module 2 - rlc circuits

49
Resistive, Capacitive, and Inductive AC Circuits EE 102 Circuits 2 Module 2

Upload: pao-castillon

Post on 02-Jun-2018

247 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 1/49

Resistive, Capacitive, and Inductive

AC Circuits

EE 102 Circuits 2

Module 2

Page 2: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 2/49

The Purely-Resistive AC Circuit

i

Re

= E m sin ωt

v R

where: e = E m sin ωt is the time-dependent AC generator

voltage, volts.

E m = amplitude or maximum value of the AC

generator voltage, volts

ω = angular frequency of the AC generator, rad/s

R = resistance of the load in series with e , ohms.

i = resulting current through the circuit, amps.

v R = voltage drop across the resistive load, volts.

Applying Kirchhoff’s voltage rule over the loop,

0 Rve

ev R

t E v m R sin

+ +

- - -

Page 3: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 3/49

The Purely-Resistive AC Circuit

i

Re

= E m sin ωt

v R

iRv R By Ohm’s law,

t R

E

R

vi m R sin

In a purely-resistive AC

circuit, the current throughthe resistance R is in-phase

with the voltage vR across

it..

t I i m sin R

E I where mm

t

ei

I m

E m

Page 4: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 4/49

The Purely-Resistive AC Circuit

i

Re

= E m sin ωt

v R

The effective or RMS value of the

AC generator voltage and the

resulting currents are;

2

m RMS

E E

R

E I I mm RMS

22

Effective value of e and i :

Page 5: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 5/49

The Purely-Resistive AC Circuit

i

Re

= E m sin ( ωt – φ )

v R

)sin(

t E e m

)sin( t I i m

t

ei

I m

E m

φ

AC generator voltage e with phase angle φ:

Page 6: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 6/49

Page 7: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 7/49

Checkpoint 1

If we increase the frequency of the AC generator in a circuit with a

purely resistive load, do (a) amplitude v R (voltage drop across theresistor) and (b) amplitude i R (current thru the resistor), decrease, or

remain the same?

Page 8: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 8/49

Illustrative Problem 1

A purely resistance AC circuit has resistance R = 200 Ω and the

sinusoidal alternating emf (voltage) device operates at amplitudeE m = 36.0 V and frequency f = 60.0 Hz .

a) What is sinusoidal driving voltage e and its effective value E ?

b) What is the sinusoidal current i and its effective value I ?

c) Power dissipated by the resistive load.

Page 9: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 9/49

The Purely-Capacitive AC Circuit

i

Ce

= E m sin ωt v C

where: e = E m sin ωt is the time-dependent AC generator

voltage, volts.

E m = amplitude or maximum value of the AC

generator voltage, volts

ω = angular frequency of the AC generator, rad/s

C = capacitance of the capacitor, farad

i = resulting current through the circuit, amps.

v C = voltage drop across the capacitive load, volts.

Applying Kirchhoff’s voltage rule over the loop,

0 C ve

evC

t E v mC sin

Page 10: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 10/49

C C Cvq

In a capacitor, the amount of

charge on a capacitor is

proportional to voltage across its

terminals. That is,

The Purely-Capacitive AC Circuit

i

Ce

= E m sin ωt v C

Likewise,

t CE i

t E dt

d C

dt

dvC

dt

dqi

m

mC C

cos

]sin[

where: I m = ωCE m .

q = capacitor charge in coulombs

In a purely-capacitive AC circuit, the current through a capacitor is

leading the voltage vC across it by 90o.

t

ei

I m

E m

90 o )90sin(cos o

mm t I t I i

Page 11: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 11/49

The Purely-Capacitive AC Circuit

i

Ce

= E m sin ωt v C

t CE i m cos

where: is called the capacitive

reactance of the capacitor, ohms.

t

ei

I m

E m

90 o

Rearranging,

t

C

E

i

m

cos1

)90sin(cos o

C

m

C

m t X

E t

X

E i

C X C

1

Page 12: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 12/49

The Purely-Capacitive AC Circuit

i

Ce

= E m sin ωt v C

Power : The instantaneous power dissipated

by the capacitor is p C = v C i = ei .

Plotting p C vs. time t yields,

t

e

i

I m

E m

90 o

Page 13: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 13/49

The Purely-Capacitive AC Circuit

i

Ce

= E m sin ωt v C

Power :

t

e

i

I m

E m

90 o

The instantaneous power dissipated

by the capacitor is p C = v C i = ei .

Plotting p C vs. time t yields,

Page 14: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 14/49

The Purely-Capacitive AC Circuit

i

Ce

= E m sin ωt v C

Power : The instantaneous power dissipated

by the capacitor is p C = v C i = ei .

