modelling distribution impact in relation to agricultural

31
Modelling distribution impact in relation to agricultural biodiversity Andy Jarvis Bioversity International and International Centre for Tropical Agriculture (CIAT)

Upload: others

Post on 01-Dec-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling distribution impact in relation to agricultural

Modelling distribution impact in

relation to agricultural biodiversity

Andy Jarvis

Bioversity International and

International Centre for Tropical

Agriculture (CIAT)

Page 2: Modelling distribution impact in relation to agricultural

Contents

• What exactly is the issue of climatechange for agriculture?

• Changes in distribution of wild relatives

• Impacts of forestry

• Changes in distribution of crops

• Opportunities from climate change

• Necessary actions to address changes

Page 3: Modelling distribution impact in relation to agricultural

RECAP – JUST WHAT IS

CLIMATE CHANGE IN THIS CONTEXT

Drought Resistant Beans

Page 4: Modelling distribution impact in relation to agricultural
Page 5: Modelling distribution impact in relation to agricultural

What do the 21 models say?

Page 6: Modelling distribution impact in relation to agricultural
Page 7: Modelling distribution impact in relation to agricultural

Wet season wetter, dry season drier

Rainfall of driest month

Rainfall of wettest month

Page 8: Modelling distribution impact in relation to agricultural

IMPACTS ON WILD

RELATIVES

Page 9: Modelling distribution impact in relation to agricultural

Florunner, with no root-

knot nematode resistance

COAN, with population

density of root-knot

nematodes >90% less

than in Florunner

Wild relative species

A. batizocoi - 12 germplasm accessions

A. cardenasii - 17 germplasm accessions

A. diogoi - 5 germplasm accessions

Impact of Climate Change – Biodiversity and Food Security

Page 10: Modelling distribution impact in relation to agricultural

SpeciesChange in area

of distribution (%)

Predicted state

in 2055

batizocoi -100 Extinct

cardenasii -100 Extinct

correntina -100 Extinct

decora -100 Extinct

diogoi -100 Extinct

duranensis -91 Threatened

glandulifera -17 Stable

helodes -100 Extinct

hoehnii -100 Extinct

kempff-mercadoi -69 Near-Threatened

kuhlmannii -100 Extinct

magna -100 Extinct

microsperma -100 Extinct

palustris -100 Extinct

praecox -100 Extinct

stenosperma -86 Threatened

villosa -51 Near-Threatened

Impact of Climate Change – Wild

Peanuts

Page 11: Modelling distribution impact in relation to agricultural

Impact on PGR

• Assessment of shifts in distribution range under climate change

• Wild potatoes

• Wild African Vigna

• Wild peanuts

• Why?– Mountain species, lowland

savannah species, broadly adapted species, Latin America, Africa, available datasets

Page 12: Modelling distribution impact in relation to agricultural
Page 13: Modelling distribution impact in relation to agricultural

Latitudinal and Elevational Shifts

Peanuts

• Shift south and upwards

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 -5 -10 -15 -20 -25 -30 -35

Latitude

Sp

ecie

s R

ich

ness /

km

2

Current Richness

Future Richness (unlimited dispersal)

Future Richness (no dispersal)

A - Peanut

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

-200 300 800 1300 1800 2300

Elevation

Sp

ecie

s R

ich

ness /

km

2

Current Richness

Future Richness (unlimited dispersal)

Future Richness (no dispersal)

B - Peanut

Page 14: Modelling distribution impact in relation to agricultural

Latitudinal and Elevational Shifts

Potatoes

• Shift upwards

0

0.2

0.4

0.6

0.8

1

1.2

45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40

Latitude

Sp

ecie

s R

ich

ness /

km

2

Current Richness

Future Richness (unlimited dispersal)

Future Richness (no dispersal)

C - Potato

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Elevation (m)

Sp

ecie

s R

ich

ness /

km

2

Current Richness

Future Richness (unlimited dispersal)

Future Richness (no dispersal)

D - Potato

Page 15: Modelling distribution impact in relation to agricultural

Latitudinal and Elevational Shifts

Vigna

• Shift south/north and especially upwards

0

2

4

6

8

10

12

25 20 15 10 5 0 -5 -10 -15 -20 -25 -30

Latitude

Sp

ecie

s R

ich

ness /

km

2

Current Richness

Future Richness (unlimited dispersal)

Future Richness (no dispersal)

E - Vigna

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Elevation (m)

Sp

ecie

s R

ich

ness /

km

2

Current Richness

Future Richness (unlimited dispersal)

Future Richness (no dispersal)

F - Vigna

Page 16: Modelling distribution impact in relation to agricultural

Summary Impacts

• 16-22% (depending on migration scenario) of these species predicted to go extinct

• Most species losing over 50% of their range size

• Wild peanuts were the most affected group, with 24 to 31 of 51 species projected to go extinct

• For wild potato, 7 to 13 of 108 species were predicted to go extinct

• Range sizes were reduced by approximately 38 to 69%.

