molybdenum, techntium, rhenium

25
molybdenum

Upload: cosnert-rabbani

Post on 13-Jul-2015

232 views

Category:

Science


8 download

TRANSCRIPT

Page 1: Molybdenum, Techntium, Rhenium

molybdenum

Page 2: Molybdenum, Techntium, Rhenium

History

Discovery Carl Wilhelm Scheele (1778)

First isolation Peter Jacob Hjelm (1781)

By 1778 Swedish chemist Carl Wilhelm

Scheele stated firmly that molybdena

was (indeed) not galena nor graphite.

Instead, Scheele went further and

correctly proposed that molybdena

was an ore of a distinct new element,

named molybdenum for the mineral in

which it resided, and from which it

might be isolated. Peter Jacob Hjelm

successfully isolated molybdenum by

using carbon and linseed oil in 1781.

Page 3: Molybdenum, Techntium, Rhenium

Source

the Knaben mine in southern Norway, opened in 1885, was the first dedicatedmolybdenum mine. It closed from 1973 to 2007, but is now reopened. Largemines in Colorado (such as the Henderson mine and the Climax mine)and inBritish Columbia yield molybdenite as their primary product, while manyporphyry copper deposits such as the Bingham Canyon Mine in Utah and theChuquicamata mine in northern Chile produce molybdenum as a by productof copper mining.

The Russian Luna 24 mission discovered a molybdenum-bearing grain (1 × 0.6µm) in a pyroxene fragment taken from Mare Crisium on the Moon. Thecomparative rarity of molybdenum in the Earth's crust is offset by itsconcentration in a number of water-insoluble ores, often combined with sulfur,in the same way as copper, with which it is often found. Though molybdenum isfound in such minerals as wulfenite (PbMoO4) and powellite (CaMoO4), themain commercial source of molybdenum is molybdenite (MoS2). Molybdenumis mined as a principal ore, and is also recovered as a byproduct of copper andtungsten mining.

Page 4: Molybdenum, Techntium, Rhenium

How to get

In molybdenite processing, the molybdenite is first heated to a temperature of 700 °C (1,292 °F)and the sulfide is oxidized into molybdenum(VI) oxide by air:

2 MoS2 + 7 O2 → 2 MoO3 + 4 SO2

The oxidized ore is then either heated to 1,100 °C (2,010 °F) to sublimate the oxide, or leachedwith ammonia, which reacts with the molybdenum(VI) oxide to form water-soluble molybdates:

MoO3 + 2 NH4OH → (NH4)2(MoO4) + H2O

Copper, an impurity in molybdenite, is less soluble in ammonia. To completely remove it from thesolution, it is precipitated with hydrogen sulfide.

Pure molybdenum is produced by reduction of the oxide with hydrogen, while the molybdenumfor steel production is reduced by the aluminothermic reaction with addition of iron to produceferromolybdenum. A common form of ferromolybdenum contains 60% molybdenum.

Page 5: Molybdenum, Techntium, Rhenium

Properties

Phase solid

Melting point 2896 K (2623 °C, 4753 °F)

Boiling point 4912 K (4639 °C, 8382 °F)

Density near r.t. 10.28 g·cm−3

liquid, at m.p. 9.33 g·cm−3

Heat of fusion 37.48 kJ·mol−1

Heat of vaporization 598 kJ·mol−1

Molar heat capacity 24.06 J·mol−1·K−1

Page 6: Molybdenum, Techntium, Rhenium

Compound

Molybdenum(II) chloride MoCl2 (yellow solid)

Molybdenum(III) chloride MoCl3 (dark red solid)

Molybdenum(IV) chloride MoCl4 (black solid)

Molybdenum(V) chloride MoCl5 (dark green solid)

Molybdenum(VI) chloride MoCl6 (brown solid)

molybdenum(VI) oxide (MoO3)

molybdenum disulfide (MoS2)

molybdates (MoO42−)

heteropolymolybdate P[Mo12O40]3−

molybdenum hexacarbonyl, Mo(CO)6

Page 7: Molybdenum, Techntium, Rhenium

Reaction

With acids & base :

molybdenum does not dissolve in acids or base

With water :

At room temperature, molybdenum does not react with water.

