motor sikron

Upload: aldino-wijaya

Post on 07-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Motor Sikron

    1/146

    SYNCHRONOUS MACHINES

    Two-axis model

    du

     f u

     f i

    di

    Di

    Qi

    quqi

    γ 

    d

    q

    d

    q

    Q D

     f 

  • 8/19/2019 Motor Sikron

    2/146

    Synchronous machines

      8 MW diesel-generator 270 MVA turbo-generator 

  • 8/19/2019 Motor Sikron

    3/146

    Rotor windings

    Field winding Damping bar Field winding Damping bar 

  • 8/19/2019 Motor Sikron

    4/146

    PM synchronous machine; 1 MW ship propulsion motor 

  • 8/19/2019 Motor Sikron

    5/146

    ψ ωψ 

    ψ  ωψ 

    ψ 

    ψ 

    ψ 

    ⎧= + −⎪

    ⎪⎪ = + +⎪⎪⎪

    = +⎨⎪⎪ = +⎪⎪⎪ = +⎪⎩

    d

    d

    ddd

    d

    d0d

    d0

    d

    dd s d q

    qq s q d

     f  f f f 

    DD D

    QQ Q

    u R it

    u R it

    u R it

    R it

    R it

    ψ 

    ψ 

    ψ 

    ψ 

    ψ 

    ⎧ = + +⎪

    ⎪ = + +⎪⎪

    = + +⎨⎪

    = +⎪⎪

    = +⎪⎩

    d d d df f dD D

     f df d f f fD D

    D dD d fD f D D

    q q q qQ Q

    Q qQ q Q Q

    L i L i L i

    L i L i L i

    L i L i L i

    L i L i

    L i L i

    Voltage, flux-linkage and motion equations

    ( )  ω 

    ψ ψ 

    γ ω 

    − = +⎪⎪⎨⎪ =⎪⎩

    3 d

    2 d

    d

    d

    q q md d

     J  p i i T  p t

    t

  • 8/19/2019 Motor Sikron

    6/146

    Space-vector model for induction motor 

      Rotor frame of reference 

    Voltage and flux linkage

    The axes in the rotor frame of reference denoted by d and q

    ψ ωψ 

    ψ 

    ⎧= + +⎪

    ⎪⎨⎪

    = +⎪⎩

     

    d j

    dd

    d

    r sr r r 

    s s s sr r r r 

    r r r 

    u R it

    u R it

    ψ 

    ψ 

    ⎧   = +⎪⎨= +⎪⎩

      r r r  s s m r  s

    r r r m s r r  r 

    L i L i

    L i L i

    ⎧   = +⎪⎨

    = +⎪⎩

     r s sd sq

    r r rd rq

    i i i

    i i i

    ψ ωψ 

    ψ ωψ 

    ψ 

    ψ 

    ⎧= + −⎪

    ⎪⎪ = + +⎪⎪⎨⎪   = +⎪⎪⎪   = +⎪⎩

    d

    dd

    dd

    dd

    d

    sdsd s sd sq

    sq

    sq s sq sd

    rdrd r rd

    rq

    rq r rq

    u R it

    u R i t

    u R it

    u R i t

    ψ 

    ψ 

    ψ ψ 

    = +⎧⎪ = +⎪⎨

    = +⎪⎪   = +⎩

    sd s sd m rd

    sq s sq m rq

    rd m sd r rd

    rq m sq r rq

    L i L i

    L i L i

    L i L iL i L i

      i s d

      i s d

      u s d

      u s d

      i s q 

      i s q 

      u s q 

      u s q  q 

     d

    β

    α

    ( )ψ ψ = −

    3

    2e sd sq sq sdT p i i

  • 8/19/2019 Motor Sikron

    7/146

    Load angle

    γ 

    ω  =

    d

    dt

    δ 

    ω ω − =

    d

    ds tis replaced by

    where the load angle δ   is the angle

    between the excitation voltage vector u p (on q-axis) and stator voltage

    vector ur s

    δ 

    δ 

    =⎧⎪⎨ =⎪⎩

    ˆ sin

    ˆ cos

    d s

    q s

    u u

    u u

    For synchronous machines, the position angle of the rotor is defined

    differently from the angle γ  typically used for induction machine analysis

    γ 

    d

    q

    r su

     pu

    δ 

  • 8/19/2019 Motor Sikron

    8/146

    Direct-axis equivalent circuit

    = = =df dD fD mdL L L L Assumption

    where Lmd is the direct-axis magnetising inductance

    ψ ωψ 

    ψ 

    ψ 

    ⎧= + −⎪

    ⎪⎪

    = +⎨⎪⎪

    = +⎪⎩

    d

    dd

    d

    d0 d

    dd s d q

     f  f f f 

    DD D

    u R i t

    u R it

    R i t

    ( )

    ( )

    ( )

    σ 

    σ 

    σ 

    ψ 

    ψ 

    ψ 

    ⎧   = + + +⎪⎪

    = + + +⎨⎪

    ⎪   = + + +⎩

    d d d m d f D

     f f f m d f D

    D D D m d f D

    L i L i i i

    L i L i i i

    L i L i i i

    ( )

    ( )

    ( )

    σ 

    σ 

    σ 

    ωψ ⎧

    = − + + + +⎪

    ⎪⎪

    = + + + +⎨⎪⎪

    = + + + +⎪⎩

    d d

    d dd d

    d dd d

    0

    d d

    dd s d q d m d f D

     f  f f f f m d f D

    DD D D m d f D

    iu R i L L i i i

    t tiu R i L L i i i

    t ti

    R i L L i i i

    t t

  • 8/19/2019 Motor Sikron

    9/146

    Direct-axis equivalent circuit

    di

    ψ d

    dd

    td

    dmdL

    t

    σ 

    d

    d

    DL

    t

      σ 

    d

    d

     f L

    t

    DR   f R

    + +d D f i i i   Di   f i

    σ  dd

    dLt

     f u

    ( )

    ( )

    ( )

    σ 

    σ 

    σ 

    ωψ ⎧ = − + + + +⎪⎪⎪

    = + + + +⎨⎪⎪

    = + + + +⎪⎩

    d dd d

    d d

    d d

    d d0 d d

    ds q m Dd d d d f  

     f m D f f f f d f 

    DD D D m Dd f 

    iu R i L L i i it t

    iu R i L L i i i

    t t

    iR i L L i i it t

  • 8/19/2019 Motor Sikron

    10/146

    More accurate equivalent circuit for direct axis

     Assumption

    where Lmd is the direct-axis magnetising inductance

    di

    ψ d

    dd

    td

    dmdL

    t

    σ  dd

    DLt

      σ  dd

     f Lt

    DR   R

    + +d D f i i i   Di   f i

    σ 

    d

    ddL

    t  f uσ d

    dkL

    t

    = =

  • 8/19/2019 Motor Sikron

    11/146

    Quadrature-axis equivalent circuit

    Notation

    where Lmq is the quadrature-axis magnetising inductance

    =qQ mqL L

    ψ ωψ 

    ψ 

    ⎧= + +⎪⎪

    ⎨⎪ = +⎪⎩

    d

    dd

    0

    d

    qq s q d

    QQ Q

    u R it

    R i

    t

    ( )

    ( )

    σ 

    σ 

    ψ 

    ψ 

    ⎧   = + +⎪⎨⎪   = + +⎩

    q q q m q Q

    Q Q Q m q Q

    L i L i i

    L i L i i

    ( )

    ( )

    σ 

    σ 

    ωψ ⎧

    = + + + +⎪

    ⎪⎨⎪ = + + +⎪⎩

    d d

    d dd d

    0d d

    qq s q d q m q Q

    QQ Q Q m q Q

    iu R i L L i i

    t ti

    R i L L i it t

  • 8/19/2019 Motor Sikron

    12/146

    Quadrature-axis equivalent circuit

    qi

    ψ d

    d

    q

    td

    dmqL

    t

    σ  dd

    QLt

    QR

    +q Qi i   Qi

    σ 

    d

    dqL

    t

    ( )

    ( )

    σ 

    σ 

    ωψ ⎧

    = + + + +⎪⎪⎨

    ⎪ = + + +⎪⎩

    d d

    d dd d

    0 d d

    qq s q d q m q Q

    QQ Q Q m q Q

    iu R i L L i i

    t ti

    R i L L i it t

  • 8/19/2019 Motor Sikron

    13/146

    Notations and abbreviations

    Leakage factors and other abbreviations

    σ 

    σ 

    σ 

    σ 

    = −

    = −

    = −

    = −

    2

    2

    2

    2

    1

    1

    1

    1

    df df 

    d f 

    dDdD

    d D

     fD fD

     f D

    qQqQ

    q Q

    L

    L L

    L

    L LL

    L L

    LL L

    µ 

    µ 

    = −

    = −

    1

    1

    df fD f 

    dD f 

    dD fDD

    Ddf 

    L L

    L L

    L L

    L L

  • 8/19/2019 Motor Sikron

    14/146

    Synchronous machine in steady state

    Steady state => a) Space vectors are constants in rotor frame

    of reference

    = + =

    = + = 

     j constant

     j constant

    r s d q

    r s d q

    u u u

    i i i

    b) The time-derivatives of flux linkages vanish

    ψ ψ = =

    dd0

    d d

    qd

    t t

    c) The currents of the damper windings are zero

    = = 0D Qi i

  • 8/19/2019 Motor Sikron

    15/146

    Space-vector diagram for 

    a synchronous generator 

      r si

    r su

     pu

    ω  df f L i

    ω −   q qL i

    ω  j   d dL i

    ωψ  j   r s  r s sR i

     f id

    q

    ψ r s

    ϕ 

    δ 

    di

    qi

    ( )ω    −  -j   r q sdL L i

    ω   -j  r q sL i

    ωψ 

    ωψ 

    ⎧   = −⎪

    = +⎨

    ⎪ =⎩

    s qd d

    q s q   d

     f f f 

    u R i

    u R i

    u R i

    ψ 

    ψ 

    = +⎧⎪⎨

    =⎪⎩

    d d d df f  

    q q q

    L i L i

    L i

    ω ω 

    ω 

    = + − +

    = =

       j

    ˆ j j

    r r s s s q q pd d

     p p   df f 

    u R i L i L i u

    u u L i

    ( )

    ( )

