modified fragmentation function in strong interaction matter

43
Enke Wang (Institute of Particle Physics, Huazhong Normal University) I. Jet Quenching in QCD-based Model II. Jet Quenching in High-Twist pQCD III.Jet Tomography of Hot and Cold Strong Interaction Matter IV. Modification of Dihadron Frag. Function Modified Fragmentation Function in Strong Interaction Matter

Upload: zoe-campbell

Post on 31-Dec-2015

34 views

Category:

Documents


1 download

DESCRIPTION

Modified Fragmentation Function in Strong Interaction Matter. Enke Wang (Institute of Particle Physics, Huazhong Normal University) Jet Quenching in QCD-based Model Jet Quenching in High-Twist pQCD Jet Tomography of Hot and Cold Strong Interaction Matter - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Modified Fragmentation Function  in Strong Interaction Matter

Enke Wang (Institute of Particle Physics, Huazhong Normal University)

I. Jet Quenching in QCD-based Model

II. Jet Quenching in High-Twist pQCD

III. Jet Tomography of Hot and Cold Strong Interaction Matter

IV. Modification of Dihadron Frag. Function

Modified Fragmentation Function in Strong Interaction Matter

Page 2: Modified Fragmentation Function  in Strong Interaction Matter

hadrons

q

q

hadrons

leadingparticle

leading particle

p-p collision

hadrons

q

q

hadrons

Leading particle suppressed

leading particle suppressedA-A collision

Jet Quenching:

EEE '

E

Fragmentation Function:

p

hp

S~

q

),( 2QzD hhq DGLAP Equation

p

pz h

h

hhh zzz

),(),(),(~ 222 QzDQzDQzD hhhqhhq

Page 3: Modified Fragmentation Function  in Strong Interaction Matter

I. Jet Quenching in QCD-based Model

G-W (M. Gyulassy, X. –N. Wang) Model:

Static Color-Screened Yukawa Potential

Page 4: Modified Fragmentation Function  in Strong Interaction Matter

Feynman Rule:

q

p

p-q )2()2( 00 qpiqpiD

ip

ipi

2)(

p

pp+k

,)2( ckpigs

cTc

k

ik

gikig

2)(

0

k-q,a k,c

q,b })]()[(

)()]([{0

00

kqkg

qkgqkqgf abc

Page 5: Modified Fragmentation Function  in Strong Interaction Matter

Opacity Expansion Formulism (GLV)

Double Born Scattering

GLV, Phys. Rev. Lett. 85 (2000) 5535; Nucl. Phys. B594 (2001) 371

Elastic Scattering

Page 6: Modified Fragmentation Function  in Strong Interaction Matter

Assumption

• The distance between the source and the scattering center are large compaired to the interaction range:

• The packet j(p) varies slowly over the range of the momentum transfer supplied by the potential:

•The targets are distributed with the density:

Opacity: Mean number of the collision in the medium

1

0 zzi

)()( qpjpj

),,,(),,,( 2121 NN zzzA

Nxxx

)(/

121 )(

)(),,,( NLz

e

jN

jN

ejeNL

zzzz

jjj zzz 1

1)(

N

LNLe

el 1

A

NLn el

Page 7: Modified Fragmentation Function  in Strong Interaction Matter

First Order in opacity Correction

Page 8: Modified Fragmentation Function  in Strong Interaction Matter

First Order in opacity Correction

Medium-induced radiation intensity distribution:

Induced radiative energy loss:

Induced gluon number distribution:

)cos(1)2)(( 111122

22

)1(

zBCqvqdLC

kdxd

dNx

g

sR

Non-Abelian LPM Effect

2)1( LE LE )1(

QCD:

QED:

Page 9: Modified Fragmentation Function  in Strong Interaction Matter

Higher order in Opacity

Reaction Operator Approach: (GLV)

Induced gluon number distribution:Non-Abelian LPM Effect

Page 10: Modified Fragmentation Function  in Strong Interaction Matter

Radiated Energy Loss vs. Opacity

First order in opacity correction is dominant!

