more than moore with neuromorphic computing architectures · more than moore with neuromorphic...

62
More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität Heidelberg [email protected] @brainscales

Upload: phamtuyen

Post on 30-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

MorethanMoorewithNeuromorphicComputingArchitectures

ColloquiumGSIDarmstadtDecember19,2017

KarlheinzMeier

Ruprecht-Karls-UniversitätHeidelberg

[email protected]@brainscales

Page 2: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

On computable numbers, with an application to the Entscheidungsproblem published 1937 in Proceedings of the London Mathematical Society

„Wemaycompareamanintheprocessofcomputingarealnumberwitha

machinewhichisonlycapableofafinitenumberofconditions“

Page 3: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

The Turing Machine

Modelled after a human executing a set of computational instructions: 1. Limited size of internal storage→ finite number of states 2. Infinite size of external storage but only a fraction can be used at a given time t 1. + 2. uniquely determine the state of the machine at time t+1

EachTuringmachineuniquelyrepresentsanalgorithm

Page 4: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Realizing the Turing Machine The von Neumann Architecture

–  Data and instructions stored in memory –  Content of memory addressable by location –  Instructions executed sequentially unless order is explicitly modified –  Memory and Computation physically separated

Memory Computation

Control

Data Instructions

©IBM

Page 5: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Realizing the von Neumann Architecture Claude Shannon : From algebra to logic circuits

Page 6: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

©H.Eisenreich,TUDresden E.Coli

Page 7: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

©XILINXInc.

RealizingShannonsGatesPhysicstakesover-DigitalisreallyAnalog

Page 8: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

FigurecourtesyofKunleOlukotun,LanceHammond,HerbSutter,andBurtonSmith

2020 2025 2030Year

LimitsofTechnologyScalingPe

rformance

Transistors

ThreadPerformance

ClockFrequency

Power(watts)

#Cores

180nm

65nm

28nm10nm

Page 9: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

K.Boahen,2017

Nomoreprogressfromsmallertransistors

NewARCHITECTURESsuddenlyinteresting!

Non-vonNeumann

Non-Turing

Page 10: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

TheBrain– ExtremeMatter

1011nodes(neurons)

1015connections(synapses)

Dynamiclong-rangeandshort-rangeinteractions

Opensystemdrivenby

externalworld

Timescalesfrommillisecondstoyears

Stochasticonthemicroscopiclevel

Page 11: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

AssetsofbraincomputingØ  EnergyefficiencyØ  CompactnessØ  FaulttoleranceØ  SpeedØ  ConfigurationandlearningreplaceprogrammingØ  Scalability

LarrySmarr,Calit

Conventionalcomputingismovingawayfromthebrain

Page 12: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Whybraininspiredcomputing?futurecomputingbasedon

biologicalinformationprocessing

understandingbiologicalinformationprocessing

Twofundamentallydifferentmodelingapproaches:

•  NUMERICALMODEL(Turing)

representsmodelparametersasbinarynumbers

•  PHYSICALMODEL(notTuring)

representsmodelparametersasphysicalquantities→voltage,current,charge(likethebiologicalbrain)

canbecombinedtoformahybridsystem

needmodelsystemtotestideas

Page 13: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Herrmannv.Helmholtz(1821-1894)JuliusBernstein(1839-1917)

SantiagoRamónyCajal(1852-1934)

Individualcellsinthebrainarespatiallyseparated

constituents

“interactionoveradistance”

and

“spatialandtemporalintegration”

5µm

Page 14: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Basicsofneuralcommunicationaction potential (“spike”)

neurons

synapses output spike

neuron threshold voltage

membrane voltage

Ø Thresholdfornon-linearresponseleadingtoall-or-nonelaw(spikes)

Ø neuronsintegrateoverspaceandtime-characteristictimeconstants

Ø temporalcorrelationisimportantØ mixed-signalsystem:

actionpotential↔membranevoltage

Page 15: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Ahrensetal,NatureMethods10,413–420(2013)

Page 16: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

W. W. Norton

MembraneCapacitanceC IonChannel

Conductancegi=1/Ri

MembraneVoltageU

SomeElectricalQuantitiesofarealNeuronMembrane

IonChannelCurrentIi

U,Iandgarefunctionsoftimeinanoperatingnetwork!Currenttheoriesandmodellingaretreatingthesequantitiesonly(fewexceptions)

MovingChargesQ

jdrift =σ ⋅

E = −σ ⋅ grad(Φ)

jdiffusion = −D ⋅ grad(n)

Page 17: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Hodgkin-Huxley1952Describingthenon-linearity

Page 18: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Markram,2015

Page 19: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

PhD,MihaiPetrovici,2015

Leaky-integrate-and-fire(LIF)

Page 20: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Diesmann,Proceedingsofthe4thBiosupercomputingSymposium,Tokyo,2012

