modelling convective boundary layers in the terra-incognita · • terra-incognita for boundary...

21
Bob Beare University of Exeter Thanks to Adrian Lock, John Thuburn and Bob Plant Modelling convective boundary layers in the terra-incognita 800 m resolution 3.0 h -4800 -2400 0 2400 4800 x (m) -4800 -2880 -960 960 2880 4800 y (m) -4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4 Vertical wind ms -1 50 m resolution 3.0 h -4800 -2400 0 2400 4800 x (m) -4800 -2880 -960 960 2880 4800 y (m) -4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4 Vertical wind ms -1

Upload: others

Post on 22-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Bob Beare University of Exeter

Thanks to Adrian Lock, John Thuburn and Bob Plant

Modelling convective boundary layers in the terra-incognita

800 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

50 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

Page 2: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Boundary layers in high resolution NWP

•  MetUM forecasts at 1 km horizontal resolution but runs also at 100 m resolution.

•  Convective boundary layer is partially resolved.

•  “Terra-incognita”, Wyngaard 2004. •  How do we represent the boundary layer

at these scales?

Page 3: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

The boundary layer in the terra-incognita

Terra incognita

LES Mesoscale

Energy

Wavenumber 1/L 1/Dmes 1/DLES

Figure based on Wyngaard 2004

Page 4: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Background •  Analysis of arrays of surface layer data

(HATS) to derive closures (e.g. Wyngaard 04, Hatlee and Wyngaard 07)

•  Using LES models to derive similarity functions for sub-grid/total ratio of fluxes (Honnert et al 2011)

•  My approach: role of both the advection and sub-grid scheme; behaviour of boundary layer top entrainment flux.

Page 5: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Large-eddy simulation

Sub-grid model: Kolmogorov k-5/3

E(k)

k (wavenumber) xΔ21

Navier-Stokes decomposed into resolved and sub-grid components

Page 6: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Sources of diffusion in LES Explicit sub-grid model

Implicit diffusion from advection scheme, e.g. 1D upstream advection

Page 7: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Experimental set up •  Initial mixed layer of depth 1 km •  Domain 10 km x 10 km x 5 km •  Surface sensible heat 150 Wm-2

Geostrophic wind 2 ms-1

•  Run at horizontal resolutions of 1600, 800, 400, 200, 100, 50, 25 m

Page 8: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Horizontal w cross-sections at 1km 1600 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

800 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

400 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

200 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

100 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

50 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

25 m resolution 3.0 h

-4800 -2400 0 2400 4800x (m)

-4800

-2880

-960

960

2880

4800

y (m

)

-4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4Vertical wind ms-1

Page 9: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Entrainment in Terra-incognita

-45 60 165<wb> (Wm-2)

0

500

1000

1500

2000

2500

z

25 m

50 m

100 m

200 m

-45 60 165<wb> (Wm-2)

0

500

1000

1500

2000

z

400 m800 m1600 m

Page 10: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Spin up in the terra-incognita

0 1 2 3 4time (h)

0.00

0.05

0.10

0.15

Mass

flux

(kgm

-2s-1

)

0 1 2 3 4time (h)

0.00

0.05

0.10

0.15

Mass

flux

scale

d (k

gm-2s-1

)

0 1 2 3 4time (h)

0.0

0.1

0.2

0.3

0.4

Mas

s flu

x (k

gm-2s-1

)

0 1 2 3 4time (h)

0.0

0.1

0.2

0.3

0.4

Mas

s flu

x sc

aled

(kgm

-2s-1

)

Page 11: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Experiments

•  2 types of experiment: – Advection scheme fixed. Sub-grid model

varied (e.g. backscatter on and off) – Sub-grid model fixed. Advection scheme

on potential temp. changed between: •  Centred-difference scheme (PW) •  Monotone, finite volume method (TVD)

– TVD more dissipative than PW.

Page 12: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Entrainment and advection scheme

-45 60 165<wb> (Wm-2)

0

500

1000

1500

2000

z

400 m TVD

400 m P-W

-45 60 165<wb> (Wm-2)

0

500

1000

1500

2000

z

25 m TVD

25 m P-W

Page 13: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Vertical velocity spectra at 1 km ww spectra at height 1000m at 3 hou

0.1 1.0 10.0 100.0kzi

0.1

1.0

10.0

100.0

1000.0

kS(k

)/w*2

400 m TVD

400 m P-W

ww spectra at height 1000m at 3 hou

0.1 1.0 10.0 100.0kzi

0.1

1.0

10.0

100.0

1000.0

kS(k

)/w*2

25 m TVD

25 m P-W

Page 14: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Interaction of sub-grid and advection scheme

0 200 400 600 800 1000Horizontal grid length (m)

0.0

0.1

0.2

0.3

0.4

0.5

SG/TO

TAL <

ww>

TVD on scalars

Centre-difference on scalars

Page 15: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Sub-grid model vs advection scheme

k-5/3 inertial sub-range

Change in advection scheme

Change in sub-grid model

Page 16: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Met Office advection scheme implicit diffusion

Beare et al 2007, Met Office report

Vertical velocity at 50 m resolution >1.5 m/s red; <1.5 m/s blue

Identical sub-grid models , different advection schemes

Page 17: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Morning transition boundary layer Lapworth 2006

Page 18: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Relation of stable boundary layer depth to geostrophic wind

Geostrophic wind

Geostrophic wind

Page 19: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Entrainment in the early morning mixed layer

Geostrophic wind

Page 20: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Framework for boundary-layer parametrization in terra-incognita

1.  Scaling for turning off column scheme

Scaling includes: •  Diffusion from sub-grid model, •  Diffusion from advection scheme •  Relevant integral scale

2. Modification for poor scale separation, e.g.: tensorial diffusion, stochastic backscatter or dynamic modelling?

Page 21: Modelling convective boundary layers in the terra-incognita · • Terra-incognita for boundary layer modelling. • Entrainment sensitive and non-linear function of grid length

Summary •  Terra-incognita for boundary layer

modelling. •  Entrainment sensitive and non-linear

function of grid length. •  Implicit diffusion from advection as

important as sub-grid model diffusion. •  Implications for morning transition. •  Framework for parametrization.