modulation characteristics for parametric receiving …

7
HAL Id: jpa-00219530 https://hal.archives-ouvertes.fr/jpa-00219530 Submitted on 1 Jan 1979 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. MODULATION CHARACTERISTICS FOR PARAMETRIC RECEIVING ARRAYS James Truchard To cite this version: James Truchard. MODULATION CHARACTERISTICS FOR PARAMETRIC RECEIVING AR- RAYS. Journal de Physique Colloques, 1979, 40 (C8), pp.C8-140-C8-145. 10.1051/jphyscol:1979825. jpa-00219530

Upload: others

Post on 17-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

HAL Id: jpa-00219530https://hal.archives-ouvertes.fr/jpa-00219530

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

MODULATION CHARACTERISTICS FORPARAMETRIC RECEIVING ARRAYS

James Truchard

To cite this version:James Truchard. MODULATION CHARACTERISTICS FOR PARAMETRIC RECEIVING AR-RAYS. Journal de Physique Colloques, 1979, 40 (C8), pp.C8-140-C8-145. �10.1051/jphyscol:1979825�.�jpa-00219530�

JOURNAL DE PHYSIQUE Colloque C8, supplement au N° 11, tome 40, novembve 1979, page C8-140

MODULATION CHARACTERISTICS FOR PARAMETRIC RECEIVING ARRAYS

James J. TRUCHARD

Applied Research Laboratories The University of Texas at Austin Austin, Texas 78712, U.S.A.

Résumé. - Lors d'études expérimentales de réseaux paramétriques de réception on a u t i l i sé un t r a i ­tement du signal par démodulation de phase et d'amplitude. Les expressions théoriques des compo­santes de bande latérale aux fréquences somme et différence ont été obtenues à par t i r de l'équation d'onde du second ordre, due â Westervelt. Ces composantes ont été additionnées à la porteuse puis exprimées comme composantes de modulation de ce l le -c i . Pour les expériences on a u t i l i sé un roseau paramétrique de 15 m, fonctionnant à 90 kHz, avec des fréquences de signal de 3 à 6 kHz. Les s i ­gnaux d'entrée de l'hydrophone ont été f i l t r és au moyen d'un f i l t r e de bande et ecrêtés pour s'as­surer de la suppression de toute modulation d'amplitude, et la modulation de phase du signal a été mesurée à l 'aide d'un détecteur de phase.

Les diagrammes de rayonnements mesurés â la sort ie du détecteur de phase restent inchangés lors du désalignement de la pompe ou de l'hydrophone dans le réseau, par contre les composantes de modulation d'amplitude sont considérablement modifiées. Ce résultat offre un bon accord avec les calculs théoriques. La théorie et l'expérience montrent clairement que la modulation d'un son de fréquence élevée par une onde sonore de basse fréquence est essentiellement une modulation de phase.

Abstract. - Experiments have been conducted on the parametric receiving array using amplitude and phase demodulators for signal processing. Theoretical expressions were derived by finding the sum and difference frequency sideband components using the second-order wave equation originated by Westervelt. The sum and difference frequency components were added to the carrier and".then expressed in terms of modulation components of the carrier. Experiments were conducted using a 15 m parametric receiving array operating at 90 kHz. Signal frequencies in the renge from 3 to 6 kHz were used. The hydrophone input signals were bandpass filtrered and then clipped to ensure that no amplitude modulation was left on the signal. A phase detector was used to observe the phase modulation of the signal. Beam patterns measured at the phase detector output were unchanged when either the pump or the hydrophone in the array was misaligned. On the other hand, the amplitude modulation compo­nents changed dramatically when the pump or the hydrophone was misaligned. This result agreed well with the theoretical expressions. The theory and the experiment clearly demonstrate that the modu­lation of a high frequency sound wave by a low frequency sound wave is primarily a phase modulation.