With oxygen :

2 Mo + 3 O2 → 2 MoO3

with the halogens :

Mo(s) + 3F2(g) → MoF6(l) [colourless]

2Mo(s) + 5Cl2(g) → 2MoCl5(s) [black]

Page 8: Molybdenum, Techntium, Rhenium

Application

Alloys, estimated fractional global industrial use of molybdenum is structural

steel 35%, stainless steel 25%, chemicals 14%, tool & high-speed steels 9%,

cast iron 6%, molybdenum elemental metal 6%, and superalloys, 5%.

Molybdenum powder is used as a fertilizer for some plants, such as

cauliflower.

Molybdenum anodes replace tungsten in certain low voltage X-ray

sources, for specialized uses such as mammography.

Molybdenum disilicide (MoSi2) is an electrically conducting ceramic with

primary use in heating elements operating at temperatures above 1500 °C

in air.

Molybdenum coated soda lime glass is used for CIGS solar cell fabrication.

Page 9: Molybdenum, Techntium, Rhenium

Precautions

Molybdenum dusts and fumes, which can be generated by mining or

metalworking, can be toxic, especially if ingested (including dust trapped

in the sinuses and later swallowed). Low levels of prolonged exposure can

cause irritation to the eyes and skin. Direct inhalation or ingestion of

molybdenum and its oxides should be avoided. OSHA regulations specify

the maximum permissible molybdenum exposure in an 8-hour day as 5

mg/m3. Chronic exposure to 60 to 600 mg/m3 can cause symptoms

including fatigue, headaches and joint pains.

Page 10: Molybdenum, Techntium, Rhenium

Technetium

Page 11: Molybdenum, Techntium, Rhenium

History

Discovery and first isolation Carlo

Perrier and Emilio Segrè (1937)From the 1860s through 1871,

early forms of the periodic

table proposed by Dimitri

Mendeleev contained a gap

between molybdenum

(element 42) and ruthenium

(element 44).

The discovery of element 43

was finally confirmed in a

December 1936 experiment at

the University of Palermo in

Sicily conducted by Carlo

Perrier and Emilio Segrè.

Prediction by Dmitri

Mendeleev (1871)

Page 12: Molybdenum, Techntium, Rhenium

Source

In 1952, astronomer Paul W. Merrill in California detected the spectral signatureof technetium (in particular, light with wavelength of 403.1 nm, 423.8 nm, 426.2nm, and 429.7 nm) in light from S-type red giants. The stars were near the end oftheir lives, yet were rich in this short-lived element, meaning nuclear reactionswithin the stars must be producing it. This evidence was used to bolster the then-unproven theory that stars are where nucleosynthesis of the heavier elementsoccurs. More recently, such observations provided evidence that elementswere being formed by neutron capture in the s-process.

Since its discovery, there have been many searches in terrestrial materials fornatural sources of technetium. In 1962, technetium-99 was isolated andidentified in pitchblende from the Belgian Congo in extremely small quantities(about 0.2 ng/kg); there it originates as a spontaneous fission product ofuranium-238. There is also evidence that the Oklo natural nuclear fission reactorproduced significant amounts of technetium-99, which has since decayed intoruthenium-99.

Page 13: Molybdenum, Techntium, Rhenium

How to get

The metastable isotope technetium-99m is continuously produced as a fission productfrom the fission of uranium or plutonium in nuclear reactors. Because used fuel is allowed tostand for several years before reprocessing, all molybdenum-99 and technetium-99m willhave decayed by the time that the fission products are separated from the majoractinides in conventional nuclear reprocessing. The liquid left after plutonium–uraniumextraction (PUREX) contains a high concentration of technetium as TcO−4 but almost all ofthis is technetium-99, not technetium-99m.

