module v – advanced fire modeling · module v – advanced fire modeling. example a: control room...

68
Joint EPRI/NRC-RES Fire PRA Workshop August 13-17, 2018 Kevin McGrattan – NIST Fred Mowrer – Cal. Poly State University Module V – Advanced Fire Modeling Example A: Control Room Fire Example B: Switchgear Cabinet Room Fire A Collaboration of the Electric Power Research Institute (EPRI) & U.S. NRC Office of Nuclear Regulatory Research (RES)

Upload: others

Post on 30-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

Joint EPRI/NRC-RES Fire PRA WorkshopAugust 13-17, 2018

Kevin McGrattan – NIST

Fred Mowrer – Cal. Poly State University

Module V – Advanced Fire Modeling

Example A: Control Room Fire

Example B: Switchgear Cabinet Room Fire

A Collaboration of the Electric Power Research Institute (EPRI) & U.S. NRC Office of Nuclear Regulatory Research (RES)

Page 2: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

2

Step 1. Define Fire Modeling Goals

Determine the length of time that the Main Control Room (MCR) remains habitable after the start of a fire within a low-voltage control cabinet. Follow guidance provided in Chapter 11 of NUREG/CR-6850

(EPRI 1011989), Volume 2, “Detailed Fire Modeling (Task 11).” Note that MCR fire scenarios are treated differently than fires

within other compartments, mainly because it is necessary to consider and evaluate forced abandonment in addition to equipment damage.

Page 3: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

3

Step 2. Characterize Fire Scenarios

General DescriptionGeometryMaterialsFire Protection SystemsVentilationFireHabitability and Human Factors

Page 4: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

4

Page 5: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

5

Typical “open grate” ceiling

Page 6: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

6

Page 7: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

7

Typical Control Room Cabinet

Page 8: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

8

Material Properties

For non-burning materials, the most important properties are thermal conductivity, k, density, ρ, and specific heat, cFor specified burning rates, you need:

– Heat Release Rate (HRR) or HRR Per Unit Area (HRRPUA)– Heat of Combustion – energy released per unit mass consumed

For predicting the burning rate, you need:– Heat of Vaporization (liquids)– Heat of Gasification (solids)– Kinetic constants for reaction rates– (typically not used for NPP applications)

Page 9: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

9

Typical material properties for common construction and cable materials

Page 10: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

10

Ventilation

25 Air Changes Per Hour (ACH) for purge modeTwo scenarios – purge mode or ventilation inoperativeLeakage – often the “leakage area” is the area of the crack

under the doorExact supply and exhaust location only important for CFDZone models usually only consider height of mechanical

ventilation injection and extraction grilles

Page 11: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

11

Fire

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989)

Note: This guidance has been replaced by RACELLE-FIRE

Page 12: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

12

New Guidance for Electrical Enclosure HRR

RACHELLE-FIRE (Refining And Characterizing Heat Release Rate from ElectricalEnclosures During Fire) NUREG-2178, EPRI 3002005578

Page 13: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

13

Page 14: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

14

Fire

What is burning?

Cables made of polyethylene (C2H4) and neoprene (C4H5Cl)

Assume effective fuel: C3H4.5Cl0.5

Page 15: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

15

Habitability

Criteria for habitability (NUREG/CR-6850, Vol 2, Chap 11)• Gas Temperature 2 m off the floor is 95 °C• Heat Flux exceeds 1 kW/m2

• Optical Density exceeds 3 m-1

What is Optical Density?