    δ ϕ 

    δ ϕ 

    ⎧   = +⎪⎨

    = +⎪⎩

    ˆ sin

    ˆ cos

    sd

    q s

    i i

    i i

  • 8/19/2019 Motor Sikron

    16/146

    Electromagnetic torque

    ( ) ( )ψ ψ    ⎡ ⎤= − = − +⎣ ⎦3 3

    2 2e q q q q qd d d d df f  T p i i p L L i i L i i

    Neglecting the stator resistance

    δ ω 

    δ ω 

    = = −⎧⎪⎨

    = = +⎪⎩

    sin

    ˆcos

    s q qd

    q s pd d

    u u L i

    u u L i u

    δ 

    ω 

    δ 

    ω 

    −⎧=⎪

    ⎪⎨⎪   = −

    ⎪⎩

    ˆcos

    sin

    s pd

    d

    sq

    q

    u ui

    L

    ui

    L

     =>

    ( )( )δ δ    δ 

    ω ω 

    δ δ 

    ω 

    ⎡ ⎤− −⎢ ⎥= − −

    ⎢ ⎥⎣ ⎦

    ⎡ ⎤⎛ ⎞= − + −⎢ ⎥⎜ ⎟

    ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    2 2

    2

    ˆ ˆ ˆ ˆ ˆcos sin sin3

    2

    ˆ ˆ ˆ3 1 1  sin sin 2

    2 2

    q s p sd   p se

    q qd

    s p   s

    qd d

    L L u u u   u uT p

    L L L

    u u p   u

    X X X 

  • 8/19/2019 Motor Sikron

    17/146

    Operator inductances of synchronous machine

    Laplace transformation of the voltage and flux-linkage equations

    ψ ψ ωψ 

    ψ ψ 

    ψ 

    ψ 

    ψ ψ ωψ 

    ψ ψ 

    ⎧ ⎛ ⎞= + − −⎪   ⎜ ⎟

    ⎝ ⎠⎪⎪   ⎛ ⎞

    = + −⎪   ⎜ ⎟⎪   ⎝ ⎠⎪⎪   ⎛ ⎞

    = + −⎨   ⎜ ⎟⎝ ⎠⎪⎪   ⎛ ⎞

    = + − +⎪   ⎜ ⎟⎝ ⎠⎪

    ⎪⎛ ⎞⎪   = + −⎜ ⎟

    ⎪   ⎝ ⎠⎩

    0

    0

    0

    0

    0

    0

    0

    ds qd d d

     f  f f f f 

    DD D D

    qq s q q   d

    QQ Q Q

    u R i s

    s

    u R i ss

    R i s s

    u R i ss

    R i ss

    ψ 

    ψ 

    ψ 

    ψ 

    ψ 

    ⎧ = + +⎪⎪ = + +⎪⎪

    = + +⎨⎪= +⎪

    ⎪= +⎪⎩

    d d d df f dD D

     f df d f f fD D

    D dD d fD f D D

    q q q qQ Q

    Q qQ q Q Q

    L i L i L i

    L i L i L i

    L i L i L i

    L i L i

    L i L i

  • 8/19/2019 Motor Sikron

    18/146

    ψ ψ 

    ψ ψ 

    ψ ψ 

    ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− = −⎢ ⎥⎢ ⎥ ⎢ ⎥

    ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    0 0

    0 0

    0 0

    d dd d

    d df dD f f 

     f df f fD f 

    DdD fDD DD D

    ii

    s sL L Li

    L L L is s

    L L L ii

    s s

    ψ ψ 

    ψ ψ 

    ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥

    ⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    0 0

    0 0

    q qq q

    q qQ

    qQ QQ QQ Q

    iiL Ls sL L   i

    is s

    The flux differences expressed using the current differences

    Typical initial values:   = = =0

    0 0 00; f 

    D Q   f 

     f 

    ui i i

    R

  • 8/19/2019 Motor Sikron

    19/146

    Quadrature-axis operator inductance

    ψ ψ ψ ψ 

    ⎛ ⎞= + − − = −⎜ ⎟

    ⎝ ⎠

    0 00 =>

    Q Q Q QQ Q Q Q

    R iR i s

    s s s

    ψ ψ 

      ⎛ ⎞ ⎛ ⎞⎛ ⎞− = − + = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠   ⎝ ⎠ ⎝ ⎠

    0 00  =>

    q qQ qQQ qQ q Q Q Q q

    Q Q

    i L s iL i L i i i

    s s R L s s

    ( )ψ 

    ψ ⎛ ⎞⎛ ⎞ ⎛ ⎞

    − = − − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+  ⎝ ⎠ ⎝ ⎠⎝ ⎠

    20 0 0q qQ q q

    q q q q q

    Q Q

    L s i iL i L s i

    s R L s s s

    Voltage equation for the damper winding

    Flux-linkage equation for the damper winding

    ψ 

    ψ 

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

    − = − + = − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    0 0 0 0q q q qQ q

    q q q qQ Q q q qQ qQ Q

    i i L s i

    L i L i L i L is s s R L s s

    =>

    Flux-linkage equation for the stator winding

  • 8/19/2019 Motor Sikron

    20/146

    Quadrature-axis subtransient inductance II

    ( )   σ →∞ →∞

    ⎛ ⎞= = − = − =⎜ ⎟

    ⎜ ⎟+

    ⎝ ⎠

    2 2'' lim lim

      qQ qQq q q q qQ q

    s s

    Q Q Q

    L s LL L s L L L

    R L s L

     At the beginning of a transient process

    σ σ σ σ 

    σ 

    = + = ++ +'' 11 1

    Q mqq s sQ mq

    Q mq

    L LL L LL L

    L L

    L’’q is called quadrature-axis subtransient inductance

    ( ) = −+

    2qQ

    q qQ Q

    L sL s L

    R L s

  • 8/19/2019 Motor Sikron

    21/146

    Quadrature-axis operator inductance III

    ( )

    σ 

    + −

    = − = − =+

    + +

    ⎛ ⎞⎜ ⎟+ −   +⎜ ⎟   +⎝ ⎠= = =

    ++ +

    +

    =+

    2 2

    2

    2

    ''

    ''0

    ''''

    ''0

    1 1

    1

    1 11 1

    1

     1

    qQ qQQ Qq q

    qQ   Q Q Q Qq q q

    Q QQ Q

    Q Q

    qQ   Q Qq q qQ

    Q Q   qQq q

    Q Q q

    Q Q

    qq

    q

    L LL Ls L L s s

    L s   R R L RL s L L

    L LR L ss s

    R R

    L   L   LL L s   s

    L R  T sRL L

    L L   T ss sR R

    sT 

    Ls

    where   σ = = = =

    '''' '' '' ''0 0 0 0;

    qQq Q q qQ Q Q

    Q q

    LLT T T T T  

    R L

    open-circuit short-circuittime constant time constant

  • 8/19/2019 Motor Sikron

    22/146

    Quadrature-axis operator inductance IV

    ( )

    +

    ⎛ ⎞= = + = + −⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

    ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    ''0

    '' ''

    '' '' ''

    1

    1 1 1 1 1 1

    1 1 1

    q

    q q qq q

    q q q

    s

    T    A BsL s s sL LL L

    s s s sT T T 

     An equation needed later for the inverse Laplace transformation

  • 8/19/2019 Motor Sikron

    23/146

    Short circuit at the terminals of a PM synchronous motor 

    B

    r B

    cH 

    Magnetic characteristicof the permanent magnets

  • 8/19/2019 Motor Sikron

    24/146

    -1000

    -800

    -600

    -400

    -200

    0

    200

    400600

    800

    1000

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       L   i  n  e  v  o   l   t  a  g  e  s   [   V   ]

    -15000

    -10000

    -5000

    0

    5000

    10000

    15000

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       L   i  n  e  c

      u  r  r  e  n   t  s   [   A   ]

    Line voltage and current in a 3-phase short circuit

  • 8/19/2019 Motor Sikron

    25/146

    -350000

    -300000-250000

    -200000

    -150000

    -100000

    -500000

    50000

    100000

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       T  o  r  q  u  e   [   N  m   ]

    Torque and minimum flux density in permanent magnets

    -1.20

    -1.00

    -0.80

    -0.60

    -0.40

    -0.20

    0.00

    0.20

    0.40

    0.60

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       M   i  n   i  m  u  m 

       f   l  u  x   d  e  n  s   i   t  y   [   T   ]

  • 8/19/2019 Motor Sikron

    26/146

    -12000

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    800010000

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       L   i  n  e  c

      u  r  r  e  n   t  s   [   A   ]

    -1000

    -800

    -600

    -400

    -200

    0

    200

    400600

    800

    1000

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       L   i  n  e  v  o   l   t  a  g  e  s   [   V   ]

    Line voltage and current in a 2-phase short circuit

  • 8/19/2019 Motor Sikron

    27/146

    -0.80

    -0.60

    -0.40

    -0.20

    0.00

    0.20

    0.40

    0.60

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       M   i  n   i  m  u  m 

       f   l  u  x   d  e  n  s   i   t  y   [   T   ]

    -150000

    -100000

    -50000

    0

    50000

    100000

    150000

    0 50 100 150 200 250 300 350 400 450 500

    Time [ms]

       T  o  r  q  u  e   [   N  m   ]

    Torque and minimum flux density in permanent magnets

  • 8/19/2019 Motor Sikron

    28/146

    Direct-axis operator inductance

    Laplace transformed voltage and flux-linkage equations

    ψ ψ ωψ 

    ψ ψ 

    ψ ψ 

    ψ ψ ωψ 

    ψ 

    ψ 

    ⎧ ⎛ ⎞= + − −⎪   ⎜ ⎟⎝ ⎠⎪

    ⎪   ⎛ ⎞= + −⎪   ⎜ ⎟⎪   ⎝ ⎠⎪⎪   ⎛ ⎞= + −⎨   ⎜ ⎟

    ⎝ ⎠⎪⎪   ⎛ ⎞

    = + − +⎪   ⎜ ⎟⎝ ⎠⎪

    ⎪ ⎛ ⎞⎪   = + −⎜ ⎟⎪   ⎝ ⎠⎩

    0

    0

    0

    0

    0

    0

    0

    ds qd d d

     f  f f f f 

    DD D D

    qq s q q   d

    Q

    Q Q Q

    u R i ss

    u R i ss

    R i ss

    u R i ss

    R i s s

    ψ ψ 

    ψ ψ 

    ψ ψ 

    ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− = −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥− −

    ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    0 0

    0 0

    0 0

    d dd d

    d df dD

     f f  f df f fD f 

    DdD fDD DD D

    ii

    s sL L L

    iL L L is s

    L L L ii

    s s

    ψ ψ 

    ψ ψ 

    ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎡ ⎤

    =⎢ ⎥ ⎢ ⎥⎢ ⎥

    ⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    0 0

    0 0

    q qq q

    q qQ

    qQ QQ QQ Q

    iiL Ls s

    L L   iis s

    d-axis flux and field winding current will be solved as functions of

    the d-axis current and field winding voltage.