K-Computer,RIKENLab,12.6MWProcessor-to-NeuralCellRatio1:20.000

Simulationspeed1.520:1comparedtobiologicalreal-time

Page 21: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

N.Gogtayetal.,PNAS101(21):8174-8179,2004

15yearsofwiringuptheadolescentbrainduringdevelopment

Slowdynamics

Page 22: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Nature+Real-time Simulation

CausalityDetection 10-4s 0.1s

SynapticPlasticity 1s 1000s

Learning Day 1000Days

Development Year 1000Years

12OrdersofMagnitude

Evolution >Millenia >1000Millenia

>15OrdersofMagnitude

TimeScales

Page 23: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

FIGURE 5

100 J1 Joule

10-4 J0.1 milliJoule

10-8 J10 nanoJoule

10-10 J0.1 nanoJoule

10-14 J10 femtoJoule

Energy Scales

EF

FI

CI

EN

CY

EnergyScalesComputationalPrimitive:Energyusedforasynaptictransmission10-14ordersofmagnitudedifferencefor„thesamething“

From:HBPprojectreport

?

Page 24: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

How much does a Neural Computation cost ? FROM TOP TO BOTTOM (Human Brain)

20 W total Power equally shared 100 Billion neurons firing at 1 Hz 10-10 Joule per action potential 1015 Synapses transmitting at 1 Hz 10-14 Joule per synaptic transmission

FROM BOTTOM TO TOP

Approx. 109 ATP molecules to be hydrolyzed for action potential

Approx. 105 ATP molecules to be hydrolyzed for synaptic transmission D. Attwell and S. B. Laughlin Obtain 10-19 Joule (approx. 1 eV) per ATP molecule Bray, Dennis. Cell Movements. New York: Garland, 1992 10-10 Joule (100.000 fJ = 0.1 nJ) per action potential

10-14 Joule (10 fJ) per synaptic transmission

Page 25: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Metal(100nmtimes100nm)

Insulator(Oxide)<20AtomLayers

Semiconductor

2Volts

„Switching��ofaMOStransistor:approximately0.5fJ

SynapticTransmission:

approximately10fJ

20CMOSTransistors

Electronicsvs.Biologyonthedevicelevel-Notabigdifference!

It‘snotthedevices,it‘stheARCHITECTUREandtheCOMPUTATIONALMODEL

½CU2

Page 26: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

TheBraininaComputer? ComputerslikeBrains?

Page 27: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

1X =l 2X =l 3X =l

1W =l 2W =lNl=W

Nl=X

OutputlayerInputlayer

Innerlayers

ArtificialNeuronalNetworksignoretimeevolution….

Here:local,norecurrencyfeed-forward

CAT

Page 28: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

PairsofneuronsconnectedbyweightsNeuronperformsintegration(summing)

)3( =ix

y

)1( =iwu ( )uf

)(Iw

)2( =iw)2( =ix

)( Iix =

1X =l 2X =l 3X =l

1W =l 2W =lNl=W

Nl=X

OutputlayerInputlayerInnerlayers

CAT

Page 29: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

LearningExample:Supervised

Labelledinputdata

DesiredoutputDeviation

Actualoutput

Page 30: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

JumpstartStrategicNetworkSupervisedLearningPredicthumanmovesdatabaseofexistingmatches160.000matches,30Millionpositions

PolicyNetworkReinforcementLearningNetworkself-matches128.000.000matches

ValueNetworkCombinationoffirst2steps30Millionself-matchesOneyearlearningtime,0.5MWEnergy:183MWhExcessivetrainingsamples

LearningisslowandexpensiveApplicationisfast

Page 31: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

https://upload.wikimedia.org/wikipedia/commons/0/0a/Temporal_summation.JPG

Whatistime(spiking...)goodfor?Ø  SparseinformationcodingbytimecorrelationsØ  Shorttermspikebasedsynapticplasticity(STP)Ø  Spike-timing-dependentplasticity(STDP)Ø  Temporalnoise(stochasticity)basedcomputing

Ø  EnergyefficiencyØ  Computationaladvantages

Brain-inspiredorbrain-derivedorneuromorphiccomputing

Page 32: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Digital

•  Discretevaluesofphysicalvariables•  ComputationbyBooleanalgebra•  Onewireonebitofinformation•  Signalrestoredaftergate

Analog

•  Continuousvaluesofphysicalvariables•  Computationbycomponentphysics•  Onewiremanybitsofinformation•  Signalnotrestoredafterstage

Nature/mixed-signal• Localanaloguecomputation• Binarycommunicationbyspikes• Signalrestoration

Page 33: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Large-scaleNeuromorphicComputing–compare

Ø  Commoditymicroprocessors SpiNNaker,HBP Soft-binary-codeØ  Customfullydigital TrueNorth,IBM Hard-binary-codeØ  CustomMixed-Signal BrainScaleS,HBP PhysicalmodelAnythingincommon?

