molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · molecular evolution –...

62
Molecular evolution Joe Felsenstein GENOME 453, Autumn 2015 Molecular evolution – p.1/62

Upload: others

Post on 25-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Molecular evolution

Joe Felsenstein

GENOME 453, Autumn 2015

Molecular evolution – p.1/62

Page 2: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

A data example for phylogeny inference

Five DNA sequences, for some gene in an imaginary group of specieswhose names are Alpha, Beta, Gamma, Delta, and Epsilon:

sitespecies 1 2 3 4 5 6Alpha A T G A G CBeta C T C T A CGamma A G G T A CDelta A G G A G TEpsilon C T C A G C

Molecular evolution – p.2/62

Page 3: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The tree we are evaluating

Alpha Delta Gamma Beta Epsilon

Molecular evolution – p.3/62

Page 4: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Steps in character 1

Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

or

A CA A C

A CA A C

AlphaBetaGammaDeltaEpsilon

1 2 3 4 5 6

A T G A G CC T C A CTA G G T A CA G G A G TC T C A G C

Molecular evolution – p.4/62

Page 5: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Steps in character 2

Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

or

or

Alpha Delta Gamma Beta Epsilon

T TG G T

T TG G T

T TG G T

AlphaBetaGammaDeltaEpsilon

1 2 3 4 5 6

A T G A G CC T C A CTA G G T A CA G G A G TC T C A G C

Molecular evolution – p.5/62

Page 6: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Steps in character 3

Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

G G G C C

G G G C C

AlphaBetaGammaDeltaEpsilon

1 2 3 4 5 6

A T G A G CC T C A CTA G G T A CA G G A G TC T C A G C

Molecular evolution – p.6/62

Page 7: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Steps in character 4

Alpha Delta Gamma Beta Epsilon

or

Alpha Delta Gamma Beta Epsilon

A A ATT

A A ATT

AlphaBetaGammaDeltaEpsilon

1 2 3 4 5 6

A T G A G CC T C A CTA G G T A CA G G A G TC T C A G C

Molecular evolution – p.7/62

Page 8: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Steps in character 5

Alpha Delta Gamma Beta Epsilon

or

Alpha Delta Gamma Beta Epsilon

G G A A G

G G A A G

AlphaBetaGammaDeltaEpsilon

1 2 3 4 5 6

A T G A G CC T C A CTA G G T A CA G G A G TC T C A G C

Molecular evolution – p.8/62

Page 9: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Steps in character 6

Alpha Delta Gamma Beta Epsilon

TC C C C

AlphaBetaGammaDeltaEpsilon

1 2 3 4 5 6

A T G A G CC T C A CTA G G T A CA G G A G TC T C A G C

Molecular evolution – p.9/62

Page 10: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Steps in all characters

Alpha Delta Gamma Beta Epsilon

1

22

3

4

45 56

showing one of their possible placements

Molecular evolution – p.10/62

Page 11: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The most parsimonious tree

Beta EpsilonAlpha

13

4

Gamma

5

Delta

654

2

with one possible placement of the changes

Molecular evolution – p.11/62

Page 12: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The same tree as an unrooted treeshown as an unrooted tree

root can be anywhere

changes can occur in either direction

Beta

Epsilon

Alpha

1 3 4

Gamma5

Delta

6

54 2

Molecular evolution – p.12/62

Page 13: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Direction of change depends on where root is

Beta

Epsilon

Alpha

1 3 4

Gamma5

Delta

6

54 2

Placement of the root

affects which way bases change

but not how many changes there are

AG

TA

T

CG T A C G C

TA

AG

if root is here

Molecular evolution – p.13/62

Page 14: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Changing the root changes the direction

Beta

Epsilon

Alpha

1 3 4

Gamma5

Delta

6

54 2

Placement of the root

affects which way bases change

but not how many changes there are

AG

TA

T

CG T A C G C

TA

AG

if root is here

Molecular evolution – p.14/62

Page 15: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

All possible trees (15 in all)

CD

B E

A

DB

C E

A

DB

E C

A

CE

D A

BDC

A E

B

AC

D E

B

EB

C D

ABC

D E

A

CB

D E

A

AB

D E

C

AB

E C

D

BC

E D

A

BD

C E

AEB

D C

A

EC

B D

A

Molecular evolution – p.15/62

Page 16: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

All possible trees (15 in all)