  • 8/19/2019 Motor Sikron

    29/146

    Direct-axis operator inductance II

    ( ) ( )

    ( ) ( )

    ψ 

    ψ 

    ⎛ ⎞⎛ ⎞

    − = − −⎜ ⎟   ⎜ ⎟⎝ ⎠   ⎝ ⎠

    ⎛ ⎞⎛ ⎞− = − − −⎜ ⎟   ⎜ ⎟⎝ ⎠   ⎝ ⎠

    00 0

    0 00

    +

    +

     f d d

    d d d d f  

     f f d f d d d f 

    ui

    L s i G s us s s

    i uii sG s i F s u

    s s s

     After eliminating the damper-winding current and field-winding flux linkage,

    we get

    Ld(s) is the direct-axis operator inductance

    ( ) ( )

    ⎧   ⎡ ⎤⎛ ⎞⎛ ⎞⎪⎢ ⎥⎜ ⎟= + − + −⎨   ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎪   ⎝ ⎠⎣ ⎦⎩

    ⎫⎛ ⎞⎛ ⎞+ −   ⎪⎜ ⎟⎜ ⎟+ − −   ⎬⎜ ⎟⎜ ⎟

    − ⎪⎝ ⎠⎝ ⎠⎭

    22

    0 0

    2 2 22

    00 2

    1 1 1

    2  1

    df dD Dd d d f  D   d f d

    D fD dD f df df fD dDD f d

    D   f    D   f fD

    LLL s L sL T T  D s L L L L

    L L L L L L L Ls T T L

    L L   L L L

  • 8/19/2019 Motor Sikron

    30/146

    Direct-axis operator inductance and time constants

    The denominator D(s) is

    Using time constants, the direct-axis operator inductance can be written

    ( )( )( )

    ( )

    ( )( )

    µ +=+ +

    +=

    + +

      00 ' ''

    0 0

     0 0

    ' ''0 0

    1

    1 1

    1

    1 1

    df    D Dd f 

     f    d d

     f    Dd

     f    d d

    L   T sG s T L   T s T s

    T    T sF s

    L   T s T s

    ( )   ( )  ⎛ ⎞

    ⎜ ⎟= + + + −⎜ ⎟⎝ ⎠

    22

    0 00 01 1  fD

    D D f f D f 

    LD s s T T s T T  

    L L

    ( )  ( )( )

    ( )( )

    + +=

    + +

    ' ''

    ' ''0 0

    1 1

    1 1

    d dd d

    d d

    T s T sL s L

    T s T s

    The other coefficient operators in the ψ d, i f   equations are

  • 8/19/2019 Motor Sikron

    31/146

    Time constants( )

      ( )

    ( )

    ( )( )

    ( )( )

    + += =

    + +

    ' ''

    ' ''

    0 0

    1 1

    1 1

    d dd d

    d d

    T s T sN sL s L

    D s   T s T s

    σ σ σ 

    − = ≈ + ≈ =

    − = ≈ = =+

    '00 0 0

    1

    00''00

    2 00

    1

    1

     f Dd f f 

     f 

    D f    DDd fD fD fD

    D D f 

    LT T T T  

    s R

    T T    LT T 

    s T T RSubtransient open-circuittime constant

    Transient open-circuittime constant

    Roots of the denominator 

    ( ) ( )  ⎛ ⎞

    ⎜ ⎟= + + + − =⎜ ⎟⎝ ⎠

    2

    0 00 02 2

    1 11 0

     fDD D f f 

    D f 

    LD sT T T T  

    s L Ls s

    ( )

    σ 

    ⎡ ⎤+ ⎢ ⎥− = = ± −

    ⎢ ⎥+

    ⎢ ⎥⎣ ⎦

    0 00 0

    2

    00

    11 1 4

    2

    D D f f  fD

    D f 

    T T T T  T 

    s

    T T 

  • 8/19/2019 Motor Sikron

    32/146

    Time constants

    Roots of the numerator 

    σ σ σ σ  

    σ σ σ 

    σ σ σ σ σ  

    ≈ + ≈ =

    ≈ ≈ ≈ =+

    '0 0 0

    ''

    00 '' '' '' ''0'' 0

    0 0

     f Dd dD df f df f df  

     f 

    dD fD f 

    D fD fDd d d d d   Dd

    D DdD df f d df d df d df  

    LT T T T  

    RL

    T T T L L L T L   L

    T T T L L L R

    Subtransientshort-circuittime constant

    Transientshort-circuit

    time constant

    ( )  ( )

    ( )

    ( )( )

    ( )( )

    + += =

    + +

    ' ''

    ' ''

    0 0

    1 1

    1 1

    d dd d

    d d

    T s T sN sL s L

    D s   T s T s

    ( ) ( )σ σ σ = + + + =''

    0 00 02 2

    1 10dD DdD df f fD f  

    dd

    N s   LT T T T  

    s Ls L s

    ( )

    σ σ σ 

    σ σ 

    ⎡ ⎤⎢ ⎥

    + ⎢ ⎥− = = ± −⎢ ⎥

    +⎢ ⎥⎢ ⎥⎣ ⎦

    ''

    000 0

    2

    0 0

    11 1 4

    2

    dD fD f 

    DdD df f     d

    DdD df f  

    LT T 

    T T    LT 

    s

    T T 

  • 8/19/2019 Motor Sikron

    33/146

    Direct-axis subtransient and transient inductances

    Subtransient inductance is effective at the beginning of a transient process

    ( )→∞

    + −

    = = − =−

    2 2 ' ''

    '' 2 ' ''0 0

    2lim

      DdD f df df fD dD   d dd d d d

    s D   f fD d d

    L L L L L L L  T T L L s L L

    L L L T T  

    σ −

    = ≈ =⎛ ⎞

    + − −⎜ ⎟⎝ ⎠

    ' '' ''

    '' '' '' 0

    0 0 ''1

    d d dd d d df d

    ddd d d

    d

    T T T L L L L

    T L

    T T T  L

    Transient inductance

  • 8/19/2019 Motor Sikron

    34/146

    ( )

    ⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= = + +

    ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

    ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    ⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟

    ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    ' ''0 0

    ''

    ' '' ' ''

    ' '' '

    ' ''

    1 1

    1 1

    1 1 1 1

    1 1 1 1 1 1 1 

    1 1

    d d

    d   d

    d d d d

    d dd d d

    d d

    s sT T    A B C 

    sL s sLs s s s s

    T T T T  

    sL LL L Ls sT T 

     An equation (Heaviside expansion) needed later for the

    inverse Laplace transformation

    Direct-axis operator inductance

  • 8/19/2019 Motor Sikron

    35/146

    Typical value s

    Turbo-generators(with solid

    rotor)

    Salient-pole generatorswith damper winding

    p < 8 p > 8

    Salient-pole generatorswithout damper winding

    p < 8 p > 8

    Salient-polemotors

    with damper 

    winding

    xd (p.u.) 1.5–2.5 0.95–1.78 0.83–1.6 0.98–1.7 0.86–1.5 0.85–2.5

    x 'd  (p.u.)  0.15–0.35 0.15–0.37 0.23–0.34 0.2–0.35 0.25–0.4 0.22–0.56

    x"d

      (p.u.)  0.1–0.25 0.08–0.24 0.16–0.24 0.2–0.35 0.25–0.4 0.11–0.32

    xq (p.u.) 1.2–2.3 0.46–0.91 0.57–0.89 0.52–0.9 0.45–0.8 0.5–1.5

    x"q  (p.u.)  0.1–0.25 0.08–0.26 0.17–0.25 0.52–0.9 0.45–0.8 0.11–0.32

    T 'd0  (s)  5–15 2–10 4.2–10 2–10 1.5–8 1–7

    T 'd  (s)  0.6–2.0 0.4–2.5 1.0–2.0 0.5–2.5 0.55–2.5 0.2–1.5

    T"d  (s)  0.02–0.6 0.02–0.08 0.02–0.05 – – 0.004–0.06

    Ta (s) 0.1–0.7 0.04–0.25 0.07–0.15 0.09–0.6 0.1–0.6 0.02–0.15

    Reactances and time constants

  • 8/19/2019 Motor Sikron

    36/146

    Sudden three-phase short circuit

    Currentmeasurement

    Torquemeasurement

    Grid

    uf

    if

  • 8/19/2019 Motor Sikron

    37/146

    Sudden three-phase short circuit

    Calculation of short-circuit currents is needed for 

    • design and protection of electrical networks

    • dimensioning of switch-gear 

    • design of electrical machines

    Calculation of dynamic forces and torques is needed for 

    • mechanical dimensioning of the machine, its coupling andfoundations

    Two-phase short circuits occur more often than three-

    phase short circuits.

    Three-phase short-circuit tests are used for determining

    machine parameters.

  • 8/19/2019 Motor Sikron

    38/146

    No-load conditions before the short circuit

    Three-phase short-circuit at t =0:

    Speed of the rotor is assumed to be constant

    Basic conditions

    ωψ ω 

    ψ 

    = = = =

    = = == =

    0 0 0 0

    0 0 0 0

    0 0

    0

    ˆ0; 0

    d q D Q

    s q d df f  

    q d

    i i i i

    u u L iu

    = =

    = 0

    0d q

     f f f 

    u u

    u R i

    E ti f t i t l i

  • 8/19/2019 Motor Sikron

    39/146

    Equations for transient analysis

    Laplace transformed voltage and flux-linkage equations

    ψ ψ ωψ 

    ψ ψ 

    ψ ψ 

    ψ ψ ωψ 

    ψ ψ 

    ⎧ ⎛ ⎞= + − −⎪   ⎜ ⎟⎝ ⎠

    ⎪⎪   ⎛ ⎞= + −⎪   ⎜ ⎟

    ⎪   ⎝ ⎠⎪⎪   ⎛ ⎞= + −⎨   ⎜ ⎟⎝ ⎠⎪⎪   ⎛ ⎞

    = + − +⎪   ⎜ ⎟⎝ ⎠⎪

    ⎛ ⎞⎪   = + −⎜ ⎟⎪   ⎝ ⎠⎩

    0

    0

    0

    0

    0

    0

    0

    ds qd d d

     f  f f f f 

    D

    D D D

    qq s q q   d

    QQ Q Q

    u R i s

    s

    u R i ss

    R i s s

    u R i ss

    R i ss

    ψ ψ 

    ψ ψ 

    ψ ψ 

    ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥

    ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− = −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥− −

    ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    0 0

    0 0

    0 0

    d dd d

    d df dD f f 

     f df f fD f 

    DdD fDD DD D

    ii

    s sL L L iL L L i

    s sL L L i

    i

    s s

    ψ ψ 

    ψ ψ 

    ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎡ ⎤

    =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    0 0

    0 0

    q qq q

    q qQ

    qQ QQ QQ Q

    iiL Ls s

    L L   ii

    s s

    Equations II

  • 8/19/2019 Motor Sikron

    40/146

    ( ) ( )

    ( )

    ( ) ( )

    ψ ψ 

    ψ ψ 

    ⎛ ⎞⎛ ⎞− = − −⎜ ⎟   ⎜ ⎟⎝ ⎠   ⎝ ⎠

    ⎛ ⎞− = −⎜ ⎟

    ⎝ ⎠⎛ ⎞⎛ ⎞− = − − −⎜ ⎟   ⎜ ⎟

    ⎝ ⎠   ⎝ ⎠

    00 0

    0 0

    0 00

    +

    +

     f d dd d d d f  

    q qq q q

     f f d f d d d f 

    uiL s i G s u

    s s s

    iL s i

    s si ui

    i sG s i F s us s s

    Equations II

    Stator flux-linkages and excitation current as functions of stator currents

    and excitation voltage

  • 8/19/2019 Motor Sikron

    41/146

    Modelling of the short circuit

    Laplace transformed voltage and flux-linkage equations for

    stator winding after substituting the zero initial values

    ψ 

    ψ ωψ 

    ψ ωψ 

    ⎧   ⎛ ⎞= + − −⎜ ⎟⎪ ⎝ ⎠⎨

    ⎪   = + +⎩

    0

    0

    0

    d

    s qd d

    s q q   d

    R i s sR i s

    ( )( )

    ψ 

    ψ 

    ψ 

    ⎧ − =⎪⎨⎪   =⎩

    0

     

    d

    d d d

    q q q

    L s isL s i

     After substituting the fluxes

    ( )[ ]   ( )

    ( ) ( )

    ω 

    ω 

    ⎧   + − =

    ⎪⎨ ⎡ ⎤+ + = −⎪   ⎣ ⎦⎩0

    0

    ˆ

    s q qd d

    ss q qd d

    R sL s i L s i

    uL s i R sL s i

    s

    S l ti f th t t t

  • 8/19/2019 Motor Sikron

    42/146

    Solution for the stator currents

    whereD(s)

     is the “characteristic polynomial”

    ( )

    ( )

    ( )

    ( )

    ω ⎧= −⎪

    ⎪⎨

    +⎪

    = −⎪⎩

    0

    0

    ˆ

    ˆ

    qsd

    s   ds

    q

    L sui

    s D s

    R sL su

    i s D s

    ( ) ( )[ ]   ( ) ( ) ( )