Page 11: Modified Fragmentation Function  in Strong Interaction Matter

Detailed Balance Formulism (WW)

E. Wang & X.-N. Wang, Phys. Rev. Lett.87 (2001) 142301

k

x0 p

k

x0 p

Stimulated Emission Thermal Absorption

B-E Enhancement Factor

1+N(k)

Thermal Distribution Func.

N(k)

Page 12: Modified Fragmentation Function  in Strong Interaction Matter

Final-state Radiation

k

x0 p

k

x0 p

Energy loss induced by thermal medium:

0

)0()0(

)0(

T

abs d

dp

d

dpdE

22

2 )2('62

4ln

3

E

FsET

E

TC=

Net contribution: Energy gain

Stimulated emission increase E loss Thermal absorption decrease E loss

Page 13: Modified Fragmentation Function  in Strong Interaction Matter

First Order in Opacity Correction

Single direct rescattering:

k

y0 y1 p

k

y0 y1 p

y0 y1 p

k

Double Born virtual interaction:

k

y0 y1 y1 p

y0 y1 y1 p

k

k

y0 y1 y1 p

y0 y1 y1 p

k

Key Point: Non-Abelian LPM Effect—destructive Interference!

Page 14: Modified Fragmentation Function  in Strong Interaction Matter

Energy Loss in First Order of Opacity

Energy loss induced by rescattering in thermal medium: )1()1()1(

absradEEE

Take limit:

1EL E LT 2

Zero Temperature Part:

0

)0(

)1(

T

rad d

dpdE

048.0

2ln

4 2

2

L

EC

g

Fs

L2

GLV ResultTemperature-dependent Part:

0

)1()1(

)1(

T

abs d

dp

d

dpdE

2

22 )2('61ln

3

E

g

Fs

T

L

E

LTC

Energy gain

Page 15: Modified Fragmentation Function  in Strong Interaction Matter

Numerical Result for Energy Loss

3.0S

)1()1()0(

radabsabsEEEE

• Intemediate large E, absorption is important

•Energy dependence becomes strong

•Very high energy E, net energy gain can be neglected

Page 16: Modified Fragmentation Function  in Strong Interaction Matter

Parameterization of Jet Quenching with Detailed Balance Effect

)/5.7/()6.1/( 02.1

001

EEdL

dE

d

Average parton energy loss in medium at formation time:

Energy loss parameter proportional to the initial gluon density 2

00

1

ARd

dN

Modified Fragmentation Function (FF)

),(

)],(/),()[1(),,(

2'0/

/

2'0/

'2'0

/

'/2

/

cchL

gghc

gcch

c

cLccch

zDe

zDz

zLzD

z

zeEzD

(X. -N. Wang , PRC70(2004)031901)

,//),/( ''cTgcTcTc EpLzEppz

Page 17: Modified Fragmentation Function  in Strong Interaction Matter

Comparison with PHENIX Data

PHENIX,

Nucl. Phys. A757 (2005) 184

Page 18: Modified Fragmentation Function  in Strong Interaction Matter

DGLAP Equation at Finite TemperatureJ. A. Osborne, E. Wang, X.-N. Wang, Phys. Rev. D67 (2003) 094022

Page 19: Modified Fragmentation Function  in Strong Interaction Matter

DGLAP Equation at Finite Temperature

Splitting function at finite temperature:

Page 20: Modified Fragmentation Function  in Strong Interaction Matter

Quark Energy Loss from Splitting Function

The minus sign indicates that the absorptive processes

in the plasma overcome the emissive processes.

The net Contribution is energy loss!

Page 21: Modified Fragmentation Function  in Strong Interaction Matter

II. Jet Quenching in High-Twist pQCD

e-

, )) (( ,( )qh

q h hHdW

d f x p q Dxd

zz

x

pypedy

xf yixpBq )()0(

2

1

2)(

/( ) 0 (0) , , ( ) 02 2 2

h hip y zhq h h q h h q

S

z dyD z e Tr p S p S y

Frag. Func.