The vast majority of the technetium-99m used in medical work is produced by irradiatingdedicated highly enriched uranium targets in a reactor, extracting molybdenum-99 fromthe targets in reprocessing facilities, and recovering at the diagnostic center thetechnetium-99m that is produced upon decay of molybdenum-99. Molybdenum-99 in theform of molybdate MoO2

−4 is adsorbed onto acid alumina (Al2O3) in a shielded columnchromatograph inside a technetium-99m generator ("technetium cow", also occasionallycalled a "molybdenum cow"). Molybdenum-99 has a half-life of 67 hours, so short-livedtechnetium-99m (half-life: 6 hours), which results from its decay, is being constantlyproduced. The soluble pertechnetate TcO−4 can then be chemically extracted by elutionusing a saline solution.

Page 14: Molybdenum, Techntium, Rhenium

Properties

Phase solid

Melting point 2430 K (2157 °C, 3915 °F)

Boiling point 4538 K (4265 °C, 7709 °F)

Density near r.t. 11 g·cm−3

Heat of fusion 33.29 kJ·mol−1

Heat of vaporization 585.2 kJ·mol−1

Molar heat capacity 24.27 J·mol−1·K−1

Page 15: Molybdenum, Techntium, Rhenium

Compound

pertechnetate TcO−4

sodium pertechnetate NaTcO4

Pertechnetic acid (HTcO4)

Technetium heptoxide Tc2O7

technetium heptasulfide Tc2S7

Page 16: Molybdenum, Techntium, Rhenium

Reaction

With base :

Tc2O7 + 2 NaOH → 2 NaTcO4 + H2O

With water :

Technetium does not react with water under normal conditions.

With oxygen :

4 Tc + 7 O2 → 2 Tc2O7

with the halogens :

Tc(s) + 3F2(g) → TcF6(s)

2Tc(s) + 7F2(g) → 2TcF7(s)

with acids :

technetium is insoluble in hydrochloric acid (HCl) and hydrofluoric acid(HF). It does dissolve in nitric acid, HNO3, or concentrated sulphuric acid,H2SO4, both of which are oxidizing, to form solutions of pertechnetic acid,HTcO4.

Page 17: Molybdenum, Techntium, Rhenium

Application

Nuclear medicine and biology

1. Technetium-99m is used in radioactive isotope medical tests, for example as theradioactive part of a radioactive tracer that medical equipment can detect in the humanbody.

2. The longer-lived isotope technetium-95m, with a half-life of 61 days, is used as aradioactive tracer to study the movement of technetium in the environment and in plant andanimal systems.

Industrial and chemical

1. National Institute of Standards and Technology (NIST) standard beta emitter, and istherefore used for equipment calibration. Technetium-99 has also been proposed for use inoptoelectronic devices and nanoscale nuclear batteries.

2. technetium can serve as a catalyst. For some reactions, for example thedehydrogenation of isopropyl alcohol, it is a far more effective catalyst than either rhenium orpalladium.

Page 18: Molybdenum, Techntium, Rhenium

Rhenium

Page 19: Molybdenum, Techntium, Rhenium

History

Rhenium (Latin: Rhenus meaning: "Rhine") was the last element to be discovered having astable isotope (other new radioactive elements have been discovered in nature sincethen, such as neptunium and plutonium). The existence of a yet undiscovered element atthis position in the periodic table had been first predicted by Dmitry Mendeleev. Othercalculated information was obtained by Henry Moseley in 1914.[5] It is generallyconsidered to have been discovered by Walter Noddack, Ida Tacke, and Otto Berg inGermany. In 1925 they reported that they detected the element in platinum ore and inthe mineral columbite. They also found rhenium in gadolinite and molybdenite.[6] In 1928they were able to extract 1 g of the element by processing 660 kg of molybdenite.[7] Itwas estimated in 1968 that 75% of the rhenium metal in the United States was used forresearch and the development of refractory metal alloys. It took several years from thatpoint on before the super alloys became widely used.

In 1908, Japanese chemist Masataka Ogawa announced that he discovered the 43rdelement and named it nipponium (Np) after Japan (Nippon in Japanese). However, lateranalysis indicated the presence of rhenium (element 75), not element 43.[10] The symbolNp was later used for the element neptunium.