    ( ) ( )( ) ( ) ( ) ( )

    ω 

    ω 

    ⎡ ⎤= + + +⎣ ⎦

    ⎧ ⎫⎡ ⎤⎪ ⎪= + + + +⎨ ⎬⎢ ⎥

    ⎣ ⎦⎪ ⎪⎩ ⎭

    2

    22 21 1

    s s q qd d

    sq sd

    qd d d

    D s R sL s R sL s L s L s

    RL s L s s sR

    L s L s L s L s

    Si lifi ti ( ) ( )'' ''li liL L L L

  • 8/19/2019 Motor Sikron

    43/146

    Simplifications

    where   = =⎡ ⎤ ⎡ ⎤+⎣ ⎦+⎢ ⎥

    ⎢ ⎥⎣ ⎦

    '' ''

    '' ''

    '' ''

    22

    1 1

    qda

    s qds

    qd

    L LT 

    R L LR

    L L

    ( ) ( ) ( )ω ω ⎧ ⎫⎛ ⎞⎪ ⎪

    qd

    aa

    D s L s L s sT T 

    ( )

    ω 

    ω 

    = −⎡ ⎤⎛ ⎞⎢ ⎥+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    02

    2

    ˆ1

    sd

    da

    ui

    sL s sT 

    ( )   ω 

    = −⎡ ⎤⎛ ⎞⎢ ⎥+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    02

    2

    ˆ1

    sq

    qa

    ui

    L s sT 

    ( ) ( ) ( )   ω ⎧ ⎫

    ≈ + +⎨ ⎬⎩ ⎭

    2 22qd

    a

    D s L s L s s sT 

    Equations for the currents

    is the armature short-circuit time constant

    ( ) ( )→∞ →∞

    = =lim , limq qd ds s

    L L s L L s

  • 8/19/2019 Motor Sikron

    44/146

    Inverse Laplace transform for the currents

    where

    Inverse transformation of a product of two functions is obtained

    using the convolution integral

    ( ) ( ){ }   ( ) ( )−

    ⋅ = ∗ 11 2 1 2L   f s f s f t f t

    ( ) ( ) ( ) ( ) ( ) ( )τ τ τ τ  ∗ = − = −∫ ∫1 2 1 2 1 20 0d d

    t t

     f t f t f f t t f t f t

    ( ){ }( )

    ω 

    ω 

    − − −

    ⎧ ⎫⎪ ⎪⎪ ⎪⎧ ⎫   ⎪ ⎪

    = − ∗⎨ ⎬ ⎨ ⎬⎡ ⎤⎩ ⎭   ⎛ ⎞⎪ ⎪⎢ ⎥+ +⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

    1 1 10 2

    2

    1 1ˆL L L

    1d s

    d

    a

    i s usL s

    sT 

  • 8/19/2019 Motor Sikron

    45/146

    Inverse Laplace transform for the currents II

    ω 

    − − −⎡ ⎤⎛ ⎞⎛ ⎞

    = − + − + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠   ⎝ ⎠⎣ ⎦

    ' ''

    0 '' ' ''

    1 1 1 1 1 1

    ˆ e e e cos'ad dt T t T t T  

    sd d d d   d d di u tX X X    X X X 

    ω −= − 0''

    ˆe sinat T sq

    q

    ui t

    Current in stator phase a

    ϑ ϑ ϑ ω ϑ  = − = + 0cos sin ;sa r q r r r  di i i t

     After the convolution integration, the currents on the d- and q-axis

  • 8/19/2019 Motor Sikron

    46/146

    Current in phase a

    Substituting the rotor angle gives

    ( )ω ϑ 

    ϑ 

    − −

    − −

    ⎧⎡ ⎤⎪⎢ ⎥⎛ ⎞⎛ ⎞⎪

    = − + − + − +⎢ ⎥⎨   ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠   ⎝ ⎠⎪⎢ ⎥⎪⎣ ⎦⎩

    ⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟

    ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

     

    ' ''

    0 0'' '

    III III

    0'' '' '' ''

    IV

    1 1 1 1 1ˆ e e cos

    '

    1 1 1 1 1 1  e cos e

    2 2

    d d

    a

    t T t T  sa s r  

    d d d   d d

    t T t T  r 

    q qd d

    i u tX X X    X X 

    X X X X  ( )ω ϑ 

    ⎫⎪⎪

    +   ⎬⎪

    ⎪⎭

    0

    V

    cos 2a r t

    ω ϑ 

    ω ϑ 

    − − −

    ⎡ ⎤⎛ ⎞⎛ ⎞= − + − + − −⎢ ⎥⎜ ⎟⎜ ⎟

    ⎢ ⎥⎝ ⎠   ⎝ ⎠⎣ ⎦

    +

    ' ''

    0 '' ' ''

    0''

    1 1 1 1 1 1ˆ e e e cos cos

    '

    ˆ

      e sin sin

    ad d

    a

    t T t T t T  sa s r

    d d d   d d d

    t T sr 

    q

    i u tX X X    X X X 

    u

    tX 

    ϑ ω ϑ = + 0r r t

  • 8/19/2019 Motor Sikron

    47/146

    Current in phase a

    The components of the phase current

    I steady-state short-circuit current

    II transient component that is damped by the time constant

    III subtransient component that is damped by the time constant

    IV DC component that is damped by the time constant T a

    V double-frequency component that is damped by the time constant T a

    'dT 

    ''

    dT 

    Components of a phase current

  • 8/19/2019 Motor Sikron

    48/146

    0.00 0.10 0.20 0.30 0.40 0.50

    Time [s]

       C

      u  r  r  e  n   t

    p p

    I II

    IV

    VIII

    Subtransient period

  • 8/19/2019 Motor Sikron

    49/146

    p

    0.00 0.01 0.01 0.02 0.02

    Time [s]

       C

      u  r  r  e  n   t

    I II

    IV

    VIII

    Three phase short circuit; field current

  • 8/19/2019 Motor Sikron

    50/146

    Three-phase short circuit; field current

    ( )− = −0

      f 

     f d d

    ii sG s i

    s

    ω − −⎡ ⎤⎛ ⎞ ⎛ ⎞

    = − − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

    '/ /0 ' '

    1+ 1 e 1 e cosadt T t T  d d f f d d

    X X i i t

    X X 

    Substituting the d-axis current and doing the inverse transformation,

    we obtain

    Three-phase short circuit at the terminals

  • 8/19/2019 Motor Sikron

    51/146

    Before the short circuit, the generator

    is operating at its rated operation point.

    S = 8.2 MVA

    cosfii = 0.8 capacitiveUs = 6300 V

    f  = 50 Hz

    Uf  = 150 V

     A three-phase short-circuit occurs at

    t =20 ms.

    => Us = 0

    Uf  = 150 V

    of a 8.2 MVA synchronous generator 

     After the short circuit, the shaft torque is kept constant. The speed of

    the rotor is defined by the equation of motion.

    10000

    Three-phase short circuit; 8.2 MVA generator 

  • 8/19/2019 Motor Sikron

    52/146

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    0 20 40 60 80 100 120 140 160

    Time [m s]

       L   i  n  e  v  o

       l   t  a  g  e  s

       [   V   ]

    -15000

    -10000

    -5000

    0

    5000

    10000

    15000

    20000

    0 20 40 60 80 100 120 140 160

    Time [ms]

       L   i  n  e

      c  u  r  r  e  n

       t  s   [   A   ]

    Three-phase short circuit; 8.2 MVA generator 

  • 8/19/2019 Motor Sikron

    53/146

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    0 20 40 60 80 100 120 140 160

    Time [ms]

       F   i  e   l   d  c  u  r  r  e  n   t

       [   A   ]

    p ; g

    600000

    Three-phase short circuit; 8.2 MW generator 

  • 8/19/2019 Motor Sikron

    54/146

    -1000000

    -800000

    -600000

    -400000

    -200000

    0

    200000

    400000

    600000

    0 20 40 60 80 100 120 140 160

    Time [ms]

       T  o  r  q  u  e   [   N  m   ]

    74

    75

    76

    77

    78

    79

    80

    81

    82

    8384

    0 20 40 60 80 100 120 140 160

    Time [ms]

       S  p  e

      e   d   [  r  a   d   /  s   ]

    Two-phase short circuit at the terminals of 

  • 8/19/2019 Motor Sikron

    55/146

    a 8.2 MVA synchronous generator 

     A two-phase short circuit is most

    severe, if it occurs at a time instant

    when the voltage between the

    shorted lines is zero. At this instant,

    the stator flux associated with the

    shorted branch has a maximum

    value. In the short circuit, the flux

    “freezes” to this maximum value

    and the rotor rotates in a static,slowly decaying flux component.

    Two-phase short circuit; 8.2 MVA generator 

    10000

  • 8/19/2019 Motor Sikron

    56/146

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    40006000

    8000

    10000

    0 20 40 60 80 100 120 140 160

    Time [ms]

       L

       i  n  e  v  o

       l   t  a  g  e  s

       [   V   ]

    -20000

    -15000

    -10000

    -5000

    0

    5000

    10000

    15000

    20000

    0 20 40 60 80 100 120 140 160

    Time [m s]

       L   i  n  e  c  u  r  r  e  n

       t  s   [   A   ]

    Two phase short circuit; 8 2 MVA generator

  • 8/19/2019 Motor Sikron

    57/146

    Two-phase short circuit; 8.2 MVA generator 

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 20 40 60 80 100 120 140 160

    Time [ms]

       F   i  e   l   d  c  u  r  r  e  n

       t   [   A   ]

    1000000

    Two-phase short circuit; 8.2 MVA generator 

  • 8/19/2019 Motor Sikron

    58/146

    -1500000

    -1000000

    -500000

    0

    500000

    0 20 40 60 80 100 120 140 160

    Time [m s]

       A   i  r  -  g  a  p   t  o  r  q  u  e   [   N  m   ]

    73

    74

    75

    7677

    78

    79

    80

    81

    82

    83

    0 20 40 60 80 100 120 140 160

    Time [ms]

       R  o   t  a   t   i  o  n  s  p  e  e   d   [  r  a   d   /  s   ]

     Asynchronous operation of h hi

  • 8/19/2019 Motor Sikron

    59/146

    synchronous machines

    ( )ω 

    ω    = − ≠1 ; 0s M    S S p

    Currentmeasurement

    Torquemeasurement

    Grid

    u Rif f=

    if

    R

     Asynchronous operation of a synchronous machine

  • 8/19/2019 Motor Sikron

    60/146

    y p y

     Asynchronous operation

    • After a drop out of synchronism caused, for instance,by an over load or loss of excitation

    • A self-starting synchronous motor when starting

    Typically, the field winding is either short-circuited

    or connected in series with a resistor.