1. INTRODUCTION. - In previous papers, /1-3/ the au­

thor studied the sideband characteristics of the

parametric receiving array signal. Theoretical ex­

pressions were derived for the sum and the diffe­

rence frequency components for several geometries

for the parametric receiving array. The amplitude

of each sideband signal was measured and compared

to the theoretical expressions. The theory agreed

well with the experimental results in both the case

of aligned and misaligned transducers. The experi­

ments, however, did not measure the relative phase

between the carrier and the two sideband signals.

In this paper, the theory is formulated in a form

which can be used to verify experimentally the phase

characteristics of the sideband signals. In order

to accomplish this, the modulation processes are

described in terms of amplitude and phase modula­

tions. The theoretical results which were previously

obtained in Ref. 2 are reworked into a form which

gives the expression for the amplitude and the pha­

se modulation caused by the modulation process.

Since the phase of the two sideband signals is

related to the type of modulation, we have a means

to experimentally measure the phase characteris­

tics of the sideband signals by measuring the am­

plitude and phase modulation components of the

signal. In this paper, we describe some experi­

ments which were conducted using amplitude and

phase demodulators for the measurement of the

modulation process. We find that expressions for­

mulated in the previous paper, when expressed in

terms of amplitude and phase modulation terms, do

agree well with the actual experimental results.

2. MODULATION CHARACTERISTICS FOR CASES OF THE

PARAMETRIC RECEIVING ARRAY. - We will now reconsi­

der the parametric receiving array with an omnidi­

rectional pump. The geometry for this case is gi­

ven Fig. 1. The signal source is assumed to be far

from the parametric receiver so that the low fre­

quency waves are approximately planar in the vici­

nity of the receiver. Then at the point (X.Y.Z)

Article published online by EDP Sciences and available at Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979825

JOURNAL DE PHYSIQUE c8-141

and a t t ime t, the sound waves can be represented

i n complex form as z

-I- x RECEIVER

F ig . 1. - Parametric Receiving Array w i t h a p o i n t Source Pump.

P1 1 P1 1

.: j exp I-(al-jki) L-jwltI (1)

and

p12 = P12 exp 1-(a2-jk2) (x cose + Y s i n0)- jw2t I , (2)

where

2 2 2 1/2 L = ( x + y + z ) . We found the second order pressure t o be

where

and

I n t h i s example, the c a r r i e r i s pll and

the sidebands a re p2(+) and p2(- ) . If we sum the

th ree s igna ls together and consider on ly the r e a l terms, we have

where

and

and we l e t a+ = s ince w+ - - w1 .

The pressure can then be expressed i n the form

[sinX + wlB cosX COSY - w2B sinX sinY I. (11)

Next, we express the pressure i n terms o f am-

p l i t u d e and phase modulat ion components by making

use o f the approximations

and

cos(wlB cosy) 1 ,

since lw16 cosy1 << 1. Using the i d e n t i t y

[sin(C+D) = sinC cosD + cosC sinD], we can express

the pressure as

[s in(X + wlB cosy) - w2B sinX sinY I . (12)

We can see t h a t the pressure has two compo-

nents : one t h a t represents a phase modulat ion and one t h a t represents an amplitude modulation. We

a lso see t h a t the phase modulation i s p ropor t iona l

t o u1 w h i l e the ampli tude modulat ion i s propor-

t i o n a l t o w2. Since w, >z w2 f o r the parametr ic

rece iv ing array, the phase modulat ion term w i l l

dominate. I n our next example we consider a l i n e pump

source and a p o i n t receiver . The geometry f o r t h i s

example i s schown i n F ig . 2.

YbLP _I Y

SIGNAL WAVE w2

Fig. 2. - parametr ic Receiving Array w i t h a L ine Source Pump.

c8-142 J.J. TRUCHARD

The sideband pressure f o r the sum and d i f f e -

rence frequency components was found t o be 1-3

where

A* . * $ k2 s i n (8+g1) k2 s ine1 - k, s ine1 , (14)

and 6 i s the same as Eq. 6.

