molecular engineering [kompatibilitätsmodus] · molecular engineering. lecture 3b. molecular...

37
LINZ LECTURES Lecture 1. The Development of Organic Conductors: Metals, Superconductors and Semiconductors Lecture 2A. Introduction and Synthesis of Important Conjugated Polymers Lecture 2B. Solid State Polymerization Lecture 3. Fullerene Chemistry Lecture 3B. Molecular Engineering

Upload: others

Post on 14-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

LINZ LECTURES

Lecture 1. The Development of Organic Conductors: Metals, Superconductors and Semiconductors, p

Lecture 2A. Introduction and Synthesis of Important Conjugated PolymersLecture 2B. Solid State Polymerization

Lecture 3. Fullerene ChemistryLecture 3B. Molecular Engineering

Page 2: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Lecture 3B. Molecular Engineering of Conjugated Polymers for OE

Processing Design

Bandgap Design

N-Dopable Designp g

Self-Dopable and Water Solubility DesignSe opab e a d ate So ub ty es g

Page 3: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

The Most Popular Conjugated PolymersHN

n(CH)xPA PANI

n

O O

Y

S nPPPPITN

S nPEDOT

X

XZ

X = S, NH, NR; Y = H, R, Ph, etc

PT, PPy, etc Y PPVs

n

X Y

n

PFs

Page 4: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

THE DRIVE TOWARD PROCESSING

Page 5: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

O

The Evolution of Processable PPV as an ExampleO

n

O

O

nO

n

n

O O O

O O

Cl

Cl

O

n

O O

MEH-PPV

F. Wudl, P.-M. Alleman, G. Srdanov, Z. Ni, D. McBranch in “Materials for Nonlinear Optics” S. Marder, J.E. Sohn. G.D. Stucky, Eds; American Chemical Society Symposium Series, 1991. pp 683-686.

Page 6: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Designing the Semiconductor Gap

Page 7: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

The Bandgaps of Conducting Polymers(π−π∗)

Polymer ΔE Gap, eV

3 0ca. 3.0

S S S ca 2 1S S

ca. 2.1

ca 1 5ca. 1.5

SS

SS

S ca. 1.1

Page 8: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

The Concept of Low Bandgap Based on Benzenoid and Quinoid Equivalence

S S S S

Benzenoid and Quinoid Equivalence

SS

SS

SS

SS

TA TB

E E<<EA EB<<

SS

SS

SS

SS

IA IB

EA EBA B

Poly(isothianaphthene). Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382–3384.The Electronic and Electrochemical Properties of Poly(isothianaphthene). Kobayashi, M.; Colaneri, N.;

l dl h hBoysel, M.; Wudl, F.; Heeger, A. J. J. Chem. Phys. 1985, 82, 5717–5723 Bredas, J.-L.; Heeger, J. A.; Wudl, F. J. Chem. Phys.1985, 85, 4673

Page 9: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable
Page 10: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Transparent to the Human Eye

Page 11: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Application of the Concept to a PEDOT Analog

S S S S

S

S

SS

S

SS

S

SS

S

S

S S S S

TATB

EA ≅ ΕΒ

B. Lee, V. Seshadri, G. A. Sotzing Langmuir 2005, 21, 10797

Page 12: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

B. Lee, V. Seshadri, G. A. Sotzing Langmuir 2005, 21, 10797

Page 13: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

The Concept of Low Bandgap Based on Intramolecular Donor-Acceptor Interactions

ON

HON

S

O*N

Hn O

O

SN

C12H25

n

Eg ca 0.5 eV

Havinga, E.E.; Pomp, A.; Ten Hoeve, W.; Wynberg, H. Synthetic Metals, 1995, 69, 581Havinga E E ; Pomp A ; Ten Hoeve W ; Wynberg H Polym Bull 1992 29 119Havinga, E.E.; Pomp, A.; Ten Hoeve, W.; Wynberg, H. Polym. Bull., 1992, 29, 119J. Eldo and A. Ajayaghosh Chem. Mater. 2002, 14, 410-418

Page 14: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

J. P. Ferraris and T. L. Lambert J. CHEM. SOC., CHEM. COMMUN., 1991, 1268

Page 15: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

J. P. Ferraris and T. L. Lambert J. CHEM. SOC., CHEM. COMMUN., 1991, 1268

Page 16: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

J. P. Ferraris and T. L. Lambert J. Chem. Soc., Chem. Commun., 1991, 1268

Page 17: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Said Akoudad and J. Roncali J. C h e m.Soc. Chem. Commun., 1998, 2081

Page 18: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Said Akoudad and J. Roncali J. C h e m.Soc. Chem. Commun., 1998, 2081

Page 19: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

I. F. Perepichka, E. Levillain and J. Roncali J. Ma t e r. C h e m., 2004, 14, 1679

Page 20: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

I. F. Perepichka, E. Levillain and J. Roncali J. Ma t e r. C h e m., 2004, 14, 1679

Page 21: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

The Concept of Low Bandgap Polymer Based on Small Bandgap MonomerBased on Small Bandgap Monomer

If the monomer units have a small HOMO LUMO gap it stands toIf the monomer units have a small HOMO-LUMO gap, it stands to reason the incorporation into a conjugated backbone ought to produce an even smaller bandgap polymer

Page 22: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

An Example of a Very Low Bandgap Molecule

O

Page 23: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

OO

A New Polymer with a 0.9 eV BandgapS S

nS S

FeCl3

THF

1 8

2.0

Monomer in CHCl

RR

1.4

1.6

1.8 Monomer in CHCl3 Polymer in CHCl3 Polymer Film

u.)

