modelling and simulation of mimo channels

Upload: habarjad

Post on 04-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    1/37

    Modelling and Simulation of MIMO Channels

    Matthias Pätzold

    Agder University College

    Mobile Communications Group

    Grooseveien 36, NO-4876 Grimstad, Norway

    E-mail:   [email protected]:  http://ikt.hia.no/mobilecommunications/

    BEATS/CUBAN Workshop 20041/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    2/37

    Contents

    I. Introduction

    II. Principles of Fading Channel Modelling

    III. Modelling of MIMO Channels

    IV. Simulation of MIMO Channels

    V. Conclusion

    BEATS/CUBAN Workshop 20042/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    3/37

    I. Introduction

    Mobile Communications Using Smart Antennas

      

     

    Realistic spatio-temporal channel models are required for the design, test, and optimization

    of mobile communication systems employing smart antenna technologies.

    BEATS/CUBAN Workshop 20043/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    4/37

    Meaning of Channel Modelling and Simulation for Mobile Communications

    Reference system:

    +Channelmodel

    Noise

    Data source Data sink  

    Transmitter Receiverd(i)   x(t)   y(t)   d̂(i)

    ⇒ Performance measure: Bit error probability P b = f 

    E bN 0

    Simulation system:

    +Channel

    Noise

    Data source Data sink  

    Transmitter Receiversimulator

    d(i)   x(t) ỹ(t)   d̃(i)

    ⇒ Performance measure: Bit error probability  P̃ b = f 

    E bN 0

    , ∆β 

    ≈ P b

    ↑Model error•  The model error ∆β  describes the essential error which is introduced by the channel simulator.

    Channel simulators are important for the test, the parameter optimization, and the perfor-

    mance analysis of mobile communication systems.

    BEATS/CUBAN Workshop 20044/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    5/37

    The Two Main Categories of Fading Channel Simulators

    Simulators based on reference models: Simulators based on measurements:

    Simulation model

    Reference model

    Measurement

    Real-world

    Snapshotmeasurementscampaigns

    channel   channelReal-world

    Simulation model

    Problem:   Reference models are not

    close to real-world channels.

    Problem:  Finding of typical scenarios.

    ⇒  The dilemma of mobile fading channel modelling.

    BEATS/CUBAN Workshop 20045/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    6/37

    Some Requirements for Fading Channel Simulators

    •  High precision w.r.t. a given reference model or w.r.t. measured channels

    •  High efficiency

    • The underlying stochastic channel simulator must be ergodic to reduce the number of trials

    •  Easy to determine the model parameters

    •  Easy to understand and easy to implement

    •  Reproducibility for enabling fair performance comparisons

    •  Easy to extend (frequency selectivity, spatial selectivity, multi-cluster propagation scenarios, numberof antenna elements, etc.)

    •  Low complexity

    BEATS/CUBAN Workshop 20046/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    7/37

    II. Principles of Fading Channel Modelling

    Two Fundamental Methods for Modelling of Coloured Gaussian Noise Processes

    1. Filter method:

    ⇒ Stochastic process µ(t)

    ⇒Reference model

    2. Sum-of-sinusoids (SOS) method:

    cos(2πf 1t + θ1)

    cos(2πf 2t + θ2)

    cos(2πf N t + θN )

    c1

    c2

    cN ...

      ...

    ...   ...∞ ∞

          ⊗         ⊗  

          ⊗   + µ(t)

    ⇒ Stochastic process µ(t)⇒ Reference model

    BEATS/CUBAN Workshop 20047/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    8/37

    For a finite number of harmonic functions N , we obtain:

    Parameters:   ensemble

    θn   = Random variable (RV)

    f n   = const.

    cn   = const.

    cos(2πf 1t + θ1)

    cos(2πf 2t + θ2)

    cos(2πf N t + θN )

    c1

    c2

    cN ...   ...