Inc lud ing the usual expression f o r the f a r f i e l d o f

a l i n e array, the t o t a l pressure i n the f a r f i e l d

o f the 1 i n e source i s

-Pll expi-al l ] sin(kla s i n e ' ) p = --? sinx ( K1a s i n e t )

Expanding the cosines and rearranging we ge t

-Pll exp[-all] sin(kla s i n e ' ) P=T, [ kla s ine1 sinX

cosx COSY (16)

Remembering t h a t Bul << 1, u2 << ul, we can express t h i s i n the f o l l o w i n g approximate form :

exp [-alL ] sin(kla s i n e ' ) p = -P

11 7 kla s ine '

where

and

Since the c a r r i e r frequency i s much greater than

t h e s igna l frequency, t h e f i r s t term i n Eq. (18)

w i l l be many times l a r g e r than the second term.

The term sinaA+/aA+ - sinaA-/aA- w i l l a l so be very

small i f the rece ive r i s on the ax is o f the pump

transducer. Therefore, f o r a l l p r a c t i c a l purposes,

the second term i n Eq. (18) can be ignored. We

then have the phase modulat ion component t o be

wlB(ka s i n e ' )

@(t ) = 2 s in (ka s i n e ' )

Both terms i n the amplitude modulation expression

w i l l be small because, i n general,

sinaA+/aA+ - sinaA-/aA- w i l l be a small term even

when m u l t i p l i e d by ul. The second term i s propor-

t i o n a l t o w2 and w i l l be very small also. Conse-

quent ly , f o r most p r a c t i c a l cases o f parametr ic

r e c e i v i n g arrays, the phase modulat ion component

w i l l be s u b s t a n t i a l l y l a r g e r than the amplitude

modulat ion component. The expression

sinaA+/aA+ + sinaA-/aA- w i l l remain e s s e n t i a l l y

constant as the angle o f the pump transducer i s

changed s l i g h t l y . As a consequence, the beam pat-

t e r n f o r the phase modulat ion term w i l l remain

e s s e n t i a l l y unchanged i f we misa l ign the pump

transducer. On the other hand, the. ampl i tude modu-

l a t i o n component w i l l be s i g n i f i c a n t l y changed as

we misa l ign the pump transducer because i t i n -

cludes a term which i s zero when the pump trans-

ducer i s al igned, b u t nonzero when the pump t rans-

ducer i s misal igned. As a consequence, the beam

pa t te rns f o r the phase modulat ion term and the

ampl i tude modulat ion term w i l l be s u b s t a n t i a l l y

d i f f e r e n t when the pump transducer i s misaligned.

This c h a r a s t e r i s t i c can be e a s i l y v e r i f i e d experi-

menta l ly .

EXPERIMENTS. - A ser ies o f experiments was conduc-

t e d t o v e r i f y t h e c h a r a c t e r i s t i c s which we have

studied i n the previous sect ion. A p i c t o r i a l o f

JOURNAL DE PHYSIQUE c8-143

F ig . 3. - P i c t o r i a l f o r the Panmet r i c Receiving Array Experiment

the experiment i s shown i n F ig. 3. The parametr ic pump transducer. The r o l e s o f the two transducers

rece iv ing a r ray i s described i n r e f . 3, The pump could be reversed so t h a t the l i n e transducer

transducer, which i s e i t h e r a p o i n t source o r l i n e could be used e i t h e r as a pump o r as a rec ver . source, generated a 90 kHz c a r r i e r frequency which The a r ray was suspended w i t h an I-beam which could i s received by a second transducer 15 m from the be r o t a t e d on a sha f t . The e l e c t r o n i c apparatus

- THEORETICAL ---- EXPERIMENTAL

(a) PHASE DETECTOR OUTPUT (b) AMPLITUDE DETECTOR OUTPUT

4. - 5 kHz Beam Pat te rn w i t h the Pump Transducer Al igned w i t h the Receiver.