22 )(2)(2

1),,( xpqxpqpTreqpxH q

Page 22: Modified Fragmentation Function  in Strong Interaction Matter

Modified Fragmentation Function

2 2 2( , ) ( , ) ( , )h h hD z Q D z Q D z Q

Cold nuclear matter or hot QGP medium lead to the modification of fragmentation function

Page 23: Modified Fragmentation Function  in Strong Interaction Matter

Jet Quenching in e-A DISX.-N. Wang, X. Guo, NPA696 (2001); PRL85 (2000) 3591

e-

Page 24: Modified Fragmentation Function  in Strong Interaction Matter

Modified Frag. Function in Cold Nuclear Matter

2 2 2( , ) ( , ) ( , )h h hD z Q D z Q D z Q 2 12

24

0

( , ) ( , )2

h

Q

S hq h h L q h

z

zd dzD z Q z x D

z z

2 ( , ) 21( , ) (virtual)

(1 ) ( )

Aqg L A S

L Aq c

T x x Czz x

z f x N

Modified splitting functions

_2 1(

1 2 1 2

2)

1

( , ) (0) ( ) ( ) ( )2 2

( ) ( )1 1

B

L Lix p y ix

ix p yA

y

g

y

q L

pe

dyT x x dy dy e A F y F y y A

y y ye

Two-parton correlation:

LPM

Page 25: Modified Fragmentation Function  in Strong Interaction Matter

Modified Frag. Function in Cold Nuclear Matter

hadrons

ph

parton

E

),,()(0 EzDzD ahah

)(0 zDah

are measured, and its QCD evolutiontested in e+e-, ep and pp collisions

Suppression of leading particles

Fragmentation function without medium effect:

Fragmentation function with medium effect:

),1

(1

1),( 0

z

zD

zEzD ahah

Page 26: Modified Fragmentation Function  in Strong Interaction Matter

Heavy Quark Energy Loss in Nuclear MediumB. Zhang, E. Wang, X.-N. Wang, PRL93 (2004) 072301; NPA757 (2005) 493

Mass effects:

1) Formation time of gluon radiation time become shorter

222 )1(

)1(2

Mzl

qzz

T

f

LPM effect is significantly reduced for heavy quark

2) Induced gluon spectra from heavy quark is suppressed by

“dead cone” effect

4

2

2

04

222

2

/]1[][

Mzl

lf

T

T

qQ

zq

l

q

M

T

0

Dead cone Suppresses gluon radiation amplitude at 0

Page 27: Modified Fragmentation Function  in Strong Interaction Matter

Heavy Quark Energy Loss in Nuclear Medium

)]},,(),,()[1(),,(2

1{

~)~~(~

)1(

1~

),(

22

2

22

1

/~22

3

4

2~

~

1

0

2

2

2

2

22

MlzcMlzceMlzc

x

xxxd

zz

zdz

xQN

xCCQxz

TT

xx

T

L

ML

x

xL

Ac

BsA

B

Q

g

AL

M

LPM Effect

,~~

2

2

Qx

Mx

x

x

A

B

A

L

AN

A Rmx

1

1) Larg or small :

Bx

2Q

A

A

B

c

SAQ

gR

Qx

x

N

CCz

2

2~~

2) Larg or small :2Q

2

22

2~~

A

A

B

c

SAQ

gR

Qx

x

N

CCz

Bx

Page 28: Modified Fragmentation Function  in Strong Interaction Matter

Heavy Quark Energy Loss in Nuclear Medium

The dependence of the ratio between charm quark and light quark energy loss in a large nucleus

2Q

The dependence of the ratio between charm quark and light quark energy loss in a large nucleus

Bx

Page 29: Modified Fragmentation Function  in Strong Interaction Matter

III. Jet Tomography of Hot and Cold Strong Interaction Matter

E. Wang, X.-N. Wang, Phys. Rev. Lett. 89 (2002) 162301

2 21 1 22 2

22 2 2 2

0 0 0 0

1 (1 )( ,

()