+Massivelyparallel(closetoperfectweakscaling)+Asynchronouscommunication+Configurability-Limitedflexibilityandcomplexityinneuralmodels

COMPLEMENTARITYOFAPPROACHESESSENTIAL!

Page 34: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Click to edit Master title style

• Click to edit Master text styles

–  Secondlevel•  Third level

–  Fourth level

HBP Neuromorphic Computing Concepts

PHYSICALMODELSYSTEM

Localanalogcomputingwith4Millionneuronsand1Billionsynapses–binary,asynchronous

communication–x10000acceleratedemulation

Location:Heidelberg(Germany)

MANY-CORENUMERICALMODELSYSTEM

0.5–1MillionARMprocessors–address-based,smallpacket,asynchronouscommunication–real-timesimulation

Location:Manchester(UK)

Page 35: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

35

PhysicalModelSystemContinuousTimeIntegratingNeuralCellMembrane(+non-linearity)

CmdVdt

= −gleak V −Eleak( )

Cm

R = 1/gleak

Eleak

V(t) gleak [S] Cm [F]

Biology(*) 10-8 10-10 VLSI 10-6 10-13

(*) Brette/Gerstner, J. Neurophysiology, 2005

„Time“isimposedbyinternalphysics,notbyexternalcontrol€

cmdVdt

= −gleak V − E l( ) + pkgk V − Ex( )k∑ + plgl V − E i( )

l∑pk,l(t) exponential onset and decay (post-synaptic potential shape) gk,l 0 to gmax (“weights”)

effective membrane time-constant cm /gtotal is time-dependent

Page 36: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

A New VLSI Model of Neural Microcircuits Including Spike Time Dependent Plasticity, Johannes Schemmel, Karlheinz Meier, Eilif Muller, Proceedings of the 2004 International Joint Conference on Neural Networks (IJCNN'04), IEEE Press, pp. 1711-1716, 2004

Implementationexamplewithsynapticinputsandneuronnon-linearitymixed-signal:analogcores,binarycommunication

Page 37: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität
Page 38: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität
Page 39: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität
Page 40: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Physical Model, local analogue computing,

binary continuous time communication

Wafer-Scale Integration of 200.000 neurons and 50.000.000 synapses on

a single 20 cm wafer

Short term and long term plasticity, 10.000 faster

than real-time

Page 41: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität
Page 42: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

HardwarePlatformConstraints

NeuromorphicSubstrate

SimulationandVerfification

ModelBuildingCells,Network,Plasticity

Theory

TechnologyMapping

TechnologyRouting

FormalNetworkDescription

BiologicalDatabases

Page 43: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

ConfigurationSpace40MBforafullWafer

Page 44: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

ChallengeandOpportunity:Variability

Page 45: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Marder,TaylorNatureNeuroscience14,Nr2,2011

Pyloricrhythmofthecrustaceanstomatogastricganglion

20.000.000modelnetworkscreatedwith17randomcellparameters,fixedconnectivity(Neuron)400.000networksfoundwith„identical(de-generate)“timingbehaviourinmeasuredbiologicalrange

Sensitivityofsingleparameterswithin„de-generate“solutions

Page 46: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Marder,TaylorNatureNeuroscience14,Nr2,2011

Variabilityhastobeattherightplace...

Page 47: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Hardware-In-the-Loop

Millionsofparameters-networktopology-neuronsizesandparameters-synapticstrengths

Whatfor?-  Calibration-  Learning-  Environment-  Data

Separated?

Page 48: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

ConventionalComputerDataorsimulatedenvironment

Learningmechanisms

Actionofmachineondataorenvironment

Stateofdataorenvironment

Reward(penalty)

NeuromorphicMachine

Page 49: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

SebastianSchmittetal.,acceptedIJCNN2017

Physicalmodelemulation

Page 50: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Feed-forward,rate-based.4-layerspikingnetworkMNISTclassificationonaphysicalmodelmachine

performancebeforeandafterhardwarein-the-looplearning

https://arxiv.org/abs/1703.01909

Page 51: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

MNISTclassificationonaphysicalmodelmachineNeuronalfiringactivityafterhardwarein-the-looplearning

input 2xhidden

label

https://arxiv.org/abs/1703.01909

Page 52: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Schmuker,M.etal.,"Aneuromorphicnetworkforgenericmultivariatedataclassification."ProceedingsoftheNationalAcademyofSciences(2014):201303053.