CD

B E

A

DB

C E

A

DB

E C

A

CE

D A

BDC

A E

B

AC

D E

B

EB

C D

ABC

D E

A

CB

D E

A

AB

D E

C

AB

E C

D

BC

E D

A

BD

C E

AEB

D C

A

EC

B D

A

Molecular evolution – p.16/62

Page 17: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Their best numbers of nucleotide substitutionsCD

B E

A

DB

C E

A

DB

E C

A

CE

D A

BDC

A E

B

AC

D E

B

EB

C D

ABC

D E

A

CB

D E

A

AB

D E

C

AB

E C

D

BC

E D

A

BD

C E

AEB

D C

A

EC

B D

A

11 9

11 11

11

11 11

119 9

9

10

8

10

9

Molecular evolution – p.17/62

Page 18: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The most parsimonious tree

CD

B E

A

DB

C E

A

DB

E C

A

CE

D A

BDC

A E

B

AC

D E

B

EB

C D

ABC

D E

A

CB

D E

A

AB

D E

C

AB

E C

D

BC

E D

A

BD

C E

AEB

D C

A

EC

B D

A

11 9

11 11

11

11 11

119 9

9

10

8

10

9

Molecular evolution – p.18/62

Page 19: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Distance matrix methods

A

B

C

D

EF

5

4 2

2

332.51.5

0.5

A B C D E F

AB

C

D

E

F

0 11 8 14 15 911

8

14

15

9

0 9

9

7

7

8

8

10

10

0 13

13

14

14

2

2

0 5

5

13

13

014

14 0

Each possible tree (with branch lengths) predict pairwise distances

the observed pairwise distances

A B C D E F

AB

C

D

E

F

0 9

9

0

0

2

0 13

13

0

0

1010

9

9 10

1012 16

96 9

12

16

6

9

9

10

10

15

15 2

6

6 15

15

compare

calculated fromthe data

Find the tree which comes closest to predicting

observed distances

Molecular evolution – p.19/62

Page 20: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

An exampleTurbeville. J. McC., Schulz, J .R. and R. A. Raff. 1994. Deuterostome phylogeny and thesister group of the chordates: evidence from molecules and morphology. Molecular Biologyand Evolution 11: 648-655.Xenopus ?TACCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGATTAAGCCATGCACGTG

Sebastol ??????????????????????AG-CATATGCTTGTCTCAAAGATTAAGCCATGCAAGTC

Latimeri ?TACCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Squalus ??????????????????????AG-CATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Myxine ??CCCTGGTTGATCCTGCCAGCCG-CATATGCTTGTCTCAAAGACTAAGCCATGCATGTC

Petromyz ???CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Branch ???CCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCACGTG

Styela ??ATCTGGTTGATCCTGCCAGTAGTGATATGCTTGTCTCAAAGATTAAGCCATGCAGGTG

Herdman ?TATCTGGTTGATCCTGCCAGTAGTGATATGCTTGTCTCAA-GATTAAGCCATGCAGGTG

Saccogl ??ACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Ophiophol ??ACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTG

Strongyl ??ACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Placopec CAACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Limicol ?TATCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Eurypelm ?TACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

Tenebrio ?TCCCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTC

(and so on for 33 more pages)Molecular evolution – p.20/62

Page 21: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Tree using parsimony

Latimeri

Tenebrio

Eurypelm

Limicol

Placopec

OphiopholSaccogl

Herdman

Styela

Petromyz

MyxineSqualus

SebastolXenopus

Strongyl

(frog)

(fish)

(dogfish)

(molluscs)

(sea squirts)(acorn worms)

(hagfish)

(lamprey)

(coelacanth)(insects)

(echinoderms)

(amphioxus)Brachiostoma

Molecular evolution – p.21/62

Page 22: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Tree using a distance method

Petromyz

TenebrioEurypelm

Limicol

Placopec

Strongyl

Ophiophol

Herdman

Styela

Branch

Myxine

Squalus

SebastolLatimeri

Xenopus

(sea squirts)(acorn worms)

(echinoderms)

(molluscs)

(insects)

(amphioxus)

(hagfish)

(dogfish)

(fish)

(coelacanth)

(frog)(lamprey)

Saccogl

Molecular evolution – p.22/62

Page 23: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Tree using a maximum likelihood method

Tenebrio

Eurypelm

Limicol

Placopec

Strongyl

Ophiophol

Saccogl

Herdman

Styela

Branch

Petromyz

Myxine

Squalus

SebastolLatimeri

Xenopus

(sea squirts)