Smoke Concentration (kg/m3)

Mass Extinction Coefficient (8700 m2/kg)

Page 16: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

16

Step 3. Select Fire Models

Algebraic Models: FPA algorithm in FIVE and FDTs provides estimate of HGL temperature within a closed, ventilated compartment. – FDTs do not allow for time-dependent HRR

Zone Models: CFAST includes smoke obscuration. MAGIC does not.CFD: Provides more detailed information at exact location of

operators

Page 17: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

17

Applicability of Validation

YesNUREG-1824, Supplement 1

0.2-9.1

YesNew Range

0.0-0.6

YesNew Range

0.3-8.0

Page 18: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

18

From: NUREG-1824, Supplement 1

Page 19: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

19

Applicability of Validation

For the scenario with no ventilation, the classic definition of the Equivalence Ratio does not apply because there is no supply of oxygen in the room. However, it can be shown that there is sufficient oxygen in

the room to sustain the specified fire.

Page 20: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

20

Step 4. Calculate Fire-Generated Conditions

Page 21: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

21

Step 4. Calculate Fire-Generated Conditions

Temperature in smoke purge scenario– Use FPA correlation in FIVE-rev1 or FDTs

Need equivalent length / width of non-rectangular rooms

Other input parameters

Page 22: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

22

Step 4. Calculate Fire-Generated Conditions

Page 23: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

23

Page 24: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

24

CFAST Calculation

Page 25: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

25

FDS Simulation

Page 26: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

26

Step 4. Calculate Fire-Generated Conditions

0

20

40

60

80

100

120

140

0 600 1200 1800 2400 3000 3600

Tem

pera

ture

(C)

Time (s)

Temperature near Operator

FPA (Purge)

CFAST (No Vent.)

CFAST (Purge)

FDS (No Vent.)

FDS (Purge)

Page 27: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

27

Step 4. Calculate Fire-Generated Conditions

0

1

2

3

4

5

6

0 600 1200 1800 2400 3000 3600

Heig

ht (m

)

Time (s)

HGL Height

CFAST (No Ventilation)

FDS (No Ventilation)

Page 28: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

28

Step 4. Calculate Fire-Generated Conditions

0.0

0.2

0.4

0.6

0.8

1.0

0 600 1200 1800 2400 3000 3600

Hea

t Flu

x (k

W/m

2 )

Time (s)

Heat Flux to Operator

FIVE (Purge)

CFAST (No Vent.)

CFAST (Purge)

FDS (No Vent.)

FDS (Purge)

Page 29: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

29

Step 4. Calculate Fire-Generated Conditions

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 600 1200 1800 2400 3000 3600

Optic

al D

ensi

ty (1

/m)

Time (s)

Optical Density near Operator

SFPE (Purge)CFAST (No Vent.)CFAST (Purge)FDS (No Vent.)FDS (Purge)

Page 30: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

30

Step 5. Sensitivity and Uncertainty Analysis

Uncertainty Analysis quantifies the model uncertainty– List the predicted quantities and the critical values of these quantities

Sensitivity Analysis can be used to assess parameter uncertainty

Page 31: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

31

Step 5. Sensitivity and Uncertainty Analysis

Page 32: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

32

Step 5. Sensitivity and Uncertainty Analysis

Page 33: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

33

Step 5. Sensitivity and Uncertainty Analysis

Page 34: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

34

Step 5. Sensitivity and Uncertainty Analysis

Page 35: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

35

Step 5. Sensitivity and Uncertainty Analysis

Page 36: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

36

Step 5. Sensitivity and Uncertainty Analysis

Page 37: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

37

Step 6. Document the Analysis

Follow the steps; clearly explain the entire processAnswer the original questionReport model predictions with uncertainty and sensitivity

included Include all references

Page 38: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

38

Step 6. Document the Analysis

Page 39: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

39

Step 6. Document the Analysis

Page 40: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

Joint RES/EPRI Fire PRA Workshop

August, 2018

Rockville, Maryland

EPRI/NRC-RES FIRE PRA METHODOLOGY

Module 5Advanced Fire ModelingExample B: Switchgear Room Cabinet Fire

Page 41: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

41

Step 1. Define Fire Modeling Goals

Estimate the effects of fire in a cabinet in a Switchgear Room on nearby cable and cabinet targets. Switchgear Room contains safety-related equipment for both

Train A and Train B that are not separated as required by Appendix R. The purpose of the calculation is to analyze this condition

and determine whether these targets fail, and, if so, at what time failure occurs.Follow guidance provided in Chapter 11 of NUREG/CR-6850

(EPRI 1011989), Volume 2, “Detailed Fire Modeling (Task 11).”