~ 8 - 1 4 4 J . J . TRUCHARD

f o r these experiments was q u i t e d i f f e r e n t from t h a t

used prev ious ly . Instead o f a band-reject c r y s t a l

f i 1 t e r , a phase demodulator and ampl i tude demodu-

1 a t o r were used.

Parametric rece iv ing a r ray beam patterms

were made w i t h the phase demodulator and a re shown

i n F ig. 4(a). The experimental r e s u l t s are compa-

red w i t h the theory o f Eq. (18). I n Fig. 4(b) we

have the corresponding example f o r the amplitude detector . When the pump transducer was al igned,

no essen t ia l d i f f e r e n c e was found between the beam

p a t t e r n w i t h the phase detector and the beam pat-

t e r n w i t h the amplitude detector . I n F ig. 5(a) -we

show an example where the pump was misal igned so

t h a t the response o f t h e pump s igna l was 3 dB down.

The corresponding beam p a t t e r n f o r the output o f

the amplitude de tec to r i s shown i n Fig. 5(b). We

see t h a t the beam pa t te rn w i t h the phase demodula-

t o r i s e s s e n t i a l l y unchanged wh i le the beam pat-

t e r n f o r the ampli tude demodulator i s q u i t e d i f fe-

r e n t . This d i f f e r e n c e occurs because the ampl i tude

modulat ion term as expressed i n Eq. (19) inc ludes

an asymmetrical component which i s s i m i l a r i n amk,

p l i t u d e t o the symmetrical component fo r our p a r t i - c u l a r example. The beam p a t t e r n w i t h a phase demo-

0'

du la to r remains near l y unchanged, w h i l e the beam

p a t t e r n f o r the amplitude demodulator i s dramatical-

1y.changed when the pump transducer i s misaligned. Some d i f f i c u l t y i n the experimental measure-

ment o f the amplitude modulat ion occurred due t o a

l a c k o f f l a t n e s s i n t h e hydrophone response. Since the phase modulation components a re considerably

l a r g e r than the amplitude modulat ion components,

the lack o f f l a t n e s s i n the hydrophone response

caused a small component o f the phase modulat ion

t o appear as an amplitude modulation. Equal izat ion

o f the hydrophone response would e l im ina te t h i s

problem. This e f f e c t increases the symmetrical

component i n the beam pa t te rn .

CONCLUSIONS. - I n t h i s paper, we have der ived

the expressions f o r the phase and ampli tude modula-

t i o n components o f a low frequency wave modulat ing

a h igh frequency c a r r i e r i n the example o f the pa-

rametr ic rece iv ing array. We have v e r i f i e d these

expressions w i t h experiments.

(a) PHASE DETECTOR OUTPUT (b) AMPLITUDE DETECTOR OUTPUT

Fig. 5. - 5 kHz Beam Pat te rn w i t h the Pump Transducer Rotated t o I t s 3 dB Down Point.

JOURNAL DE PHYSIQUE

ACKNOWLEDGMENTS

The author would l i c e to express his appreciation programs. This work was sponsored in part by the

to the many people a t Applied Research Laboratories Office of Naval Research and the Naval Sea Systems

who assisted in the construction of equipment for Command.

the experiments and in the development of computer

REFERENCES

/1/ J.J. Truchard, "The Detection of a Low-Frequen- /3/ J.J. Truchard, "Parametric Acoustic Receiving cy Plane Wave with a Parametric Receiving Array. 11. Experiment1', J . Acoust. Soc. Am. 58, Arraym1, Paper 2.12, presented a t the 1973 1146-1150. Symposium on Finite Amplitude Wave Effects in Fluids, Copenhagen, Denmark.

/2/ J .J . Truchard, "Parametric Acoustic Receivinq . - Array. I. heo or^", J. Acoust. Soc. Am. 58,

- 1141-1145 (1975).