          ⊗         ⊗  

         ⊗  

    +   µ̂(t)

    ⇒ Stochastic process µ̂(t)⇒ Stochastic simulation model

    Parameters:  single realization

    θn   = const.

    f n   = const.

    cn   = const.

    cos(2πf 1t + θ1)

    cos(2πf 2t + θ2)

    cos(2πf N t + θN )

    c1

    c2

    cN ...

      ...

          ⊗         ⊗  

          ⊗   +   µ̃(t)

    ⇒ Deterministic process µ̃(t)⇒ Deterministic simulation model

    BEATS/CUBAN Workshop 20048/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    9/37

    Relationships Between Stochastic Processes, Random Variables,Sample Functions, and Real-Valued Numbers

    Gaussian process:   µ(t) = limN →∞

    N n=1

    cn cos(2πf nt + θn) (cn = const., f n = const.,  θn = RV)

    Stochastic process:   µ̂(t) =N 

    n=1

    cn cos(2πf nt + θn) (cn = const., f n = const.,  θn = RV)

    simulationmodel

    Deterministic

    Stochasticsimulationmodel

    modelReference

    Gaussian process

    Stochastic process

    Random

    variable  

    Sample

    function

    Real number

    t =  t0

    θn = const.   t =  t0

    µ̂(t0) = µ̂(t0, θn)

    µ̂(t0) = µ̃(t0)

    µ̃(t) = µ̂(t, θn)

    N < ∞N  → ∞

    µ̂(t) = µ̂(t,  θn)

    µ(t) = µ(t,  θn)

    θn = const.

    θn = RV

    BEATS/CUBAN Workshop 20049/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    10/37

    Principle of Deterministic Channel Modelling

    Step 1:   Starting point is a reference model derived from one, two or several Gaussianprocesses.

    Step 2:   Derive a stochastic simulation model from the reference model by replacing eachGaussian process by a sum-of-sinusoids with fixed gains, fixed frequencies, and

    random phases.

    Step 3:   Determine the deterministic simulation model by fixing all model parameters of thestochastic simulation model, including the phases.

    Step 4:   Compute the model parameters of the simulation model by using a proper param-eter computation method.

    Step 5:   Simulate one (or some few) sample functions (deterministic processes).

    BEATS/CUBAN Workshop 200410/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    11/37

    Example:  Derivation of a channel simulator for Rice processes

    Step 1:   Reference model   Steps 2 & 3:   Simulation model

    ρµ (t)

    (t)µ2

    1(t)µ

    πf t+θm (t)= ρ ρ)ρ2 sin(2

    cos(2 πf t+θm (t)=1   ρ ρ)ρ

    H (f)

    H (f)

    (t)2v

    (t)1v

    ξ(t)

    ρµ

    ρµ (t)

    (t)

    WGN

    WGN

    2

    1

    ⇐⇒

    ⇒Stochastic Rice process ξ (t)

      ⇒Deterministic Rice process ξ̃ (t)

    Step 4:   Compute the model parameters by fitting the statistics of the deterministic simulationmodel to those of the stochastic reference model.

    Step 5:   Simulate the deterministic Rice process ξ̃ (t).

    BEATS/CUBAN Workshop 200411/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    12/37

    Methods for the Calculation of the Model Parameters

    Deterministic process:   µ̃i(t) =

    N in=1

    ci,n cos(2πf i,nt + θi,n)

    ↑ Model parameters:   gains frequencies phases

    Historical overview

    Methods Disadvantages

    Rice method (Rice, 1944) Small period

    Jakes method (Jakes, 1974) Special case only

    Monte Carlo method (Schulze, 1988) Non-ergodic

    Method of equal distances (Pätzold, 1994) Small period

    Method of equal areas (Pätzold, 1994) Slow convergency

    Harmonic decomposition technique (Crespo, 1995) Small period

    Mean-square-error method (Pätzold, 1996) Small period

    Method of exact Doppler spread (Pätzold, 1996) Special case only

    L p-norm method (Pätzold, 1996) –  

    Method porposed by Zheng and Xiao (2002) Non-ergodic

    BEATS/CUBAN Workshop 200412/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    13/37