(amphioxus)

(lamprey)

(dogfish)

(teleost)

(coelacanth)(frog)

(insects)

(molluscs)

(echinoderms)

(acorn worm)

(hagfish)

Molecular evolution – p.23/62

Page 24: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The tree with images of the animals

Placopecten(scallop)

Strongylocentrotus

(sea urchin) (acorn worm)

Saccoglossus

Molecular evolution – p.24/62

Page 25: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The tree with images of the animals

tunicateBranchiostoma Myxine

(hagfish)(amphioxus) (lamprey)

Petromyzon

Molecular evolution – p.25/62

Page 26: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The tree with images of the animals

(lrockfish)

Latimeria

(coelacanth)

Xenopus

(clawed frog)

SebastolesSqualus

(dogfish)

Molecular evolution – p.26/62

Page 27: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Blair and Hedges’ alternative tree

(in Molecular Biology and Evolution, 2005.)Molecular evolution – p.27/62

Page 28: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Molecular evolution (1963 on)

Linus Pauling in 1963 Emile Zuckerkandl, more recently

Molecular evolution – p.28/62

Page 29: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The late Margaret Dayhoff

Responsible for the first computer-produced molecular phylogeny (1966),the start of protein sequence databases (1965), the recognition of genefamilies (1960s-1970s)

Molecular evolution – p.29/62

Page 30: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Morris Goodman

Using immunological methods with proteins, defined thehuman-chimp-gorilla clade (1962), later pioneered work on evolution ofgene families, especially the globin family, and on the phylogeny ofmammals.

Molecular evolution – p.30/62

Page 31: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The late Allan Wilson

With Vincent Sarich, supported the human-chimp-gorilla clade. Advocateduse of the “molecular clock” by which they dated the divergence of thesespecies to 5 million years ago. Later (as we shall see) found the tree ofhuman mitochondria, whose ancestor was “mitochondrial Eve”.

Molecular evolution – p.31/62

Page 32: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The tree of human ancestry

Humans

Chimp

Bonobo

Orangutan

Gorilla

Gibbon

Old world monkeys

New world monkeys

Molecular evolution – p.32/62

Page 33: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Just who are you calling an ape?

Humans

Chimp

Bonobo

Orangutan

Gorilla

Gibbon

Old world monkeys

New world monkeys

Molecular evolution – p.33/62

Page 34: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Just who are you calling an ape?

Humans

Chimp

Bonobo

Orangutan

Gorilla

Gibbon

Old world monkeys

New world monkeys

All of us, actually.

Molecular evolution – p.34/62

Page 35: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

An example: who is most closely related to whales?

from Amrine-Madsen, H. et al., 2003, Molecular Phylogenetics and Evolution

Molecular evolution – p.35/62

Page 36: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

32 mammals from Homeobox-containing protein 1OrnithorhyCanisEchinops

ProcaviaOryctolagu

CallithrixPteropusErinaceusMicrocebus

SorexTarsiusMyotis

GorillaOtolemur

PanEquus

MacacaMusRattusSusDipodomys

CaviaOchotona

PongoTursiops

MacropusVicugna

DasypusCholoepus

HomoMonodelphi

Bos

Molecular evolution – p.36/62

Page 37: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

... coloring in branches that are or aren’t trueOrnithorhyCanisEchinops

ProcaviaOryctolagu

CallithrixPteropusErinaceusMicrocebus

SorexTarsiusMyotis

GorillaOtolemur

PanEquus

MacacaMusRattusSusDipodomys

CaviaOchotona

PongoTursiops

MacropusVicugna

DasypusCholoepus

HomoMonodelphi

Bos

Molecular evolution – p.37/62

Page 38: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The same 32 using E3 ubiquitin-protein ligaseOrnithorhy