    = 0 f u

    Stator voltage in rotor frame of reference

  • 8/19/2019 Motor Sikron

    61/146

    ( )ω ϕ +=  j

    ˆ e  s uts

    s su u

    ( )γ ω γ  = − + 01   sS t

    ( )ϕ γ     ω −= 0 j  jˆ e eu   sr S ts su u

    ( )

    ( )

    ω ϕ γ  

    ω ϕ γ  

    = + −⎧⎪⎨

    = + −⎪⎩

    0

    0

    ˆ cos

    ˆ sin

    d s s u

    q s s u

    u u S t

    u u S t

    ( )ϕ γ     ω −= 0 j  jˆ e eu   sS tsu u=⎧

    ⎨ = −⎩  jd

    q

    u u

    u u

    Constant slip

    Stator voltage in stator and rotor frames of reference

    d- and q-components

    Complex notation (phasors)

    Laplace transformed voltage equations andthe definition of the operator inductances

  • 8/19/2019 Motor Sikron

    62/146

    the definition of the operator inductances

    ψ ψ ωψ 

    ψ ψ ωψ 

    ⎧   ⎛ ⎞= + − −⎜ ⎟⎪ ⎝ ⎠⎪⎨

    ⎛ ⎞⎪   = + − +⎜ ⎟⎪ ⎝ ⎠⎩

    0

    0

    ds qd d d

    q

    q s q q   d

    u R i ss

    u R i s s

    ( ) ( )

    ( )

    ψ ψ 

    ψ ψ 

    ⎧   ⎛ ⎞⎛ ⎞− = − −⎪   ⎜ ⎟   ⎜ ⎟

    ⎝ ⎠⎪   ⎝ ⎠⎨⎛ ⎞⎪ − = −⎜ ⎟⎪⎝ ⎠⎩

    00 0

    0 0

    +  f d d

    d d d d f  

    q qq q q

    uiL s i G s u

    s s si

    L s is s

    The initial values of the flux linkages are put to zero, and theLaplace variable s is replaced by jSω s. Field winding is assumedto be short-circuited, u f  = 0

    Solution of stator fluxes (Rs = 0)

  • 8/19/2019 Motor Sikron

    63/146

    ( )

    ( )

    ω ψ ω ψ  

    ω ψ ω ψ  

    = = + − −⎧⎪⎨

    = − = + + −⎪⎩

       j 1

     j j 1

    d s d s d s q

    q s q s q s d

    u u R i S S

    u u R i S S

    ≈ 0sR

    Voltage equations

    Solution of flux linkages after neglecting the stator resistance

    ( )

    ( )

    ω ψ ω ψ  

    ω ψ ω ψ  

    = − −⎧⎪⎨

    = − −⎪⎩

     j 1

     j 1

    s s qd

    s s qd

    u S S

    u S S  =>

    ( )

    ( )

    ( )

    ( )

    ω ψ 

    ω ω 

    ω ψ 

    ω ω 

    −⎧= = −⎪ −⎪

    ⎨ − −⎪   = = −⎪   −⎩

    2

    2

    1 2 j

     j 1 2

     j 1 2

     j 1 2

    sd

    ss

    sq

    ss

    S   uu

    S

    S   uu

    S

    ( )

    ψ ω ϕ γ    ω 

    ψ ω ϕ γ    ω 

    π⎧   ⎛ ⎞= + − −⎜ ⎟⎪ ⎝ ⎠⎪⎨⎪   = − + −⎪⎩

    0

    0

    ˆ cos2

    ˆsin

    s s uds

    sq s u

    s

    u S t

    uS t

    Instantaneous flux linkages

    ( )

    ( )

    ω ϕ γ  

    ω ϕ γ  

    = + −⎧⎪⎨

    = + −⎪⎩

    0

    0

    ˆ cos

    ˆ sin

    d s s u

    q s s u

    u u S t

    u u S t =>

    Solution of stator currentsC t t f th fl li k

  • 8/19/2019 Motor Sikron

    64/146

    ( )   ( )

    ( )   ( )

    ϕ 

    ϕ 

    ω ω    ω ω 

    ω ω    ω ω 

    π⎛ ⎞− +⎜ ⎟⎝ ⎠

    ⎧⎪   = − =⎪⎨⎪ = − = −⎪⎩

     j2

     

     j

     

     je

     j  j

    e j  j

    d

    q

    ds d s   s d s

    q s q s   s q s

    u   ui

    L S   L S

    u u

    i L S   L S

    ( )

    ( )   ( )

    ω ϕ ϕ γ    ω ω 

    ω ϕ ϕ γ    

    ω ω 

    π⎧   ⎛ ⎞= + − − −⎜ ⎟⎪ ⎝ ⎠⎪

    ⎨⎪   = − + − −

    ⎪⎩

    0

    0

    ˆcos

    2 j

    ˆcos

     j

    sd s u d

    s d s

    sq s u q

    s q s

    ui S t

    L S

    ui S t

    L S

    ( )

    ( )

    ψ ω 

    ψ ω 

    ⎧   =⎪⎨

    =⎪⎩

      j

     j

    d d s d

    q q s q

    L S i

    L S i =>

    Where are the arguments of the operator inductances.

    Instantaneous currents

    Current components from the flux linkages

     A phase current

    γ γ  = −cos sinsa d qi i i

    ϕ ϕ   qd and

    Phase current

  • 8/19/2019 Motor Sikron

    65/146

    ( )   ( )

    ( )  ( )   ( )

    ω ϕ ϕ γ ω γ    ω ω 

    ω ϕ ϕ γ ω γ    

    ω ω 

    π⎛ ⎞

    = + − − − − +⎡ ⎤⎜ ⎟   ⎣ ⎦⎝ ⎠

    π⎡ ⎤+ + − − − + −⎢ ⎥⎣ ⎦

    0 0

    0 0

    ˆ

    cos cos 12 j

    ˆ  cos cos 1

    2 j

    ssa s u d s

    s d s

    ss u q s

    s q s

    ui S t S tL S

    uS t S t

    L S

    ( ) ( )⎡ ⎤= − + +⎣ ⎦1

    cos cos cos cos2

    x y x y x y

    ( )  ( )

    ( )

    ( )

    ω ϕ ϕ ω γ ϕ ϕ  ω ω 

    ω ϕ ϕ ω γ ϕ ϕ  

    ω ω 

    π π⎧ ⎫⎛ ⎞ ⎡ ⎤= + − − + − + − + +⎨ ⎬⎜ ⎟   ⎢ ⎥⎝ ⎠ ⎣ ⎦⎩ ⎭

    π π⎧ ⎫⎛ ⎞ ⎡ ⎤+ + − − + − + − + −⎨ ⎬⎜ ⎟   ⎢ ⎥

    ⎝ ⎠ ⎣ ⎦⎩ ⎭

    0

    0

    ˆcos cos 1 2 2

    2 22 j

    ˆ  cos cos 1 2 2

    2 22 j

    ssa s u d s u d

    s d s

    ss u q s u q

    s q s

    ui t S t

    L S

    ut S t

    L S

    Modification using the identity

    The phase current

    is of the form ( )   ( )ω ϕ ω ϕ  = + + − +⎡ ⎤⎣ ⎦1 1 2 2ˆ ˆcos cos 1 2sa sa s sa si i t i S t

     A closer study of the phase current components

  • 8/19/2019 Motor Sikron

    66/146

    ( ) ( )

    ϕ ω 

    ω ω ω 

    π⎛ ⎞−⎜ ⎟⎝ ⎠

    ⎡ ⎤= +⎢ ⎥

    ⎢ ⎥⎣ ⎦

     j j2

      1

    ˆ 1 1e e

    2 j j

    usts

    sas s q sd

    ui

    L S L S

    ( ) ( )( )

    ϕ γ  ω 

    ω ω ω 

    π⎛ ⎞− −⎜ ⎟ − −⎝ ⎠⎡ ⎤

    = −⎢ ⎥⎢ ⎥⎣ ⎦

    0 j 2* j 1 22  2

    ˆ 1 1e e

    2 j j

    usS ts

    sas s q sd

    ui

    L S L S

    ( ) ( )   ( )

    ( ) ( )  ( )[ ]

    ω ϕ ω ω ω 

    ω ϕ ω ω ω 

    = + +

    + − − +

    1

    2

    ˆ 1 1cos2 j j

    ˆ 1 1  cos 1 2

    2 j j

    ssa ss s q sd

    ss

    s s q sd

    ui tL S L S

    uS t

    L S L S

    Fundamental frequency component in phasor notation

    Complex conjugate of the other current phasor 

    Phase current

    Electromagnetic torque

  • 8/19/2019 Motor Sikron

    67/146

    ( )ψ ψ = −32e q qd dT p i i

    Flux linkages

    Currents

    ( )

    ψ ω ϕ γ    ω 

    ψ ω ϕ γ    ω 

    π⎧   ⎛ ⎞= + − −⎜ ⎟⎪ ⎝ ⎠⎪⎨⎪   = − + −⎪⎩

    0

    0

    ˆ cos2

    ˆsin

    ss ud

    s

    sq s u

    s

    u S t

    uS t

    ( )

    ( )  ( )

    ω ϕ ϕ γ    ω ω 

    ω ϕ ϕ γ    

    ω ω 

    π⎧   ⎛ ⎞= + − − −⎜ ⎟⎪ ⎝ ⎠⎪⎨⎪   = − + − −⎪⎩

    0

    0

    ˆcos

    2 j

    ˆcos

     j

    s

    d s u ds d s

    sq s u q

    s q s

    ui S t

    L S

    ui S t

    L S

    Electromagnetic torque II

  • 8/19/2019 Motor Sikron

    68/146

    ( )

    ( )

    ( )

    ψ ψ 

    ϕ ω ϕ γ ϕ  

    ω ω 

    ϕ ω ϕ γ ϕ  

    ω ω 

    = −

    π π⎧ ⎫⎛ ⎞ ⎡ ⎤= + + + − − −⎨ ⎬⎜ ⎟   ⎢ ⎥⎝ ⎠ ⎣ ⎦⎩ ⎭

    π π⎧ ⎫⎛ ⎞ ⎡ ⎤− − + + − − −⎨ ⎬⎜ ⎟   ⎢ ⎥⎝ ⎠ ⎣ ⎦⎩ ⎭

    2

    02

    2

    02

    3

    2

    ˆ3  cos cos 2 2 2

    2 24 j

    ˆ3  cos cos 2 2 2

    2 24 j

    e q qd d

    ss ud d

    s sd

    sq s u q

    s q s

    T p i i

     puS t

    L S

     puS t

    L S

    ( )   ( )   ( ) ( )

    ϕ ϕ 

    ω ω ω ω ω ω 

    π π⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟   ⎡ ⎤⎢ ⎥⎝ ⎠ ⎝ ⎠= + = +⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥   ⎣ ⎦

    ⎢ ⎥⎣ ⎦

    2 2

    1 2 2

    cos cosˆ ˆ3 3 1 12 2

    Im j j j4 4 j

    qds s

    es q sdsds sq s

     pu puT 

    L S L SL S   L S

    ( )ω ϕ = + +1 2ˆ cos 2e e e s T  T T T S t

    The torque is of the form

    The average torque is

    Operator inductances and slip frequency

  • 8/19/2019 Motor Sikron

    69/146

    ( )

    ⎛ ⎞= + −⎜ ⎟

    ⎜ ⎟ ⎛ ⎞⎝ ⎠ +⎜ ⎟⎜ ⎟⎝ ⎠

    ''

    ''

    1 1 1 1 1

    1q q qq

    q

    sL s sL LLs

    ( )

    ⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟

    ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠+ +⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠

    ' '' '

    ' ''

    1 1 1 1 1 1 1 1

    1 1d d dd d d

    d d

    sL s sL LL L Ls s

    T T 

    ( )

    ω ω 

    ω ω ω 

    ⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟

    ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    ' '' '

    ' ''

     j j1 1 1 1 1 1

     j 1 1 j j

    s s

    sd d dd d d

    s sd d

    S S

    L S L LL L LS S

    T T 

    ( )