    Classes of SOS Channel Simulators and Their Statistical Properties

    Deterministic process:   µ̃i(t) =N i

    n=1ci,n cos(2πf i,nt + θi,n)

    Class Gains Frequencies Phases First-order Wide-sense Mean- Autocor.-

    ci,n   f i,n   θi,n   stationary stationary ergodic ergodic

    I   const. const. const. – – – –  

    II   const. const. RV   yes yes yes yes

    III   const. RV const.   no/yes a no/yes a no/ yes a no

    IV   const. RV RV   yes yes yes   no

    V   RV const. const.   no no no/yes a no

    VI   RV const. RV   yes yes yes   no

    VII   RV RV const.   no/yes a no/yes a no/yes a no

    VIII   RV RV RV   yes yes yes   no

    a

    If certain boundary conditions are fulfilled.

    BEATS/CUBAN Workshop 200413/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    14/37

    Application of the Scheme to Parameter Computation Methods

    Stochastic process:   µ̂i(t) =N in=1

    ci,n cos(2πf i,nt + θi,n)

    ↑ Model parameters:   gains frequencies phases (RVs)

    Parameter computation methods Class FOS WSS Mean-ergodic Autocor.-ergodic

    Rice method   II   yes yes yes yes

    Monte Carlo method   IV   yes yes yes   no

    Jakes method   II   yes yes yes yesHarmonic decomposition technique   II   yes yes yes yes

    Method of equal distances   II   yes yes yes yes

    Method of equal areas   II   yes yes yes yes

    Mean-square-error method   II   yes yes yes yes

    Method of exact Doppler spread   II   yes yes yes yes

    L p-norm method   II   yes yes yes yes

    Method proposed by Zheng and Xiao   IV   yes yes yes   no

    BEATS/CUBAN Workshop 200414/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    15/37

    Applications of the Principle of Deterministic Channel Modelling

    •  Frequency-nonselective channels (Rayleigh, Rice, ext. Suzuki, Nakagami, etc.),

    •  Frequency-selective channels (COST 207, CODIT),

    •  Space-time wideband channels (COST 259),•  Multiple cross-correlated Rayleigh fading channels,

    •  Multiple uncorrelated Rayleigh fading channels,

    •  Perfect modelling and simulation of measured 2-D and 3-D channels,

    •  Frequency-hopping fading channels,

    • Design of ultra fast channel simulators (tables system),

    •  Design of burst error models,

    •  Development of MIMO channels.

    BEATS/CUBAN Workshop 200415/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    16/37

    III. Modelling of MIMO Channels

    Block Diagram of a MIMO Mobile Communication System

    Transmitter Receiver

    x1

    x2

    xM T 

    r1

    r2

    rM R

    h11

      h  1  2

    h 2  1 h   

    M   R   

    1   

    h22h M  

    R  2  

        h     1  M

       T

    hM RM T    h   2

      M   T

                      

          

                                

        

          

            

              

                                

                        

            

                            

    • Channel coefficients:   The channel coefficient hij(t) describes the transmission behavior of thechannel from the jth transmit antenna to the ith receive antenna.

    • Channel matrix: H(t) = [hij(t)] ∈ CM R×M T 

    • Channel capacity:   C (t) = log2 det

    IM T  +  S BS, totalM T N noise

    H(t)HH (t)

      [bits/s/Hz]

    (M R ≥ M T )BEATS/CUBAN Workshop 2004

    16/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    17/37

    Generalized Principle of Deterministic Channel Modelling

    Step 1:   Starting point is a geometrical model with an infinite number of scatterers, e.g.,

    (a) one-ring model (b) two-ring model (c) elliptical model

    BS MS BS MS BS MS

    Step 2:   Derive a stochastic reference model from the geometrical model.