MacacaCallithrix

PongoGorillaPan

HomoPteropus

CanisErinaceus

SorexMyotis

EquusVicugna

SusBosTursiops

OryctolaguEchinops

ProcaviaCholoepus

DasypusOchotona

DipodomysMusRattus

CaviaTarsius

MicrocebusOtolemur

MacropusMonodelphi Molecular evolution – p.38/62

Page 39: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

... does considerably betterOrnithorhy

MacacaCallithrix

PongoGorillaPan

HomoPteropus

CanisErinaceus

SorexMyotis

EquusVicugna

SusBosTursiops

OryctolaguEchinops

ProcaviaCholoepus

DasypusOchotona

DipodomysMusRattus

CaviaTarsius

MicrocebusOtolemur

MacropusMonodelphi Molecular evolution – p.39/62

Page 40: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

But using both of these loci ...Ornithorhy

CholoepusDasypus

EchinopsProcavia

OchotonaMicrocebus

OtolemurTarsius

CallithrixMacaca

PongoGorillaPan

HomoPteropus

CanisVicugna

SusBos

TursiopsErinaceus

SorexMyotis

EquusOryctolagu

MusRattus

DipodomysCavia

MacropusMonodelphi

Molecular evolution – p.40/62

Page 41: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

... is not bad at all!Ornithorhy

CholoepusDasypus

EchinopsProcavia

OchotonaMicrocebus

OtolemurTarsius

CallithrixMacaca

PongoGorillaPan

HomoPteropus

CanisVicugna

SusBos

TursiopsErinaceus

SorexMyotis

EquusOryctolagu

MusRattus

DipodomysCavia

MacropusMonodelphi

Molecular evolution – p.41/62

Page 42: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Using 19 loci, the consensus tree is

Sorex

Myotis

Bos

Tursiops

Equus

Canis

Cavia

Mus

Homo

Macaca

Choloepus

Loxodonta

Monodelphi

Ornithorhy

Molecular evolution – p.42/62

Page 43: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Using 19 loci concatenated, the tree is

Sorex

Myotis

Bos

Tursiops

Equus

Canis

Cavia

Mus

Homo

Macaca

Choloepus

Loxodonta

Monodelphi

Ornithorhy

Molecular evolution – p.43/62

Page 44: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Do these trees agree with each other? Well, ...

Sorex

Myotis

Bos

Tursiops

Equus

Canis

Cavia

Mus

Homo

Macaca

Choloepus

Loxodonta

Monodelphi

Ornithorhy

Consensus tree Concatated tree

Molecular evolution – p.44/62

Page 45: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The “expert tree” from Timetree.org

Sorex

Myotis

Bos

Tursiops

Equus

Canis

Cavia

Mus

Homo

Macaca

Choloepus

Loxodonta

Monodelphis

Ornithorhynchus

Molecular evolution – p.45/62

Page 46: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Some named groups widely agreed upon

Sorex

Myotis

Bos

Tursiops

Equus

Canis

Cavia

Mus

Homo

Macaca

Choloepus

Loxodonta

Monodelphis

Ornithorhynchus

LaurasiatheriaE

uarchoglontires

Xenarthra

Afrotheria

Eutherians (P

lacental Mam

mals)

Cetartiodactyla

Rodents

Prim

atesA

tlantotheria

Boroeutheria

Molecular evolution – p.46/62

Page 47: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

How does the consensus tree agree?

Sorex

Myotis

Bos

Tursiops

Equus

Canis

Cavia

Mus

Homo

Macaca

Choloepus

Loxodonta

Monodelphis

Ornithorhynchusagreesmay or may not agree

Molecular evolution – p.47/62

Page 48: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

How does the concatenated tree agree?

Sorex

Myotis

Bos

Tursiops

Equus

Canis

Cavia

Mus

Homo

Macaca

Choloepus

Loxodonta

Monodelphis

Ornithorhynchus

weakly disagrees

agrees

disagrees

Molecular evolution – p.48/62

Page 49: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Molecular phylogenies

Some examples of other important conclusions from molecularphylogenies:

Using immunological distances, Morris Goodman (1962 on) and later Wilson and Sarich(1966) show that humans, gorilla, and chimps were a clade.

Wilson and Sarich (in that work, 1967) date the divergence of humans to 5 million years.

Charles Sibley and Jon Ahlquist (1984) use DNA hybridization to argue for the cladehumans-chimps.

Carl Woese (1978) uses rRNA trees to introduce evolution into microbiology, argue forthe domain Archaea.

Much progress on early radiation of angiosperms

Protostome-deuterostome tree of metazoans (more or less) replaced bydeuterostome-lophotrichozoa-ecdysozoa tree.

Fungi closer to animals than either is to plants.

Symbiotic origin of mitochondria and of chloroplasts verified.

Amphioxus diverged before split of tunicates from craniate chordates.

Lots of horizontal gene transfer in prokaryotes, almost not a tree.