Plotting p C vs. time t yields,

The energy dissipated in one cycle is the area of the curve in one cycle

Page 15: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 15/49

The Purely-Capacitive AC Circuit

i

Ce

= E m sin ωt v C

Power : The instantaneous power dissipated

by the capacitor is p C = v C i = ei .

Plotting p C vs. time t yields,

The energy dissipated in one cycle is zero, therefore the power

dissipated by the capacitor is zero.

Page 16: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 16/49

Illustrative Problem 2

A purely capacitive AC circuit has a capacitance of C = 15 μF and

the sinusoidal alternating emf (voltage) device operates at amplitudeE m = 36.0 V and frequency f = 60.0 Hz .

a) What is the voltage v C of the capacitor and its effective value?

b) The capacitive reactance of the capacitor.

c) What is the current i and effective value of the current throughthe capacitor?

Page 17: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 17/49

The Purely-Inductive AC Circuit

where: e = E m sin ωt is the time-dependent AC generatorvoltage, volts.

E m = amplitude or maximum value of the AC

generator voltage, volts

ω = angular frequency of the AC generator, rad/s

L = inductance of the inductor, henry

i = resulting current through the circuit, amps.

v L = voltage drop across the inductive load, volts.

Applying Kirchhoff’s voltage rule over the loop,

0 Lve

ev L

t E v m L sin

i

L e

= E m sin ωt v L

Page 18: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 18/49

dt

di Lv L

In an inductor, the voltage drop

across the inductor is proportional

to the rate of change of the current

i through it.

. Thus,

where: I m = E m /ωL

t

e

i

I m

E m

90 o

The Purely-Inductive AC Circuit

i

e

= E m sin ωt v L

t E dt

di L m sin

)90sin( om t I i

)90sin(cos omm t L

E t

L

E i

In a purely-inductive AC circuit, the current through the inductor is

lagging the voltage vL across it by 90o.

L

Page 19: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 19/49

t

e

i

I m

E m

90 o

The Purely-Inductive AC Circuit

i

L e

= E m sin ωt v L

where: XL = wL is called the inductive

reactance of the inductor, ohms.

t X

E i

L

m cos

)90sin( om

t L

E

i

Page 20: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 20/49

The Purely-Inductive AC Circuit

i

L e

= E m sin ωt v L

Power : As in the case of the purely-

capacitive circuit, the graph of the

power p = v L i will result in an area

for one cycle of zero. Therefore,

the power dissipated by theinductor will be zero.

Page 21: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 21/49

Checkpoint

If we increase the driving frequency of the AC generator in a circuit

with a purely capacitive load, do (a) amplitude of v C (voltage dropacross the capacitor) and (b) amplitude i C (current thru the capacitor),

increase, decrease, or remain the same? If instead, the circuit has a

purely inductive load, do (c) amplitude v L and (d) amplitude i L

increase, decrease, or remain the same?

Page 22: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 22/49

Illustrative Problem 3

A purely inductive AC circuit has an inductance of L = 230 henrys

and the sinusoidal alternating emf (voltage) device operates atamplitude E m = 36.0 V and frequency f = 60.0 Hz .

a) What is the inductive reactance of the inductor.

b) What is the effective value of the current through the inductor?

Page 23: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 23/49

Summary of R, L, and C AC Circuits

i R

Re = E m sin ωt v R

R

vi R R

i R is in-phase with the voltage v R .

i C

C e = E m sin ωt v C C

C C

X

vi

i C is leading the voltage v C by 90o.

fC C X C

2

11

i L

Le = E m sin ωt v L

L

L L

X

vi

i L is lagging the voltage v C by 90o.

fL L X L 2

Note in this circuit, v R= E m sin ωt

Note in this circuit, vC = E m sin ωt

Note in this circuit, v L= E m sin ωt

Page 24: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 24/49

Quiz 1

1. Given the following sinusoidal signals:

e1 = -5 sin(10t + 35o )

e2 = 10 cos(10t – 155o )

find the following; (10 pts)

a) The minimum phase difference between the sinusoids

b) The period of the signals.c) The effective values of e1 and e2.

d) The plot of e1 x e2.

2. In a purely inductive circuit, the AC sinusoidal voltage is

e1 = -100 sin(10t + 35o

), resulting in an effective current of 2.0A. Find; (10 pts)

a) The inductive reactance of the inductor.

b) The inductance of the inductor.

c) The time domain expression of i .