    Step 3:   Derive an ergodic stochastic simulation model from the reference model by usingonly a finite number of  N   scatterers.

    Step 4:   Determine the deterministic simulation model by fixing all model parameters of thestochastic simulation model.

    Step 5:   Compute the parameters of the simulation model by using a proper parametercomputation method, e.g., the L p-norm method (LPNM).

    Step 6:   Generate one (or some few) sample functions by using the deterministic simulationmodel with fixed parameters.

    BEATS/CUBAN Workshop 200417/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    18/37

    Illustration of the Generalized Principle of Deterministic Channel Modelling

    3   4   6

    5

    21

    Infinite complexity

    (N  → ∞)

    ⇒   ⇒sample functions   sample functions

    Non-realizable   Realizable⇒sample functions

    Non-realizable

    Reference model

    E{·}   E{·}   < · >Statistical properties

    Deterministic SoSsimulation model

    computation

    Parameter

    Simulation of sample functions

    Fixedparameters

    Stochastic SoSsimulation model

    Finite complexity

    One (or some few)Infinite number of Infinite number of 

    Finite complexity

    (N  ≈ 25)   (N  ≈ 25)

    Lp-norm method (LPNM)

    Geometrical model

    BEATS/CUBAN Workshop 200418/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    19/37

    Application of the Generalized Principle of Deterministic Channel Modelling

    A Geometrical Model for a MIMO Channel

    Dn2

    Dn1A

    BS

    1

    δBS

    A2

    MS

    αMS

    δMS

    0MS

    BSα

    nBSφ

    AMS

    1

    D2n

    BSφmax

    Sn

    v

    y

    0BS

    D

    2ABS

    φMSD

    n

    1n

    x

    R

    v

    α

    •  The geometrical model is known as the  one-ring model  for a 2 × 2 channel.•  The local scatterers are laying on a ring around the MS.•   If the number of scatterers  N  → ∞, then the discrete AOA φMSn   tends to a continuous RV  φ MS with

    a given distribution p(φ MS), e.g., the uniform distribution, the von Mises distribution, the Laplacian

    distribution, etc.

    BEATS/CUBAN Workshop 200419/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    20/37

    The Reference Model

    • Channel coefficients:   h11(t) = limN →∞1

    √ N N 

    n=1 anbne j(2πf nt+θn)

    h12(t) = limN →∞

    1√ N 

    N n=1

    a∗nbne j(2πf nt+θn)

    h21(t) = limN →∞

    1

    √ N 

    n=1

    anb∗ne

     j(2πf nt+θn)

    h22(t) = limN →∞

    1√ N 

    N n=1

    a∗nb∗ne

     j(2πf nt+θn)

    where the phases θn  are i.i.d. RVs and

    an = e jπ(δ BS/λ)

    [cos(α

    BS )+φBS 

    max sin(α

    BS )sin(φMS 

    n  )

    ]

    bn = e jπ(δ MS/λ)cos(φ

    MS n   −αMS )

    f n = f max cos(φMSn   − αv)

    • Channel matrix: H(t) = [hij(t)] =

    h11(t)   h12(t)h21(t)   h22(t)

    • Channel capacity:   C (t) = log2 det

    I2 + S BS, total

    2N noiseH(t)HH (t)

      [bits/s/Hz]

    BEATS/CUBAN Workshop 200420/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    21/37

    Statistical Properties of the Reference Model

    • Space-time CCF:   ρ11,22(δ BS, δ MS, τ ) :=   E {h11(t)h∗22(t + τ )}= lim

    N →∞1

    N n=1

    a2n b2ne

    − j2πf nτ 

    =

    π

     −π a

    2

    n(δ BS)b

    2

    n(δ MS)e − j2πf nτ 

     p(φ

    MS

    )dφ

    MS

    • Time ACF:   rh11(τ ) :=   E {h11(t)h∗11(t + τ )}

    =

    π −π

    e − j2πf max cos(φMS−αv)τ  p(φMS) dφMS

    Relationships: rh11(τ ) = rh12(τ ) = rh21(τ ) = rh22(τ ) = ρ11,22(0,  0, τ )