, )

( )2

Q Qs A sT

g L T

Aqg

T cT T T

L

Aq

Cd zz dz z z x d dz

Nk

T x x

f x

Cold Nuclear Matter:Quark energy loss = energy carried by radiated gluon

2 2 13ln

2A

s N Ac B

CE C m R

N x

Energy loss

3/2AE

Page 30: Modified Fragmentation Function  in Strong Interaction Matter

Comparison with HERMES Data

HERMES Data: Eur. Phys. J. C20 (2001) 479

22 0060.0)(~

GeVQC 33.0)( 2 Qs 22 3GeVQ , ,

Page 31: Modified Fragmentation Function  in Strong Interaction Matter

Expanding Hot Quark Gluon Medium

_2 1(

1 2 1 2

2)

1

( , ) (0) ( ) ( ) ( )2 2

( ) ( )1 1

B

L Lix p y ix

ix p yA

y

g

y

q L

pe

dyT x x dy dy e A F y F y y A

y y ye

2( , )~ ( ) 1 cos

( )

Aqg L

gAq f

T x x ydy y

f x

0

32

( )2

lnR

s dE

E

R. Baier et al

Page 32: Modified Fragmentation Function  in Strong Interaction Matter

Initial Parton Density and Energy Loss

jet1

jet2

0

32

2( ) ln

R

s

EE d

00( ) ( )R r

01 0

2d

A

E ER

Initial energy loss in a static medium with density 0

:0E

0 0.1 fm 015

2AR

1

0.5 GeV/fmd

dE

dx

6.140

dx

dEGeV/fm

Initial parton density (Energy loss ) is 15~30 times that in cold Au nuclei !

Page 33: Modified Fragmentation Function  in Strong Interaction Matter

Comparison with STAR data

STAR, Phys. Rev. Lett. 91 (2003) 172302

Page 34: Modified Fragmentation Function  in Strong Interaction Matter

d-Au Result

理论预言

实验结果

E. Wang, X.-N. Wang, Phys. Rev. Lett. 89 (2002) 162301

STAR, Phys. Rev. Lett. 91(2003) 072304

Page 35: Modified Fragmentation Function  in Strong Interaction Matter

IV. Modification of Dihadron Frag. Function

h1 h2

jet

A. Majumder, Enke Wang, X. –N. Wang, Phys. Rev. Lett. 99 (2007) 152301

Dihadron fragmentation:

h1

h2

Page 36: Modified Fragmentation Function  in Strong Interaction Matter

DGLAP for Dihadron Fragmentation

2

1

1

1

2

2

2 11 2

1 222

21

2

( , , )( ) ( )

ln( , , )q

qh h

q q hg

z z

h

D z z Q dyP

z zD Q

y yy g h h

Q y

h1h2

h1h2

h1

h2

1

1 2

2

22

121ˆ ( ) (( , )

1)

(,

)( )

1q

z

q

z

hg hqgz

Dz

D Qy

dyP y q g

yQ

y y

Page 37: Modified Fragmentation Function  in Strong Interaction Matter

Evolution of Dihadron Frag. Function

Page 38: Modified Fragmentation Function  in Strong Interaction Matter

Evolution of Dihadron Frag. Function

)()(),( 21212121 zDzDzzD h

qhq

hhq

Page 39: Modified Fragmentation Function  in Strong Interaction Matter

Medium Modi. of Dihadron Frag. Function

Page 40: Modified Fragmentation Function  in Strong Interaction Matter

Nuclear Modification of Dihadron Frag. Func.

)(

)()(

212

2222 zN

zNzR

h

Ah

h

e-A DIS

Page 41: Modified Fragmentation Function  in Strong Interaction Matter

Hot Medium Modification

Page 42: Modified Fragmentation Function  in Strong Interaction Matter

Thank YouThank You

Page 43: Modified Fragmentation Function  in Strong Interaction Matter