λ2

kcpρ

t

with :λ 2 = µ 2 +ν 2 +γ 2 5/53

Page 6: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  Initial condition (t = 0): ¡  Dirichlet BCs: ¡  Neumann BCs:

¡  Inhomogeneous BCs:

EXAMPLES FOR IC AND BCS

u x, y, z, 0( ) = f x, y, z( )

u 0, y, z, t( ) = u x 0 , y, z, t( ) = 0u x, 0, z, t( ) = u x, y 0 , z, t( ) = 0u x, y, 0, t( ) = u x, y, x 0 t( ) = 0

!

"#

$#

ux 0, y, z, t( ) = ux x 0 , y, z, t( ) = 0uy x, 0, z, t( ) = uy x, y 0 , z, t( ) = 0uz x, y, 0, t( ) = uz x, y, x 0 t( ) = 0

!

"#

$#

u 0, y, z, t( ) = ux0u x, 0, z, t( ) = uy0u x, y, 0, t( ) = uz0

!

"#

$#

u x0, y, z, t( ) = ux1u x, y0, z, t( ) = uy1u x, y, z0, t( ) = uz1

!

"#

$#

D = x, y, z( ) : 0 ≤ x ≤ x0, 0 ≤ y ≤ y0, 0 ≤ z ≤ z0{ }

6/53

Page 7: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  Using Sturm-Liouville Method

SOLUTION TO DIRICHLET BCS

u x, y, z, t( ) = Amnpp=1

∑n=1

∑ sin mπ xx0

#

$%

&

'(sin

nπ yy0

#

$%

&

'(sin

pπ zz0

#

$%

&

'(e

−π 2kcpρ

mx02 +

ny02 +

pz02

#

$%%

&

'((t

m=1

Amnp =8

x0y0z0f x, y, z( )sin mπ x

x0

!

"#

$

%&sin

nπ yy0

!

"#

$

%&sin

pπ zz0

!

"#

$

%&

'

()

*

+,

D∫∫∫

Amnp =32 ⋅u0

π 3 ⋅m ⋅n ⋅ pFor : f x, y, z( ) = u0 1−

zz0

"

#$

%

&'

7/53

Page 8: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  Based on replacing the dif ferentials by algebraic equations (derivatives by differences)

¡  Discrete corollaries:

NUMERICAL APPROACH – FINITE DIFFERENCE METHOD

df x( )dx

≅f x +Δx( )− f x( )

Δx

dudx i+1

2

≅ui+1 −uiΔx

d 2udx2 i

dudx i+1

2

−dudx i−1

2

Δx=

ui+1 −uiΔx

−ui −ui−1Δx

Δx=ui+1 − 2ui +ui−1

Δx( )2

dudx i−1

2

≅ui −ui−1Δx

8/53

Page 9: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  For each time step, we represent temperature at §  Each corner (8)

PRELIMINARY GEOMETRY - CUBE

9/53

Page 10: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  For each time step, we represent temperature at §  Each corner (8)

PRELIMINARY GEOMETRY - CUBE

6

2 1

3

4

78

5

10/53

Page 11: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  For each time step, we represent temperature at §  Each corner (8) §  The edges (12)

PRELIMINARY GEOMETRY - CUBE

11/53

Page 12: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  For each time step, we represent temperature at §  Each corner (8) §  The edges (12) §  External areas (6) §  Internal volume

PRELIMINARY GEOMETRY - CUBE

12/53

Page 13: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

MATLAB/Video…

NUMERICAL RESULTS

13/53

Page 14: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  Direct analytical solution in MATLAB computationally prohibitive ¡  PDE Toolbox in MATLAB only capable of modeling one and two

dimensional partial dif ferential equations ¡  Finite Element Software like Comsol very expensive ($1,700 for

student version) ¡  Open source modeling software (FEAP) has steep learning curve ¡  Material parameters (Density, Heat Conductivity) and object

dimension change over time

DIFFICULTIES ENCOUNTERED

14/53

Page 15: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡  Continue to improve scalability and extensibility of GUI §  Increase number of input parameters §  Implement user-selected views

¡  Develop differential flatness techniques for higher dimensions ¡  Derivation of analytical solution for nonzero BCs and

comparing results to Finite Difference Method ¡  Testing and verification of results based on data gathered

from CE271 project

FUTURE WORK

15/53

Page 16: MODELING THE HEAT EQUATION IN 3D FOR GRILLING A STEAK

¡ Questions?

Disclaimer: No animal was harmed in the making of this project.

THANK YOU.

16/53