    • 2D space CCF:   ρ(δ BS, δ MS) :=   ρ11,22(δ BS, δ MS, 0)

    =

    π −π

    a2n(δ BS)b2n(δ MS) p(φ

    MS)dφMS

    BEATS/CUBAN Workshop 200421/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    22/37

    The Stochastic Simulation Model

    • Channel coefficients:   ĥ11(t) =   1√ N 

    N n=1

    anbne j(2πf nt+θn)

    ⇒ The phases θn  are i.i.d. RVs

    • Channel matrix:   Ĥ(t) =

     ĥ11(t)   ĥ12(t)

    ĥ21(t)   ĥ22(t)

    ⇒ Stochastic channel matrix

    • Channel capacity:   Ĉ (t) = log2 det

    I2 + S BS, total

    2N noiseĤ(t) ĤH (t)

      [bits/s/Hz]

    ⇒ Stochastic process

    ⇒ The analysis of  Ĉ (t) has to be performed by using statistical aver-ages, e.g., C s = E {Ĉ (t)}.

    BEATS/CUBAN Workshop 200422/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    23/37

    Statistical Properties of the Stochastic Simulation Model

    •  Space-time CCF:   ρ̂11,22(δ BS, δ MS, τ ) : = E

    {ĥ11(t)ĥ

    ∗22(t + τ )

    }=

      1

    N n=1

    a2n(δ BS)b2n(δ MS)e

    − j2πf nτ 

    • Time ACF:   r̂h11(τ ) : = E

    {ĥ11(t)ĥ

    ∗11(t + τ )

    }=

      1

    N n=1

    e − j2πf max cos(φMS

    n −αv)τ 

    Relationships: r̂h11(τ ) = r̂h12(τ ) = r̂h21(τ ) = r̂h22(τ ) = ρ̂11,22(0,  0, τ )

    •  2D space CCF: ρ̂(δ BS, δ MS) : = ρ̂11,22(δ BS, δ MS, 0)

    =  1

    n=1

    a2n(δ BS)b2n(δ MS)

    =  1

    N n=1

    e j2π(δ BS/λ)[cos(αBS)+φBS

    max sin(αBS)sin(φMS

    n   )]·e j2π(δ MS/λ)cos(φMSn −αMS)

    BEATS/CUBAN Workshop 200423/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    24/37

    The Deterministic Simulation Model

    • Channel coefficients:   h̃11(t) =   1√ N 

    N n=1

    anbne j(2πf nt+θn)

    ⇒ The phases θn  are constant quantities

    • Channel matrix:   H̃(t) =

     h̃11(t)   h̃12(t)

    h̃21(t)   h̃22(t)

    ⇒ Deterministic channel matrix

    • Channel capacity:   C̃ (t) = log2 det

    I2 + S BS, total

    2N noiseH̃(t) H̃H (t)

      [bits/s/Hz]

    ⇒ Deterministic process

    ⇒ The analysis of  C̃ (t) has to be performed by using time averages,e.g., C t =<  C̃ (t) >.

    BEATS/CUBAN Workshop 200424/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    25/37

    Statistical Properties of the Deterministic Simulation Model

    •  Space-time CCF:   ρ̃11,22(δ BS, δ MS, τ ) :=  

    =  1

    N n=1

    a2n(δ BS)b2n(δ MS)e

    − j2πf nτ 

    • Time ACF:   r̃h11(τ ) :=   <

     h̃11(t)h̃∗11(t + τ ) >

    =  1

    N n=1

    e − j2πf max cos(φMS

    n −αv)τ 

    Relationships: r̃h11(τ ) = r̃h12(τ ) = r̃h21(τ ) = r̃h22(τ ) = ρ̃11,22(0,  0, τ )

    •  2D space CCF: ρ̃(δ BS, δ MS) : = ρ̃11,22(δ BS, δ MS, 0)

    =  1

    n=1

    a2n(δ BS)b2n(δ MS)

    =  1

    N n=1

    e j2π(δ BS/λ)[cos(αBS)+φBS

    max sin(αBS)sin(φMS

    n   )]·e j2π(δ MS/λ)cos(φMSn −αMS)

    BEATS/CUBAN Workshop 200425/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    26/37

    Parameter Computation Method

    Parameters:   The model parameters to be determined are the discrete AOAs φMSn   (n = 1,  2, . . . , N  ).