    ω 

    ω 

    ω 

    ⎛ ⎞⎜ ⎟= + −⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟+

    ⎜ ⎟⎝ ⎠

    ''

    ''

     j1 1 1 1

     j 1 j

    s

    q s q qqs

    q

    S

    L S L LLS

    Direct axis

    Quadrature axis

     =>

     =>

    The average electromagnetic torque

  • 8/19/2019 Motor Sikron

    70/146

    ω ω ω 

    ω ω 

    ω ω 

    ⎢   ⎛ ⎞ ⎛ ⎞= − + −⎢   ⎜ ⎟ ⎜ ⎟⎢   ⎝ ⎠ ⎝ ⎠+ +⎢⎣

    ⎥⎛ ⎞ ⎥+ −⎜ ⎟⎜ ⎟   ⎥+⎝ ⎠ ⎥

    2 ' ''1 2 ' '' '' ''

    ' ''

    ''

    '' ''''

    ˆ3 1 2 1 21 11 18

    1 2  1

    1

    s   d de

    ds   d d ds sd ds sd d

    q

    q q s qs q

     pu   L LT LL L LS T S T  

    S T S T  

    L

    L L S T S T 

    = + +

    + + +

    1 I II IIII II III

    I II III

    2 2 2e p p p

     p p p

     p p p

    T T T T  S S SS S S

    S S S S S S

    ω ω ω 

    = = =I II III' '' ''1 1 1

    ; ; ; p p p

    s d s d s q

    S S S

    T T T 

    consists of three terms similar to the steady-state torque of aninduction machine

    where

     Average torque in asynchronous operation

  • 8/19/2019 Motor Sikron

    71/146

    a) Total torque;Stator resistance is

    taken into account

    b) Total torque;

    Stator resistanceis neglected

    c) Torque caused by the

    damper winding 

    d) Torque caused by thefield winding

    Influence of an external resistance connectedin series with the field winding

  • 8/19/2019 Motor Sikron

    72/146

      Without external resistance With an external resistance

    The pulsating torque

  • 8/19/2019 Motor Sikron

    73/146

    ( ) ( )

    ϕ γ  ω 

    ω ω ω 

    π⎛ ⎞− −⎜ ⎟⎝ ⎠

    ⎡ ⎤= −⎢ ⎥

    ⎢ ⎥⎣ ⎦

    02  j 2 2

     j22  2 2

    ˆ3 1 1e e

     j j4

    usS ts

    es q sds

     puT 

    L S L S

    ω = = −

    2

    2 2̂3 1 1ˆ0 =>4

    se

    qds

     puS T L L

    The reason for the pulsating torque is the saliency of the rotor.

    If 

     At the synchronous speed, this component gives the reluctance torque.

    Its peak value is

    ( ) ( )ω ω = => =2ˆ j j 0s q s edL S L S T  

     Amplitude of the pulsating torqueas a function of slip

  • 8/19/2019 Motor Sikron

    74/146

    Fast and slow starting

    ''

  • 8/19/2019 Motor Sikron

    75/146

    a) Starting time

    b) Starting time   ≈ ≈'100 100 sdT 

    ≈ ≈''

    10 0.5 sdT 

    Starting of a synchronous motor 

  • 8/19/2019 Motor Sikron

    76/146

    Currentmeasurement

    Torque and speedmeasurement

    u Rif f=

    if

    R

    Grid

    2.5 MW synchronous motor 

  • 8/19/2019 Motor Sikron

    77/146

    Rated values: 

    U s = 5500 VI s = 290 A

    P = 2.5 MW f s = 50 Hz

    When starting:

    T shaft = 0Rext = 9 R f 

    4000

    6000Starting of a 2.5 MW synchronous motor 

  • 8/19/2019 Motor Sikron

    78/146

    -8000

    -6000

    -4000

    -2000

    0

    2000

    0 100 200 300 400 500

    Time [ms]

       L   i  n  e  c  u  r  r  e  n   t  s   [   A   ]

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    0 100 200 300 400 500

    Time [ms]

       F   i  e

       l   d  c  u  r  r  e  n   t   [   A   ]

    150000

    200000

    Starting of a 2.5 MW synchronous motor 

  • 8/19/2019 Motor Sikron

    79/146

    -150000

    -100000

    -50000

    0

    50000

    100000

    0 100 200 300 400 500

    Time [ms]

       A

       i  r  -  g  a  p   t  o  r  q  u  e   [   N  m   ]

    0

    10

    20

    30

    40

    50

    60

    70

    0 100 200 300 400 500

    Time [ms]

       R  o   t  a   t   i  o

      n  s  p  e  e   d   [  r  a   d   /  s   ]

    Starting of a 2.5 MW synchronous motor Space vector of stator current

  • 8/19/2019 Motor Sikron

    80/146

    -7500

    -5000

    -2500

    0

    2500

    5000

    7500

    -7500 -5000 -2500 0 2500 5000 7500

    Re [A]

       I  m    [

       A   ]

     Asynchronous operation of a 8.2 MVAsynchronous generator 

  • 8/19/2019 Motor Sikron

    81/146

    Rated values: 

    U s = 6300 V f s = 50 Hz

    I s = 940 AI  f  = 215 A

    S = 8.2 MVA

    Under fault:

    U  f  = 0 V T shaft = T N 

    83

    84

    85

    d   /  s   ]

     Asynchronous operation of a synchronous generator 

  • 8/19/2019 Motor Sikron

    82/146

    75

    76

    77

    78

    79

    80

    81

    82

    0.0 0.5 1.0 1.5 2.0 2.5

    Time [ms]

       R  o   t  a   t   i  o  n  s  p  e  e   d   [  r  a   d

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    0.0 0.5 1.0 1.5 2.0 2.5

    Time [ms]

       R  o   t  o  r  a  n  g   l  e   [  e   l .  r  a   d   ]

     Time [s]

     Asynchronous operation of a synchronous generator 

  • 8/19/2019 Motor Sikron

    83/146

    -300000

    -250000

    -200000

    -150000

    -100000

    -50000

    0

    50000

    0.0 0.5 1.0 1.5 2.0 2.5

    Time [s]

       A   i  r  -  g  a  p   t  o  r  q  u  e   [   N

      m   ]

    3000

    4000

    5000

     Asynchronous operation of a synchronous generator 

  • 8/19/2019 Motor Sikron

    84/146

    -5000

    -4000-3000

    -2000

    -1000

    0

    1000

    2000

    0.0 0.5 1.0 1.5 2.0 2.5

    Time [s]

       L   i  n  e  c  u  r  r  e  n   t   [   A   ]

    -500

    -400

    -300

    -200

    -100

    0

    100

    200

    300400

    500

    0.0 0.5 1.0 1.5 2.0 2.5

    Time [s]

       F   i  e

       l   d  c  u  r  r  e  n   t   [   A   ]

     Asynchronous operation of a synchronous generator 

  • 8/19/2019 Motor Sikron

    85/146

    Operating characteristics

      Terminal voltage 6300. V

      Supply frequency 50.0 Hz  Terminal current 1652.1 A  Peak current 3731.7 A  Power factor -0.4784 Ind.

      Slip-ring voltage 0.00 V  Slip-ring current 196.3 A

      Rotational speed 755.3 1/min  Air-gap torque -99890 Nm

    Equations of synchronous machine usingload angle

  • 8/19/2019 Motor Sikron

    86/146

    Load angle δ   is the angle between the

    excitation voltage vector (on q-axis)

    and stator voltage vector.

    In a balanced stiff three-phase network,the space vector of stator voltage is

    The angle of the rotor presented in stator frame of reference is

    The angular speed of the rotor, its derivative and slip are

    ( )ω ϕ +=  jˆ e   s uts su u

    γ ω ϕ δ    π

    = + + −2

    s ut

    γ δ ω γ δ ω ω δ  ω ω 

    ω ω 

    −= = + = = = = −

    2 2

    2 2

    d d d d d 1 d; ;

    d d d dd ds

    ss s

    St t t tt t

    su

    du j   quγ 

    δ 

     q 

     d

    β

    α

    Equations of synchronous machine usingload angle

  • 8/19/2019 Motor Sikron

    87/146

    δ 

    δ 

    =⎧⎪⎨ =⎪⎩

    ˆ sin

    ˆ cos

    d s

    q s

    u u

    u u

    The equation of motion becomes

    and the voltage equations are

    The dq-components of the balanced three-phase voltage are

    ( )  δ 

    ψ ψ − = +2

    2

    3 d

    2 dd q q d m

     J  p i i T 

     p   t

    ψ δ ω ψ ψ 

    ψ    δ ω ψ ψ 

    ⎧ = + − −⎪⎪⎨⎪ = + + +⎪⎩

    d d

    d dd d

    d d

    dd s d s q q

    qq s q s d d

    u R i

    t t

    u R it t

    Small-signal analysis for synchronous machines

    A l t i l hi i ld i l t d t t Th i l

  • 8/19/2019 Motor Sikron

    88/146

     An electrical machine is seldom in a real steady state. There is alwayssome variation in the shaft torque and supply voltage that causes

    disturbances to the operation of the machine. If the variations are small in

    amplitude, equations can be linearised to the steady state operation point.

    The variables are presented as a sum of a steady state value and

    small variation, for instance

    The voltage equations for the steady-state variables are

    ∆ ω ω ∆ω  = + = +0  ;d d d si i i

    ω ψ 

    ω ψ 

    = −⎧⎪⎨

    = +⎪⎩

    0 0 0

    0 0 0

    d s d s q

    q s q s d

    u R i

    u R i

    Equations for the voltage variations

    F th di t b d i bl th lt ti

  • 8/19/2019 Motor Sikron

    89/146

    For the disturbed variables, the voltage equations are

    Subtracting the two sets of equations and assuming that the products

    of two small variations can be neglected, we get the equations for

    the variations

    ( ) ( )( )

    ( )   ( ) ( )

    ∆ψ ∆ ∆ ω ∆ω ψ ∆ψ  

    ∆ψ 

    ∆ ∆ ω ∆ω ψ ∆ψ  

    ⎧+ = + + − + +⎪⎪

    ⎨⎪

    + = + + + + +⎪⎩

    0 0 0

    0 0 0

    d

    dd

    d

    dd d s d d s q q

    q

    q q s q q s d d

    u u R i it

    u u R i i t

    ∆ψ ∆ ∆ ω ∆ψ ψ ∆ω  

    ∆ψ ∆ ∆ ω ∆ψ ψ ∆ω  

    ⎧= + − −⎪

    ⎪⎨⎪ = + + +⎪⎩

    0

    0

    d

    dd

    d

    dd s d s q q

    qq s q s d d

    u R i

    t

    u R it

    Laplace transformation of the voltage variations

    The equations are linear and easy to Laplace transform

  • 8/19/2019 Motor Sikron

    90/146

    The equations are linear and easy to Laplace transform

    The corresponding flux-linkage equations are

    Combining the equations, we get

    ∆ ∆ ∆ψ ω ∆ψ ψ ∆ω  

    ∆ ∆ ∆ψ ω ∆ψ ψ ∆ω  

    ⎧   = + − −⎪⎨

    = + + +⎪⎩

     

     

    0

    0

    d s d d s q q

    q s q q s d d

    u R i s

    u R i s

    ( ) ( )

    ( )

    ∆ψ ∆ ∆

    ∆ψ ∆

    ⎧   = +⎪⎨

    =⎪⎩

    d d d f  

    q q q

    L s i G s u

    L s i

    ( ) ( ) ( )