3LayerSpikingNeuronNetworkderivedfromInsectOlfactorySystem

LI:ReceptorNeurons

LII:Decorrelationthroughlateralinhibition(Glomeruli)

LIII:Association(SoftWTAthroughstronginhibitorypopulatuions)

SupervisedLearningSynapticProjectionsfromLayer2toLayer3

Exampleforinsectbrainderivedcircuit

Page 53: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Schmuker,M.etal.,"Aneuromorphicnetworkforgenericmultivariatedataclassification."ProceedingsoftheNationalAcademyofSciences(2014):201303053.

Neuronalfiringactivitybeforeandafterlearning

Applicationingenericmultivariatedataclassification

Page 54: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

T. Pfeil, A.-C. Scherzer, J. Schemmel and K. Meier, Neuromorphic Learning towards Nano Second Precision, Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN). Dallas, TX, USA: IEEE Press, 2013, pp. 869-873.

On-chip:Spike-Timing-

Dependent-Plasticity

Page 55: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

BoltzmannMachines

Networksofsymmetricallyconnectedstochasticnodesk

Stateofnodesdescribedbyvectorofbinaryrandomvariableszk(0,1)

Probabilityforstate-vectorconvergestoatargetBoltzmann-distributionEnergyfunction

WHATFOR?Learninternalstochasticmodelofinputspace–Generateordiscriminate

Page 56: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Stochasticallymodulatedfiringprobability

Deterministicfiring

M.A.Petrovici,J.Bill,I.Bytschok,J.Schemmel,andK.M.:Stochasticinferencewithspikingneuronsinthehigh-conductancestate.PhysicalReviewE94,2016

StochasticityfromØ  ExternalnoisesourceØ  InternalnoisesourceØ  Ongoingnetwork

activity

Page 57: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Petrovici,MihaiA.,etal."Stochasticinferencewithdeterministicspikingneurons."arXivpreprintarXiv:1311.3211Buesing,Lars,etal."Neuraldynamicsassampling:amodelforstochasticcomputationinrecurrentnetworksofspikingneurons."PLoSComput.Biol7.11(2011):e1002211.

SpikingLIFNeuronsasa2-state(binary)system

Neuralcomputabilitycondition

Anetworkofspikingneuronsdrawssamplesfromthejointdistributionpifthemembranepotentials!"oftheneuronsfollows

Correspondstoalogisticactivationfunctionoftheneuron

Page 58: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

PhD,MihaiPetrovici,BALuziweiLeng2015

LearningspecificinputdistributionsbyadjustingLOCALinteractions-  Clampvisibleunitstovalueofparticularpattern–reachthermalequilibrium-  Incremementinteractionbetweenany2nodesthatarebothon-  Runnetworkfreelyandsamplefromstoredprobabilitydistribution-  Inferfromclampedinput

Freerunning„Dreaming“Generative

InferringInputincompatiblewith0

Discriminative

Page 59: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

FIGURE 5

100 J1 Joule

10-4 J0.1 milliJoule

10-8 J10 nanoJoule

10-10 J0.1 nanoJoule

10-14 J10 femtoJoule

Energy Scales

EF

FI

CI

EN

CY

EnergyScalesEnergyusedforasynaptictransmission

FillingtheGap

-  Typically10.000.000timesmoreenergyefficientthanstate-of-theartHPC(comparablemodel)

-  10.000lessefficientthanbiology

From:HBPprojectreport

Page 60: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Nature+Real-time Simulation Accelerated

Model

CausalityDetection 10-4s 0.1s 10-8s

SynapticPlasticity 1s 1000s 10-4s

Learning Day 1000Days 10s

Development Year 1000Years 3000s

12OrdersofMagnitude

Evolution >Millenia >1000Millenia >Months

>15OrdersofMagnitude

TimeScales

Page 61: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Processing Element

Processing Element

Processing Element

Processing Element

Rout

er

SerDesSerDesSerDes

SerDes SerDes SerDes SerDes

MCU

Memory Interface

Shared Memory

Shared Memory

Today:Workingprototypes2020:Operationalsystems

Goal:learningcognitivemachines

SpiNNaker-2

4-coreQuadProcessingElement25GIPS/WonasingledieFloatingpointprecisionTruerandomnumbers

BrainScales-2

FlexiblelocallearningOn-the-flynetworkreconfiguration

StructuredneuronsDendriticcomputation

NextgenerationofNMcomputingintheHBP

Page 62: More than Moore with Neuromorphic Computing Architectures · More than Moore with Neuromorphic Computing Architectures Colloquium GSI Darmstadt December 19, 2017 Karlheinz Meier Ruprecht-Karls-Universität

Final Thoughts Ø  After 10 years of development the BrainScaleS large scale

physical hardware system is being commissioned and delivers first results

Ø  Fully non-Turing, physical model computing can solve

established machine learning tasks Ø  2nd generation physical model systems start to offer very

advanced accelerated local learning capabilities and exploitation of dendritic computation

Goal : Build a continuously learning cognitive machine