    Aim:   Determine the model parameters φMSn   such that

    ρ11,22(δ BS, δ MS, τ ) ≈  ρ̃11,22(δ BS, δ MS, τ ) .

    Solution:   L p-norm method

    E ( p)1   :=

      1τ max

    τ max 0

    |rh11(τ ) − r̃h11(τ )| pdτ 1/p

    E ( p)2   :=

      1δ BSmax δ 

    MSmax

    δ BSmax 0

    δ MSmax 0

    |ρ(δ BS, δ MS) −  ρ̃(δ BS, δ MS)| pdδ MS dδ BS1/p

    Two alternatives: (i) Joint optimization:   E ( p) = w1E ( p)1   + w2E 

    ( p)2

    w1, w2: weighting factors

    (ii) Using two independent sets {φMSn   } and {φMSn  }in r̃h11(τ ) and ρ̃(δ BS, δ MS), respectively.

    ⇒  Orthogonalization of the optimization problem.

    BEATS/CUBAN Workshop 200426/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    27/37

    Structure of the Simulation Model

    +

    . . .

    . . .

    . . .

    . . . . . .

    . . .

    . . .

    . . .

    . . .. . .

    . . .

     .

     .

     .

     .

     .

     .

    +

     . 

     . 

     .

     . 

     . 

     .

    1/√ N 

    1/√ N 

    1/√ N 

    s2(t)

    r1(t)   r2(t)

    bN ∗b∗

    2b∗1bN b2b1

    a1   a2   aN 

    s1(t)

    a∗N 

    a∗2

    a∗1

    e j(2πf N t + θN )

    e j(2πf 2t + θ2)

    e j(2πf 1t + θ1)

    BEATS/CUBAN Workshop 200427/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    28/37

    Performance Evaluation

    •  Comparison of the time ACFs rh11(τ ) (reference model) and r̃h11(τ ) (simulation model)

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−0.5

    0

    0.5

    1

    Time separation, τ (s)

       T   i  m  e

      a  u   t  o  c  o  r  r  e   l  a   t   i  o  n   f  u  n  c   t   i  o  n

     

    Reference modelSimulation modelSimulation

    τmax

    Reference model: Based on the one-ring model with uniformly distributed AOAs φMS.

    Simulation model: Designed by using the L p-norm method (N  = 25 , p = 2, τ max = 0.08 s, f max = 91 Hz).

    BEATS/CUBAN Workshop 200428/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    29/37

    Reference model Simulation model

    2-D space CCF ρ(δ BS, δ MS) 2-D space CCF ̃ρ(δ BS, δ MS)

    0

    5

    10

    15

    20

    25

    30

    0

    0.5

    1

    1.5

    2

    2.5

    3

    −0.5

    0

    0.5

    1

       2 −

       D

      s  p  a  c  e  c  r  o  s  s −  c  o  r  r  e   l  a   t   i  o  n   f  u  n  c   t   i  o  n

     

    0

    5

    10

    15

    20

    25

    30

    0

    0.5

    1

    1.5

    2

    2.5

    3

    −0.5

    0

    0.5

    1

       2 −

       D

      s  p  a  c  e  c  r  o  s  s −  c  o  r  r  e   l  a   t   i  o  n   f  u  n  c   t   i  o  n

     

    δ MS/λ δ BS/λ δ MS/λ δ BS/λ

    Reference model: Based on the one-ring model with uniformly distributed AOAs φMS.