    ( ) ( ) ( )

    ∆ ∆ ω ∆ ∆ ψ ∆ω  

    ∆ ∆ ω ∆ ω ∆ ψ ∆ω  

    ⎧   = + − + −⎡ ⎤⎣ ⎦⎪⎨

    ⎡ ⎤= + + + +⎪   ⎣ ⎦⎩

     

     

    0

    0

    d s d d s q q f q

    q s q q s d d s f d

    u R sL s i L s i sG s u

    u R sL s i L s i G s u

    Variation of the torque ( p=1)

    The equation for the varying torque is

  • 8/19/2019 Motor Sikron

    91/146

    The equation for the varying torque is

    The corresponding steady-state torque equation is

    Subtracting the two equations, we get

    ( )ψ ψ − =0 0 0 0 03

    2  d q q d mi i T 

    ∆ω ψ ∆ ∆ψ ψ ∆ ∆ψ ∆⎡ ⎤+ − − − =⎣ ⎦0 0 0 03 d2 d

    d q q d q d d q mi i i i T J  t

    ( )( ) ( )( )  ∆ω 

    ψ ∆ψ ∆ ψ ∆ψ ∆ ∆⎡ ⎤+ + − + + = + +⎣ ⎦0 0 0 0 0

    3 d

    2 dd d q q q q d d m mi i i i J T T  

    t

    Variation of the torque II

    The Laplace transformation of the torque variation is

  • 8/19/2019 Motor Sikron

    92/146

    Substituting the flux-linkage equations, the torque becomes

    ψ ∆ ∆ψ ψ ∆ ∆ψ ∆ ∆ω  ⎡ ⎤+ − − − =⎣ ⎦   0 0 0 0

    3

    2  d q q d q d d q mi i i i T sJ  

    ( ) ( ) ( )

    { }ψ ∆ ψ ∆ ∆ ∆ ∆ω  ⎡ ⎤ ⎡ ⎤− − − + − =

    ⎣ ⎦ ⎣ ⎦

     

    0 0 0 0 0

    3

    2   d d q q q q d d q f mi L s i i L s i i G s u T sJ  

    Variation of the voltage components

    If the machine is connected to a balanced stiff line voltage, the variation

    of the load angle causes a variation in the voltage components

  • 8/19/2019 Motor Sikron

    93/146

    of the load angle causes a variation in the voltage components

    ∆ ∆δ δ ∆δ  

    ∆ ∆δ δ ∆δ  

    = =⎧⎪⎨

    = − = −⎪⎩

    0 0

    0 0

    ˆ cos

    ˆ sin

    d q s

    q d s

    u u u

    u u u

    ( )∆ δ ∆δ δ ∆δ δ ∆δ  

    ∆δ ∆δ ∆δ  

    + = + = +

    = + ≈ +

    0 0 0 0

    0 0 0 0

    ˆ ˆ ˆsin sin cos cos sin

      cos sin

    d d s s s

    d q d q

    u u u u u

    u u u u

    ( )∆ δ ∆δ δ ∆δ δ ∆δ  

    ∆δ ∆δ ∆δ  

    + = + = −

    = − ≈ −

    0 0 0 0

    0 0 0 0

    ˆ ˆ ˆcos cos cos sin sin

      cos sin

    q q s s s

    q d q d

    u u u u u

    u u u u

    Forced variations of a synchronous machine

    The variations are often periodic. This is the case, for instance, for the

    shaft torque of a diesel driven generator For sinusoidal disturbance

  • 8/19/2019 Motor Sikron

    94/146

    shaft torque of a diesel driven generator. For sinusoidal disturbance

    ( )   ( )λ ϕ ∆ ∆ ∆   += + =  j0 ˆRe where e   idt

    d d d d di i i i i

    ( )∆ λ ϕ = + +0 ˆ cosm m m T  T T T t

    If the sinusoidal disturbance in the torque is small, the machine behaves

    linearly and the other parameters will also vary sinusoidally. We can use

    phasor variables, for instance

    The Laplace transformed equations derived previously can be changesto phasor equations by replacing the Laplace variable s  with thefrequency jλ . The variation of the rotation speed can be written

    γ δ δ ω ω ∆ω ω ω ∆ω λ∆δ  = = + = − = =

    d d d  => => j

    d d ds s

    t t t

    Voltages and flux linkages

    The voltage equations, assuming that u f 

     is constant and Rs

    =0, are

  • 8/19/2019 Motor Sikron

    95/146

    f

    The steady-state flux linkages (Rs=0) and voltages are related as

    ( ) ( )

    ( ) ( )

    ∆ λ λ ∆ ω λ ∆ ψ λ∆δ  

    ∆ λ λ ∆ ω λ ∆ ψ λ∆δ  

    ⎧   = − −⎪⎨

    = + +⎪⎩

      0

      0

     j j j j

     j j j j

    d d d s q q q

    q q q s d d d

    u L i L i

    u L i L i

    ψ ω 

    ψ ω 

    ⎧ =⎪⎪⎨⎪   = −⎪⎩

    00

    00

    qd

    s

    dq

    s

    u

    u

    ∆ ∆δ 

    ∆ ∆δ 

    =⎧⎪⎨

    = −⎪⎩

    0

    0

    d q

    q d

    u u

    u u

    On the other hand

    Current phasor 

    Combining the three previous equations

    ( ) ( )∆δ λ λ ∆ λ ∆ λ∆δ⎧ 0j j j jduL i L i

  • 8/19/2019 Motor Sikron

    96/146

    ( ) ( )

    ( ) ( )

    ∆δ λ λ ∆ ω λ ∆ λ∆δ  ω 

    ∆δ λ λ ∆ ω λ ∆ λ∆δ  ω 

    ⎧ = − +⎪⎪⎨⎪− = + +⎪

    00

    00

     j j j j

     j j j j

    dq d d s q q

    s

    qd q q s d d

    s

    uu L i L i

    uu L i L i

    ( ) ( )

    ( ) ( )

    λ ∆δ λ λ ∆ ω λ ∆

    ω 

    λ ∆δ ω λ ∆ λ λ ∆

    ω 

    ⎧⎛ ⎞− = −⎪⎜ ⎟

    ⎝ ⎠⎪⎨

    ⎛ ⎞⎪− + =⎜ ⎟⎪

    ⎝ ⎠⎩

    00

    00

     j j j j

     j  j +j j

    dq d d s q q

    s

    qd s d d q qs

    uu L i L i

    uu L i L i

    =>

    From which we can solve the currents

    ( )

    ( )

    ∆ ∆δ ω λ 

    ∆ ∆δ ω λ 

    ⎧ = −⎪⎪⎨⎪   = −⎪⎩

     j

     j

    dd

    s d

    qq

    s q

    uiL

    ui

    L

    Equation of motion in phasor form

    The equation of motion in phasor form is

    3

  • 8/19/2019 Motor Sikron

    97/146

     After substituting the fluxes and currents

    ( )

    ( )

    ∆ ∆δ ω λ 

    ∆ ∆δ ω λ 

    ⎧ =⎪⎪⎨

    ⎪   = −⎪⎩

     j

     j

    dd

    s d

    qq

    s q

    ui

    L

    uiL

    ( ) ( ){ }ψ λ ∆ ψ λ ∆ ∆ λ ∆δ  ⎡ ⎤ ⎡ ⎤− − − − = −⎣ ⎦ ⎣ ⎦2

    0 0 0 03

     j j2

      d d q q q q d d mi L i i L i T J  

    ( ) ( )  ∆δ ∆ λ ∆δ  

    ω ω λ ω λ  

    ⎡ ⎤⎢ ⎥− + − − − = −⎢ ⎥⎣ ⎦

    2 20 20

    0 0 0 03

    2 j j

    q   dq d d q m

    s s q s d

    u   uu i u i T J  

    L L

    ψ ω 

    ψ ω 

    ⎧=⎪

    ⎪⎨

    ⎪   = −⎪⎩

    00

    00

    qd

    s

    dq

    s

    u

    u

    we get

    Equation of motion in phasor form II

    The term ( )−

    0 0 0 0

    3

    2   q d d qu i u i

  • 8/19/2019 Motor Sikron

    98/146

    can be expressed with the aid of the steady-state reactive power 

    The torque equation becomes

    ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    δ δ 

    δ δ φ δ δ φ  

    δ φ δ δ φ δ  

    − = −

    ⎡ ⎤= + − +⎣ ⎦

    = + − +⎡ ⎤⎣ ⎦

    0 0 0 0 0 0 0 0

    0 0 0 0

    0 0 0 0

    3 3ˆ ˆcos sin

    2 23 ˆ ˆˆ ˆ  cos sin sin cos23 ˆˆ  sin cos cos sin

    q d d q s d s q

    s s s s

    s s

    u i u i u i u i

    u i u i

    u i

    ( )δ φ δ φ  = + − = =⎡ ⎤⎣ ⎦0 0 03 3ˆ ˆˆ ˆ  sin sin2 2

    s s s su i u i Q

    ( ) ( )λ ∆δ ∆

    ω    ω λ ω λ  

    ⎡ ⎤⎢ ⎥+ − − =⎢ ⎥⎣ ⎦

    2 202 0 0

     2 2

    3 3

    2 2 j j

    q   dm

    s   s q s d

    uQ u J T 

    L L

    To shorten the notation, a ‘complex synchronisation coefficient’

    is defined

    Complex synchronisation coefficient

  • 8/19/2019 Motor Sikron

    99/146

    ( ) ( )( ) ( )

    λ λ λ ω ω λ ω λ  

    ⎡ ⎤+ = − − −⎢ ⎥

    ⎢ ⎥⎣ ⎦

    2 20 0

    01 3 3

     j2 j 2 j

    q   ds   d

    s s q s   d

    u   uK K Q

    L L

    and the equation of motion becomes

    ( ) ( )λ λ λ λ ∆δ ∆⎡ ⎤− + = −⎣ ⎦2

      js d mK J K T  

    where K d represents damping and K s∆δ  is the synchronising torque.

    K d

     and K s

     are frequency-dependent but their values can be

    calculated for a certain excitation frequency.

    Complex synchronisation coefficient II

    ( ) ( )δ δ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= − + +⎨ ⎬ ⎨ ⎬

    2 22 200 02 2

    ˆ ˆ3 1 3 1cos Re sin Res ss Q u uK

  • 8/19/2019 Motor Sikron

    100/146

    ( ) ( )δ δ 

    ω λ λ ω ω ⎧ ⎫   ⎧ ⎫⎪ ⎪ ⎪ ⎪ + +⎨ ⎬ ⎨ ⎬

    ⎪ ⎪⎪ ⎪   ⎩ ⎭⎩ ⎭0 02 2

    cos Re sin Re2 j 2 j

    ss q ds s

    QK L L

    ( ) ( )δ δ λ λ λ ω 

    ⎡ ⎤⎧ ⎫   ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪   ⎩ ⎭⎩ ⎭⎣ ⎦

    2

    2 20 02

    ˆ3 1 1cos Im sin Im2 j j

    sdq ds

    uK  L L

    In normal operation,

    This means that the properties of the damper winding on the

    quadrature axis are important from the point of view of damping.