Page 25: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 25/49

The RC Circuit

0

0

0

C C

C

C R

vdt

dv RC e

viRe

vve

Rearranging and substituting the sinusoid for e ;

t RC

E v

RC dt

dv mC

C sin1

Which is a first-order differential equation with the dependent

variable v C .

i

e = E m sin ωt v C C

v R sw.

Page 26: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 26/49

The RC Circuit

The solution to this differential equation is composed of two

solutions: the homogenous solution (transient response) and the particular solution (steady-state response). The transient response is

also called the natural response and the steady-state response the

forced response.

RC t

C

mC C et

X R E X v

sin)sin(22

where φ = tan-1(X C /R). Since i = C dv C /dt,

RC t

C

mC

e RC t X R

E CX

i sin

1

)cos(22

RC t C

C

m e R

X t

X R

E i sin)cos(

22

Page 27: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 27/49

The RC Circuit

RC t C

C

m e R

X t X R

E i sin)cos(22

RC t

C

mC

C

m e X R R

E X t X R

E i

sin)cos(

2222

Steady state Transient

Note: This solution assumes the capacitor is initially not charged.

Page 28: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 28/49

The RC Circuit

t

e

i

Graph of AC source e (blue) and the response i (red)

Page 29: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 29/49

The RC Circuit

RC t

C

mC

C

m

e X R R

E X

t X R

E

i

sin)cos( 2222

Steady state Transient

The steady-state component of the response is what is left after a

long time, as the transient part slowly disappears. The radical is called the impedance of the circuit and is

denoted by the letter Z. Thus,

22

C X R

22

C X R Z

In AC circuit analysis, we are interested on the steady state

response of the network.

The product RC is called the time-constant of the circuit usually

designated by τ = RC. The time constant affect how fast or slow

will the transient component stay.

Page 30: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 30/49

Checkpoint

If we increase the driving

frequency ω of the AC generatorin an RC circuit, do (a) amplitude

of the steady-state current i

(current thru the RC circuit),

increase, decrease, or remain thesame? (b) do the phase φ of

steady-state current i increase,

decrease, or remain the same?

i

e = E m sin ωt v C C

v R

Page 31: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 31/49

Checkpoint

In an RC circuit, the transient

component of the current i disappearsfaster if

a) The driving frequency ω is

increased.

b) The time constant RC is increased.c) The time constant RC is decreased.

i

e = E m sin ωt v C C

v R

Page 32: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 32/49

Checkpoint

In an RC circuit, the steady-state

component of the current is,a) Lagging the source voltage.

b) Leading the source voltage.

c) Remain the same.

i

e = E m sin ωt v C C

v R

Page 33: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 33/49

The RL Circuit

The steady-state response for an RL circuit is;

)sin(22

t X R

E i

L

m

where φ = tan-1(X L/R).

i

e = E m sin ωt v L

v R

L

Page 34: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 34/49

Checkpoint

In an RL circuit, the steady-state

component of the current is,a) Lagging the source voltage.

b) Leading the source voltage.

c) Remain the same.

i

e = E m sin ωt v L

v R

L

Page 35: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 35/49

Illustrative Problem 4

In an RL circuit R = 2000Ω , L = 3.1 henrys and the sinusoidal

alternating emf (voltage) device operates at amplitude E m = 100.0V and frequency f = 60.0 Hz .

a) The inductive reactance X L of the inductor.

b) Phase difference of the circuit current and the emf.

c) The effective value of the current.d) Plot of the current.

Page 36: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 36/49

The RLC Circuit

The steady-state response for an RLC circuit is;

)sin()(

22

t

X X R

E i

C L

m

where φ = tan-1[(X L-X C )/R] if X L > X C or

φ = tan-1[(X C -X L )/R] if X C > X L.

i

e = E m sin ωtv L

v R

L

C v C

R

Page 37: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 37/49

Illustrative Problem 5

An RLC circuit has R = 2000 Ω , L = 3.1 henrys, C = 1.77 μF and the

sinusoidal alternating emf (voltage) device operates at amplitudeE m = 150.0 V and frequency f = 60.0 Hz . Find

a) The impedance Z of the circuit.

b) The phase angle of the circuit current. Is the current leading or

lagging the emf?c) The effective value of the current.

d) The effective value of the voltage across the inductor.

e) At what frequency will X L = X C ?

Page 38: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 38/49

Euler’s Identity

According to Euler;

t jet jt sincos

t je B At jBt A 22)sincos

Similarly;

where is called an imaginary number.1 j

This means that e jωt has a real part (cos ωt) and an imaginary part

(sin ωt), sometimes written as;

t je

t e

t j

t j

sinIm

cosRe

A quantity with a real part and an imaginary part like e jωt is called a

complex number.