    Simulation model: Designed by using the Lp-norm method with N  = 25

    ( p = 2, δ BSmax = 30λ, δ MSmax = 3λ, αBS = αMS = 90

    ◦, φBSmax = 2◦).

    BEATS/CUBAN Workshop 200429/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    30/37

    IV. Simulation of MIMO Channels

    •  Channel capacity:  C̃ (t) := log2 det

    I2 + S BS, total

    2N noiseH̃(t) H̃H (t)

      [bits/s/Hz]

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    Time, t (s)

       S   i  m  u   l  a   t  e   d  c   h  a  n

      n  e   l  c  a  p  a  c   i   t  y ,

       (   b   i   t  s   /  s   /   H  z   )

    CapacityMean Capacity

    Parameters:   N  = 25, M BS = M MS = 2, δ BS = δ MS = λ/2, SNR = 17 dB

    BEATS/CUBAN Workshop 200430/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    31/37

    Scattering Scenario

    Geometrical one-ring model:

    scatterersCluster of 

    δ BS

    y

    xδ MS

    αvφBSmaxv

    ≈   2√ κ

    Parameters:

    M BS = M MS = 2

    δ BS = δ MS = λ/2φBSmax = 2

    αv = φMS0   = 180

    f max = 91 Hz

    Reference model:   assuming the von Mises distribution for the AOA φMS :

     p(φMS) =  1

    2πI 0(κ)

    e κ cos(φMS−φMS0   )

    κ = 0 :   p(φMS) = 1/(2π) (isotropic scattering)

    κ → ∞ : p(φMS) → δ (φMS − φMS0   ) (extremely nonisotropic scattering)Simulation model:   designed by using the LPNM with N  = 25.

    BEATS/CUBAN Workshop 200431/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    32/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    33/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    34/37

    Normalized ADF of the Channel Capacity  C̃(t)

    0 2 4 6 8 100

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Level, r

       T   C

       (  r   )  ⋅   f  m

      a  x

    κ  = 0

    κ  = 10

    κ  = 100

    Observations:   •  κ has a strong influence on the ADF  T̃ C (r) of the capacity  C̃ (t)•  If  κ ↑   angular spread of the AOA φMS ↓    T̃ C (r) ↑.

    BEATS/CUBAN Workshop 200434/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    35/37

    The Effect of  κ  on the BER Performance

    4 5 6 7 8 9 1010

    −4

    10−3

    10−2

    10−1

    100

    Eb /N

    0 (dB)

       B   i   t  e  r  r  o  r  r  a

       t  e

    κ  = 0

    κ  = 20

    κ  = 30

    κ  = 40

    Coding system:   4-D 16QAM linear 32-state space-time trellis code with 2 transmit and 2 receiveantennas (δ BS = 30λ and δ MS = 3λ).

    Observations:   •  κ ↑   angular spread ↓   BER ↑•  If  κ  decreases from 40 to 0, then a gain of ca. 1.5 dB can be achieved at a BER

    of 2 · 10−3.BEATS/CUBAN Workshop 2004

    35/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    36/37

  • 8/13/2019 Modelling and Simulation of MIMO Channels

    37/37

    VI. Conclusion

    a  The principle of deterministic channel modelling has been generalized.

    a  The generalized concept has been applied on the geometrical one-ring scattering model.

    a  It has been shown how the parameters of the simulation model can be determined by using the

    L p-norm method (LPNM).

    a   The designed deterministic MIMO channel simulator with N  = 25 scatterers has nearly the

    same statistics as the underlying stochastic reference model with N  = ∞ scatterers.

    a  The new MIMO space-time channel simulator is very useful in the investigation of the PDF,

    LCR, and ADF of the channel capacity C (t) from time-domain simulations.

    a   Finally, it has been demonstrated that the system performance decreases if the spatial correlation

    increases.

    BEATS/CUBAN Workshop 200437/37