Page 20: Molybdenum, Techntium, Rhenium

Source

Rhenium is one of the rarest elements in Earth's crust with an average

concentration of 1 ppb other sources quote the number of 0.5 ppb

making it the 77th most abundant element in Earth's crust.[28] Rhenium

is probably not found free in nature (its possible natural occurrence isuncertain), but occurs in amounts up to 0.2% in the mineral

molybdenite (which is primarily molybdenum disulfide), the major

commercial source, although single molybdenite samples with up to

1.88% have been found.

Chile has the world's largest rhenium reserves, part of the copper ore

deposits, and was the leading producer as of 2005. It was only recently

that the first rhenium mineral was found and described (in 1994), a

rhenium sulfide mineral (ReS2) condensing from a fumarole on Russia'sKudriavy volcano, Iturup island, in the Kurile Islands. Kudryavydischarges up to 20–60 kg rhenium per year mostly in the form of

rhenium disulfide. Named rheniite, this rare mineral commands high

prices among collectors.

Page 21: Molybdenum, Techntium, Rhenium

How to get

Commercial rhenium is extracted from molybdenum roaster-flue gas obtained from copper-sulfide ores. Some molybdenum ores contain 0.001% to 0.2% rhenium. Rhenium(VII) oxide and perrhenic acid readily dissolve in water; they are leached from flue dusts and gasses and extracted by precipitating with potassium or ammonium chloride as the perrhenate salts, and purified by recrystallization.

Total world production is between 40 and 50 tons/year; the main producers are in Chile, the United States, Peru, and Poland. Recycling of used Pt-Re catalyst and special alloys allow the recovery of another 10 tons per year. Prices for the metal rose rapidly in early 2008, from $1000–$2000 per kg in 2003–2006 to over $10,000 in February 2008.

The metal form is prepared by reducing ammonium perrhenate with hydrogen at high temperatures:

2 NH4ReO4 + 7 H2 → 2 Re + 8 H2O + 2 NH3

Page 22: Molybdenum, Techntium, Rhenium

Properties

Phase solid

Melting point 3459 K (3186 °C, 5767 °F)

Boiling point 5869 K (5596 °C, 10105 °F)

Density near r.t. 21.02 g·cm−3

liquid, at m.p. 18.9 g·cm−3

Heat of fusion 60.43 kJ·mol−1

Heat of vaporization 704 kJ·mol−1

Molar heat capacity 25.48 J·mol−1·K−1

Page 23: Molybdenum, Techntium, Rhenium

Compound

rhenium chlorides are ReCl6, ReCl5, ReCl4, and ReCl3

The oxychlorides are most common, and include ReOCl4, ReO3Cl.

oxides include Re2O5, ReO2, and Re2O3.

The sulfides are ReS2 and Re2S7.

Rhenium diboride (ReB2)

bromopentacarbonylrhenium(I) Re(CO)5Br

Pentacarbonylhydridorhenium Re(CO)5H

Page 24: Molybdenum, Techntium, Rhenium

Reaction

With base :

Not react

With water :

Rhenium does not react with water under normal conditions.

With oxygen :

4Re(s) + 7O2(g) → 2Re2O7(s)

with the halogens :

Re(s) + 3F2(g) → ReF6(s)

2Re(s) + 7F2(g) → 2ReF7(s)

with acids :

rhenium is insoluble in hydrochloric acid (HCl) and hydrofluoric acid (HF). It does dissolvein nitric acid, HNO3, or concentrated sulphuric acid, H2SO4, both of which are oxidizing,to form solutions of perrhenic acid, HReO4.

Page 25: Molybdenum, Techntium, Rhenium

Application

The Pratt & Whitney F-100 engine uses

rhenium-containing second-generation

superalloys

CFM International CFM56

jet engine still with blades

made with 3% rhenium

Catalysts

Rhenium in the form of rhenium-

platinum alloy is used as catalyst for

catalytic reforming, which is a

chemical process to convert

petroleum refinery naphthas with

low octane ratings into high-octane

liquid products.

Other uses

The isotopes 188Re and 186Re are radioactive and

are used for treatment of liver cancer.

188Re is also being used experimentally in a novel

treatment of pancreatic cancer where it is

delivered by means of the bacterium Listeria

monocytogenes.