Page 42: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

42

Step 2. Characterize Fire Scenarios

General DescriptionGeometryMaterialsVentilationFireFire Protection Systems

– None credited for this scenario

Page 43: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

43

Page 44: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

44

Material Properties

Page 45: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

45

Ventilation

Design flowrate specified for each of three supply and return registers.Normal operation continues during the fire.Leakage – often the “leakage area” is the area of the crack

under the door.Exact supply and exhaust location only important for CFD.Zone models usually only consider height of ducts off floor

and orientation of the vent.

Page 46: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

46

Fire

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989)

Note: This guidance has been replaced by RACHELLE-FIRE

Page 47: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

47

New Guidance for Electrical Enclosure HRR

RACHELLE-FIRE (Refining And Characterizing Heat Release Rate from ElectricalEnclosures During Fire) NUREG-2178, EPRI 3002005578

Page 48: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

48

Fire

• Original fire source is specified atop the central cabinet.

• FLASH-CAT model (NUREG/CR-7010, Volume 1) is used to determine the ignition, flame spread and extinction of the cables above the original fire source.

Page 49: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

49

Fire

What is burning?

Cables made of polyethylene (C2H4) and polyvinylchloride (C2H3Cl).

Assume effective fuel: C2H3.5Cl0.5

Page 50: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

50

Step 3. Select Fire Models

Algebraic Models: FPA algorithm in FIVE provides estimate of HGL temperature within a closed, ventilated compartment. FDTs do not allow for time-dependent HRR. Both FIVE and FDTs can estimate heat flux from a fire to a target.Zone Models: Both CFAST and MAGIC include algorithms

to estimate the heat flux to and temperature of cable targets.CFD: Typical application of FDS. The primary advantage of a

CFD model for this fire scenario is that the CFD model can predict local conditions at the specific location of the target cables and adjacent cabinet.

Page 51: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

51

Applicability of Validation

0.2-9.1

0.0-1.6

0.0-8.3

0.0-0.6

0.6-8.3

0.3-8.0

Yes

Page 52: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

52

Step 4. Calculate Fire-Generated Conditions

Page 53: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

53

Step 4. Calculate Fire-Generated Conditions

Page 54: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

54

Step 4. Calculate Fire-Generated Conditions

Should be 6.1 m

Page 55: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

55

Step 4. Calculate Fire-Generated Conditions

Page 56: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

56

CFAST Calculation

Page 57: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

57

FDS – Smokeview rendering of SWGR fire

Page 58: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

58

FDS – Smokeview rendering of SWGR fire

Page 59: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

59

Step 4. Calculate Fire-Generated Conditions

Page 60: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

60

Step 4. Calculate Fire-Generated Conditions

Page 61: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

61

Step 4. Calculate Fire-Generated Conditions

Page 62: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

62

Step 4. Calculate Fire-Generated Conditions

Page 63: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

63

Step 5. Sensitivity and Uncertainty Analysis

Page 64: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

64

Step 5. Sensitivity and Uncertainty Analysis

Page 65: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

65

Step 5. Sensitivity and Uncertainty Analysis

Page 66: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

66

Step 5. Sensitivity and Uncertainty Analysis

Page 67: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

67

Step 6. Document the Analysis

Follow the steps; clearly explain the entire processAnswer the original questionReport model predictions with uncertainty and sensitivity

included Include all references

Page 68: Module V – Advanced Fire Modeling · Module V – Advanced Fire Modeling. Example A: Control Room Fire Example B: Switchgear ... 24 CFAST Calculation. 25 FDS Simulation. 26 Step

68

Step 6. Document the Analysis