1.0

1.2

orpt

ion

(a.

0 4

0.6

0.8

Abs

o

0.0

0.2

0.4

300 400 500 600 700 800 900 1000 1100 1200

Wavelength (nm)Satish PatilWes Walker

Page 24: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Materials with Spectral Response: 400nm ~ 1400nm

8

9

10

11

12

(L/g

cm

)

O3

4

5

6

7

Abs

orpt

ion

Coe

ffici

ent '

SS

R

0

1

2

3

250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450 1550 1650Wavelength(nm)

A

Rn

R =

Wavelength (nm)

4

10-3

10-2

Photo Current

-4 1eV

-3.9 eV

Electron Donor: FW-D1

10-6

10-5

10-4

J (A

/cm

2 )

-4.1eV

FW-D

1

PCB

M

10-9

10-8

10-7

-1 -0.5 0 0.5 1 1.5

Dark Current

-4.9 eV

-6.3 eV

P Bias (V)

Preliminary Results

Page 25: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Hexyl

S

SNi

S

nS

S

S

Hexyl

Rajeev Kumar/Britt Veldman

Page 26: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

The Drive Toward n-Dopable Polymers

Page 27: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

The Drive Toward n-Dopable Polymers

OC6H13

C6H13O

*

*

CN

NCn

OC6H13

C6H13O

OC6H13

C6H13O

*

*

CN

NCn

SCH3

C12H25O

OR

O

*

*

CN

NC

OR

O n12 25

CN-PPV1 (Eg = 2.1 eV)

* CNOC6H13

CN-PPV2 (Eg = 2.2 eV)λPL = 710 nm λPL = 610 nm

R = C8H17R = C10H21R = C12H25R = C16H33

Eg = 2.0 eVλPL = 611nmλEL = 603-618 nm

*

*

CN

NCnC6H13O

*

*

CN

NCn

*

*

CN

NCnOCH3

CN-PPV3 (Eg = 2.85 eV)

CN-PPV4 (Eg = 3.2 eV) CN-PPV5 (Eg = 3.05 eV)λPL = 516 nm; λEL = 510 nm

*

*

CN

NC

*S

*

*

CN OC6H13C12H25

*S*

CNC12H25

S

C12H25

( g ) g

n NCC6H13O n NC n

CN-PPV6 (Eg = 2.7 eV) CN-PT-co-PPV (Eg = 1.8 eV) CN-PT (Eg = 1.55 eV)

λPL = 950 nmλPL = 840 nm; λEL = 730 nm

*CN

*CN

CNN

*

nEg = 2.3 eVλEL = 560 nm

CNN

*

nEg = 2.5 eVλPL = 530 nmλEL = 560 nmλEL = 510 nm

N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes Efficient Light-Emitting Diodes Based on Polymers with High Electron Affinities Nature 1993, 365, 628-630

Page 28: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

T. Nakagawa, D. Kumaki, J. Nishida, S. Tokito, Y. Yamashita Chem. Mater. 2008, 20, 2615–2617

Page 29: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Self-Doping and Water Solubility

Page 30: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Self-Doping Conducting Polymer/Water Soluble Conducting PolymerConducting Polymer

Ikenoue, Y.; Chiang, J.; Patil, A. O.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1988, 110, 2983–2985

Page 31: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Ikenoue, Y.; Chiang, J.; Patil, A. O.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1988, 110, 2983–2985

Page 32: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Ikenoue, Y.; Chiang, J.; Patil, A. O.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1988, 110, 2983–2985

Page 33: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

A Water-Soluble PPV

S. Shi, F. Wudl Macromolecules 1990, 23, 2119

Page 34: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

“Superquenching of a Water-Soluble PPV

L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson§, F. Wudl, G. Whitten PNAS, 1999, 12287

Page 35: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Biosensor Application

L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson§, F. Wudl, G. Whitten PNAS, 1999, 12287

Page 36: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable

Summary

By application of simple design conceptsBy application of simple design concepts conjugated poly processable,

t ll bl E d bl d tcontrollable Eg, n-dopable and water-soluble conjugated polymers could be j g p yprepared and applied to organic electronics and biologyelectronics and biology

Page 37: Molecular Engineering [Kompatibilitätsmodus] · Molecular Engineering. Lecture 3B. Molecular Engineering of Conjugated Polymers for OE Processing Design Bandgap Design N-Doppgable