Molecular evolution – p.49/62

Page 50: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Different parts of hemoglobin genes

Differences in exons

position 1

position 2

position 3

10

5

33

Exon 1 Exon 2 Exon 3

Intron 1 Intron 2

region bases differences % different

upstream 100 12exon 1 9.8intron 1 26

920.6

exon2 223 26 11.712692

intron 2 820 239 29.1exon 3 129 13 10.1downstream 100 13

12.0

13.0

Alignment of hemoglobin ε loci of Human, Tarsier

Molecular evolution – p.50/62

Page 51: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Higher Rates of Substitution for ...

1. ... some proteins than others

2. ... some sites within proteins than others (less in active sites, interiorsites)

3. ... some amino acid replacements than others (less changes tochemically more similar amino acids)

4. ... silent changes than nonsilent ones

5. ...“in-between" DNA than introns, introns than coding sequences

6. ... transitions than transversions

Molecular evolution – p.51/62

Page 52: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Morris Goodman tabulation for β hemoglobin

where sites change/100myrHeme contacts 21 0.02Nonheme contacts 10 0.02Salt bridges β-β 4 0.002,3-DPG binding 4 0.10Nonsalt bridge α,β contacts 16 0.16Remaining interior 21 0.09Remaining exterior 70 0.20All 146 0.13

Molecular evolution – p.52/62

Page 53: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

PhyloHMM analysis of multiple genomes

From a paper by Siepel and Haussler (Journal of Computational Biology,2004) describing the machinery for finding conserved regions of multiplegenomes.

Molecular evolution – p.53/62

Page 54: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Rates of change from neutral and selective mechanisms

Neutral mutations

A fraction µ of all copies of a gene mutate. Of these 1

2N(equal to the initial

frequency of the mutant) succeed in drifting to fixation for the mutant.

There are in all 2N copies of the gene available to mutate.

The resulting rate of substitution is

µ ×

1

2N× 2N = µ

So the rate of substitution of neutral mutations is equal to the mutationrate (the mutation rate of neutral mutants, not the total mutation rate).

Molecular evolution – p.54/62

Page 55: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Change by neutral mutation

end of a lineage which is the ancestry of a

single copy of the gene:

change is expected to be per generationµ

time

species boundary

gene copy ancestry

Interestingly, the expected rate of changeis the same no matter what the populationsize is (small populations make allcopies more likely to become the same,but all are still expected to differ fromtheir ancestors by this amount)

Molecular evolution – p.55/62

Page 56: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Rates from neutral and selective mechanismsSelectively advantageous mutations

A fraction µ of copies of the gene mutate. There are in all 2N copiesavailable. A fraction 2s succeed in fixing.

The resulting rate of substitution is

µ × 2N × 2s = 4Nsµ

Note that this is 4Ns times as high as for neutral mutants, if the mutationrate in both categories were equal (which it isn’t).

Molecular evolution – p.56/62

Page 57: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Substitution of neutral and advantageous mutations

Suppose that the population size is N = 1, 000, 000, and mutation ratesare:

Advantageous mutations ua = 10−7

Neutral mutations un = 10−6

If the selection coefficient in favor of advantageous mutations iss = 0.0001, the rates of substitution expected are:

Advantageous mutations (4Ns)ua = 4× 10−5

Neutral mutations un = 10−6

Molecular evolution – p.57/62

Page 58: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

The molecular clock (from Wilson, 1976)

Molecular evolution – p.58/62

Page 59: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

A not-quite-clocklike tree of black widow spiders

Tree for α-latrotoxin protein from J. E. Garb and C. Y. Hayashi, 2013, inMolecular Biology and Evolution, vol. 30, issue 5, pp. 999-1004. Molecular evolution – p.59/62

Page 60: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Phylogeny and gene tree with a gene duplication

A phylogeny with a gene duplication event:Frog Human Monkey Squirrel

gene duplication

a a ab b b

species

boundary

tree of genes

Molecular evolution – p.60/62

Page 61: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

Phylogenies, gene trees, and gene duplication

So when genes are all aligned with each other, their "gene tree" is:

FrogHuman Monkey Squirrel Human Monkey Squirrel

a a a b b b

These two

identicalsubtrees should be

Molecular evolution – p.61/62

Page 62: Molecular evolutionevolution.gs.washington.edu/gs453/2015/section6.pdf · Molecular evolution – p.20/62. Tree using parsimony Latimeri Tenebrio Eurypelm Limicol Placopec Ophiophol

A parsimony tree for the globin gene family

Molecular evolution – p.62/62