• Vigna was the least affected of the three groups, losing 0 to 2 of the 48 species in the genus

• Range size was predicted to decrease by 65% (no migration) or increase 8% (unlimited migration)

Page 17: Modelling distribution impact in relation to agricultural

Priority Species

V. keraudrenii (98%), V. decipiens (85%), V. phoenix (78%), V. procera (64%), V. mungo

(63%), V. angivensis (59%), V. antunesii(56%), V. gazensis (55%), V. platyloba

(51%), V. juncea (50%)

V. monantha (16), V. virescens (38), V. keraudrenii(110), V. phoenix (363), V. mungo (1066), V.

richardsiae (2866), V. bosseri (3686), V. hosei (4387), V. mudenia (9590)

No speciesVigna

S. irosinum (99%), S. hoopesii (97%), S. piurae(96%), S. xsambucinum (96%), S.

paucissectum (95%), S. acroscopicum(95%), S. raquialatum (93%), S. jamesii

(91%), S. arnezii (88%), S. trifidum (85%)

S. irosinum (5), S. paucissectum (5), S. hoopesii(41), S. piurae (87), S. raquialatum (146), S.

longiconicum (179), S. arnezii (193), S. lignicaule (250), S. acroscopicum (422), S.

xsambucinum (475)

S. velardei, S. tarnii, S. xmichoacanum, S. xrechei, S. ugentii, S. chancayense, S.

incamayoensePotato

A. gracilis (99%), A. kretschmeri (99%), A. oteroi(99%), A. matiensis (99%), A. subcoriaceae

(98%), A. triseminata (97%), A. kempff-mercadoi (96%), A. major (96%), A. batizocoi (96%), A. correntina (95%)

A. benthamii (9465), A. cardenasii (5163), A. correntina (3264), A. triseminata (1308), A. matiensis (802), A. batizocoi (717), A. oteroi(609), A. subcoriacea (301), A. gracilis (232)

A. appressipila, A. archeri, A. benensis, A. cryptopotamica, A. douradensis, A. guaranitica, A. hatschbachii, A. helodes, A. hermannii, A. lignosa, A. marginata, A.

palustris, A. setinervosa, A. simpsonii, A. stenophylla, A. magna, A. tuberosa, A. hoehneii, A. burkartii, A. retusa, A. glandulifera, A. paraguariensis, A. pseudovillosa, A. decora

Peanut

10 species with greatest % loss of range area (% loss)

10 species with <10,000 km2 future range area (km2)

Predicted extinction (no future range area)

Page 18: Modelling distribution impact in relation to agricultural

IMPACTS ON FORESTRY

Page 19: Modelling distribution impact in relation to agricultural

Provenances P. Tecunumanii

Current Distribution

Page 20: Modelling distribution impact in relation to agricultural

Provenances P. PatulaCurrent Distribution

Page 21: Modelling distribution impact in relation to agricultural

Provenances P. Tecunumanii

Future Distribution

Page 22: Modelling distribution impact in relation to agricultural

Provenances P. PatulaFuture Distribution

Page 23: Modelling distribution impact in relation to agricultural

P. tecunumanii (Latin America)

Survival probability Growth probability

Page 24: Modelling distribution impact in relation to agricultural

P. tecunumanii (Africa)

Survival probability Growth probability

Page 25: Modelling distribution impact in relation to agricultural

IMPACTS ON CROP PRODUCTION

Page 26: Modelling distribution impact in relation to agricultural

Crop suitability

Page 27: Modelling distribution impact in relation to agricultural

Lobell – Food Security

Page 28: Modelling distribution impact in relation to agricultural

Cambio en la adaptabilidad de los cultivos de café

en los Andes.

A2a.cccma.2050

Coffee suitability change vs Altitude

ALTITUDE (meters)

4,5004,0003,5003,0002,5002,0001,5001,000

CO

FF

EE

SU

ITA

BIL

ITY

CH

AN

GE

16

14

12

10

8

6

4

2

0

-2

-4

-6

-8

-10

El cambio va desde latitudes medias (trópico) hasta la zona que

pertenece al norte de Argentina.

El 89% del área que cambia la adaptabilidad se mueve en el rango de

(-27 – 36).

Cordillera central y occidental de Colombia, zonas cafeteras por

excelencia, decrecimientos drásticos en la adaptabilidad.

Impacto negativo de 500-2000 m.

Page 29: Modelling distribution impact in relation to agricultural

Wet season wetter, dry season drier

Rainfall of driest month

Rainfall of wettest month

Page 30: Modelling distribution impact in relation to agricultural

IMPLICATIONS

• Crop suitability CHANGES in both positive and negative ways

• Crop distributions shift, opportunities out there

• Key is managing transitions

• New abiotic stresses for crops -> continued demand for genetic resources

• Enabling agricultural diversification key toadapting

Page 31: Modelling distribution impact in relation to agricultural

Conclusions

• Wild species at risk

• Crop suitability shifts

• Need for systems for managing transitions

• Capitalising on opportunities