Page 39: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 39/49

The RL Circuit

By KVL, the differential equation forthis circuit is,i

e = E m sin ωt v L

v R

L

t E Ridt

di L m sin

By Euler’s identity, Em sin ωt = Em Ime jωt ).

We can replace the sinusoidal source with a complex source

Em e jωt.

i

E = E m e j ωt v L

v R

L

This source now has two componentsources: the imaginary source

Emsin ωt which is our original source

and the real source Emcos ωt. Take

note e has been replace by E .

Page 40: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 40/49

The RL Circuit

i

E = E m e j ωt v L

v R

L

The steady-state response (I ) of this RL

circuit using the complex source is also

complex of the form;

)(

0

t je I I

where φ is an arbitrary phase angle. Substituting this to the DEyields;

t j

m

t jt j e E e RI e I dt

d L )(

0

)(

0

Simplifying, yields;

L j R

E e I m j

0

Converting the denominator in terms of the complex exponential,

Page 41: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 41/49

The RL Circuit

Thus;

)(tan

22)(tan220

1

1

)()(

R L

R L

jm j

m j e L R

E e L R

E e I

Substituting to the steady-state response, finally yields;

220

)( L R

E I m

)(tan 1

R L

)(tan

22

1

)(

R Lt jm e

L R

E I

)(tansin)(

)(tancos)(

1

22

1

22 R Lm

R Lm t

L R

E jt

L R

E I

Real part of the solution Imaginary part of the solution

Page 42: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 42/49

The RL Circuit

)(tansin)(

)(tancos)(

1

22

1

22 R

Lm R Lm t

L R

E jt

L R

E I

Real part of the solution Imaginary part of the solution

Since our source is the imaginary part in Euler’s relation (since it

was stated as a sine function), our steady state solution must only

contain the imaginary part. Hence,

)(tansin)(tansin

)(

1

22

1

22 R

X

L

m

R Lm Lt

X R

E t

L R

E i

which is similar to the one derived in the RL circuit previously.

Page 43: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 43/49

Assignment

Using complex source, derive the response for an RC circuit as

shown below.

i

e = E m sin ωt v C C

v R sw.

Submit results in Edmodo. Deadline June 24, 2013.

Page 44: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 44/49

The RC Circuit

By KVL, the differential equation forthis circuit is,

By Euler’s identity, Em sin ωt = Em Ime jωt ).

We can replace the sinusoidal source with a complex source

Em e jωt.

This source now has two component

sources: the imaginary source

Emsin ωt which is our original source

and the real source Emcos ωt.

t RC

E v

RC dt

dv mC

C sin1

i

e = E m sin ωt v C C

v R sw.

E = E m e j ωt

i

v C C

v R sw.

Page 45: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 45/49

The RC Circuit

The steady-state response (V C ) of this

RC circuit using the complex source is

also complex of the form;

)(

0

t j

C eV V

where φ is an arbitrary phase angle. Substituting this to the DEyields;

Simplifying, yields;

C

R j

E eV m j

/11

0

Converting the denominator in terms of the complex exponential,

E = E m e j ωt

i

v C C

v R sw.

t jmt jt j e RC

E eV

RC eV

dt

d )(

0

)(

0

1

Page 46: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 46/49

The RC Circuit

Thus;

)(tan

2)(tan

20

1

/1

1

1/1

1

C X R

C R

j

C

m

j

m j e

X

R

E

eC

R

E eV

Substituting to the steady-state response, finally yields;

2

0

1

C

m

X

R

E V

)(tan

1

C X

R

))(tan(

2

1

1

C X Rt j

C

mC e

X

R

E V

Page 47: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 47/49

The RC Circuit

)(tansin

1

)(tancos

1

1

2

1

2 C C X R

C

m

X R

C

mC t

X

R

E jt

X

R

E V

)(tansin

1

1

2 C X R

C

mC t

X

R

E v

which is equivalent to;

Since the actual source is the imaginary part of the complex source,

the time domain voltage will only contain the sine function. Thus,

Page 48: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 48/49

The RC Circuit

C

C

mC X Rt X R

E dt dvC i /(tancos 1

22

C

o

C

m X Rt X R

E i /(tan90sin 1

22

Since tan-1(R/XC)+tan-1(XC/R) = 90o

C C C

C

m X R X R R X t X R

E i /(tan)/(tan)/(tansin 111

22

)/(tansin 1

22 R X t

X R

E i C

C

m

Page 49: Module 2 - RLC Circuits

8/10/2019 Module 2 - RLC Circuits

http://slidepdf.com/reader/full/module-2-rlc-circuits 49/49

Thank You