    δ δ δ < >>0 2 2

    0 0 030 => cos sin

    Numerical study of a synchronous generator using small forced vibrations

  • 8/19/2019 Motor Sikron

    101/146

    Rated values S = 8.2 MVA

     f s = 50 HzU 

    s

     = 6300 VI s = 750 A

    cosϕ  = 0.80I  f  = 215 A

    Ω Ω Ω λ  = +0 ˆ cosm m m   t

    Forced oscil lation of the mechanical rotation

    speed

    100

    Forced oscil lation of speed and the resultingoscillation in air-gap torque (λ  = 50 Hz)

  • 8/19/2019 Motor Sikron

    102/146

    0

    20

    40

    60

    80

    300 350 400 450 500

    Time [ms]

       S  p

      e  e   d   [  r  a   d   /  s   ]

    -140000

    -120000-100000

    -80000

    -60000

    -40000

    -20000

    0

    300 350 400 450 500

    Time [ms]

       T

      o  r  q  u  e   [   N  m   ]

    Power transfer in the forced oscillation

    Variation of speed: λ λ Ω Ω λ =ˆ cos   t

  • 8/19/2019 Motor Sikron

    103/146

    Mass of inertia:

    Viscous damping:

    Spring constant:

    Total torque:

    Instantaneous power:

    λ 

    ϕ Ω λ λ = = −

    2

     J 2

    d ˆ sind

    T J J tt

    λ λ λ 

    Ω Ω λ λ Ω λ λ  

    λ = − + +tot

    ˆˆ ˆsin cos sinT J t d t k t

    λ 

    λ λ λ λ 

    Ω 

    Ω Ω λ Ω λ λ Ω λ λ  

    λ 

    =

    ⎛ ⎞= − + +⎜ ⎟

    ⎝ ⎠

    tot

    ˆˆ ˆ ˆ  cos sin cos sin

    P T 

    t J t d t k t

    λ 

    ϕ Ω λ = =d

    d ˆ cosd

    T d d tt

    λ Ω 

    ϕ λ λ = =

    k

    ˆ

    sinT k k t

     Average power of the forced oscillation

    100

    Instantaneous harmonic power (λ  = 50 Hz)

  • 8/19/2019 Motor Sikron

    104/146

    -150

    -100

    -50

    0

    50

    100

    300 350 400 450 500Time [ms]

       H  a  r  m  o  n   i  c  p

      o  w  e  r   [   k   W   ]

    λ λ λ λ 

    λ 

    Ω Ω λ Ω λ λ Ω λ λ  

    λ 

    Ω 

    ⎛ ⎞= − + +⎜ ⎟

    − ⎝ ⎠

    =

    ∫ave

    2

    ˆ1 ˆ ˆ ˆcos sin cos sin d

    1 ˆ 2

    b

    a

    t

    ab t

    P t J t d t k t t

    t t

    d

    Is the harmonic power always negative,i.e. is the damping always positive?

    If th h i i ti 12

  • 8/19/2019 Motor Sikron

    105/146

    If the harmonic power is negative,

    the machine takes mechanical

    power from the shaft forcing the

    oscillation. There is damping thattries to reduce the oscillation.

    If the harmonic power is positive,

    the system tends to increase the

    oscillation and the system may beunstable.

    From the harmonic power, we can

    calculate the damping coefficient

    for the system, which should bepositive.

    -2

    0

    2

    4

    6

    8

    10

    12

    0 20 40 60 80 100

    Excitation frequency [Hz]

       D  a  m  p   i  n

      g  c  o  e   f   f   i  c   i  e  n   t   [   k   N  m  s   ]

    Damping coefficient after reducing theresistance of the stator winding to zero

    12

  • 8/19/2019 Motor Sikron

    106/146

    -2

    0

    2

    4

    6

    8

    10

    0 20 40 60 80 100

    Excitation frequency [Hz]

       D  a  m  p   i  n  g

      c  o  e   f   f   i  c   i  e  n   t   [   k

       N  m  s   ]

    Mechanical model for torsional vibrationsof a diesel-generator 

  • 8/19/2019 Motor Sikron

    107/146

    Θ Θ Θ Θ  Θ Θ 

    Θ Θ Θ Θ  

    + −−

    + − −

    − −+ + +

    + − + − = 

    2 n n 1 n n 1n nn n n n 12

    n n n 1 n 1 n n 1 n

    ( ) ( )

      ( ) ( ) ( )

    d dd d J B C C dt dt dtdt

    K K T t

    Equation of motion for a mass of inertia

    Synchronousgenerator 

    Coupling Diesel engine

    Torsional vibrations

    Θ

     2d

    Explanations for the terms in the torque balance equation

    Inertia torque of mass

  • 8/19/2019 Motor Sikron

    108/146

    Θ 2

    d

    dn

    n J t

    Inertia torque of mass n

    Mechanical friction torque acting on mass n 

    Damping torque component in the shaft

    between masses n and n+1

    Spring constant of the shaft betweenmasses n and n+1

     Active torque on a mass of inertia.Electromagnetic torque in the electrical machine.Piston torque from a cylinder of the diesel engine.

    Θ Θ  +− 1d( )

    dn n

    nC t

    Θ dd

    nnB t

     

    ( )nT t

    Θ Θ  +− 1( )n n nK 

    80

    100

    Torque produced by one of the 18 cylinders

  • 8/19/2019 Motor Sikron

    109/146

    Fundamental frequency is 6.25 Hz

    18 cylinders => largest shaft-torque harmonic at 112.5 Hz

    -60

    -40

    -20

    0

    20

    40

    60

    0.00 0.05 0.10 0.15 0.20

    Time [s]

       T  o  r  q  u  e   [   k

       N  m   ]

    Natural vibration frequencies and modes

    2d d

    Equation of motion in matrix form

  • 8/19/2019 Motor Sikron

    110/146

    Θ Θ Θ Θ  ⎡ ⎤+ + = ⎣ ⎦

    2T

    1, 2, 3,2

    d d ; ...,

    dd  N 

    tt 

     J C K   Τ

    Natural vibration modes and frequencies; trial function   λ e   t  θ

    λ λ λ λ λ λ  λ λ + + + + =2

    22

    d de e e e e e 0

    dd

    t t t t t t

    ttθ θ θ θ θ θ

     J C K J C K

    Non-zero solutions for θ possible if λ   satisfies the characteristic

    equation

    ( )λ λ + + =2det 0 J C K

    λ λ ⎡ ⎤+ + =⎣ ⎦2 0 J C K=>

    Natural frequencies and modes

    The roots of the characteristic equation are typically complex numbersλ α ω= + ji i i

  • 8/19/2019 Motor Sikron

    111/146

    ω i is a natural frequency of the mechanical system, α i is associated with

    the damping of a vibration mode i. All α i should have negative values,otherwise the system is unstable.

    Typically, the damping terms are so small that they can be neglected

    if one is only interested in the natural frequencies. In such a case,matrix C is left out of the analysis.

    λ α ω = + ji i i

    Results from the combined electromechanical model

  • 8/19/2019 Motor Sikron

    112/146

    Rated values 

    S = 8.2 MVA f s = 50 Hz

    U s = 6300 V

    I s = 750 Acosϕ  = 0.80I  f  = 215 A

    400

    450

    500

    Torque versus torsion angle characteristicfor the non-linear coupling

  • 8/19/2019 Motor Sikron

    113/146

    Coupling: Rated torque 110 kNm; Stands 330 kNm

    The mass of inertia of the synchronous generator is about twice as

    large as the mass of inertia of the diesel engine.

    0

    50

    100

    150

    200

    250

    300

    350

    0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

    Torsion angle [rad]

       T  o  r  q  u  e   [   k   N  m   ]

    Two-phase short circuit in the line

  • 8/19/2019 Motor Sikron

    114/146

    Current and voltagemeasurement

    Torque and speedmeasurement

    if

    Grid

    uf

    Z

    Diesel engine

    0

    25005000

    7500

    10000

      o   l   t  a  g  e

       [   V   ]

    Voltages and currents at the terminals of the machine

  • 8/19/2019 Motor Sikron

    115/146

    -10000-7500

    -5000

    -2500

    0

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       T  e  r  m   i  n  a   l   v

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       T  e  r

      m   i  n  a   l   c  u  r  r  e  n   t   [   A   ]

    600

    700

    800

    900

    1000

      c  u  r  r  e  n   t   [   A   ]

    Field-winding current and the torques

  • 8/19/2019 Motor Sikron

    116/146

    0

    100200

    300

    400

    500

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       M  a  g  n  e   t   i  s  a   t   i  o  n

    -800

    -600

    -400

    -200

    0

    200400

    600

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       T  o  r  q  u  e   [   k   N  m   ]

     Air gap Coupling

    Synchronisation trial at phase opposition

  • 8/19/2019 Motor Sikron

    117/146

    Current and voltagemeasurement

    Torque and speedmeasurement

    if

    Grid

    uf

    Z

    Diesel engine

    0

    25005000

    7500

    10000

    v  o   l   t  a  g  e

       [   V   ]

    Voltages and currents at the terminals of the machine

  • 8/19/2019 Motor Sikron

    118/146

    -10000-7500

    -5000

    -2500

    0

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       T  e  r  m   i  n  a   l   v

    -20000

    -15000

    -10000

    -5000

    0

    5000

    10000

    15000

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       T  e  r

      m   i  n  a   l   c  u  r  r  e  n   t   [   A   ]

    1000

    12001400

    16001800

    2000

    n  c  u  r  r  e

      n   t   [   A   ]

    Field-winding current and the torques

  • 8/19/2019 Motor Sikron

    119/146

    -200

    0200

    400600

    800

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       M  a  g

      n  e   t   i  s  a   t   i  o  n

    -1500

    -1000

    -500

    0

    500

    1000

    0 20 40 60 80 100 120 140 160 180 200 220

    Time [ms]

       T  o  r  q  u  e   [   k   N  m   ]

     Air gap Coupling

     A complete description of the electromagnetic field requires5 field variables ( E,  D,  H , B,  J ).

    Magnetic field analysis for electrical machines

  • 8/19/2019 Motor Sikron

    120/146

    ( , , , , J)

    Maxwell’s equations Material conditions

     For the frequencies considered,

    In addition, we need the boundary conditions for the fields.

     ρ ∇ ⋅ =

    ∇ ⋅ =

    ∂∇ × = −

    ∂∂

    ∇ × = +∂

    0

    t

    t

     D

    B

    B E

     D H J 

    ε 

    σ 

    µ 

    =

    =

    =

     D E

     J E

    B H 

    ≈∂ 0t

     D

    Vector potential  A and scalar potential φ 

    ∇⎧ H J

    ∇ × = A B   φ ∂

    = − − ∇

    ∂t

     A EDefinitions:

  • 8/19/2019 Motor Sikron

    121/146

    =>

    The 5 original field variables and their 15 components have

    been compressed to 2 potentials with altogether 4 components.

    µ 

    ∇ × =⎧⎪

    =⎨

    ⎪ = ∇ ×⎩

     H J 

    B H 

    B A   µ 

    ⎛ ⎞∇ × ∇ × =

    ⎜ ⎟⎝ ⎠

    1 A J 

    σ 

    φ 

    =⎧⎪

    ∂⎨= − − ∇⎪ ∂⎩   t

     J E

     A E

    =>   σ σ φ ∂

    = − − ∇

    ∂t

     A J 

    σ σ φ 

    µ 

    ⎛ ⎞   ∂∇ × ∇ × + + ∇ =⎜ ⎟

    ∂⎝ ⎠

    10

    t

     A A=>

    Boundary and symmetry conditions

    Vector potential on the outer surfaces of a solution region is

    typically ∂= =∂

    0   or 0 An

     A A

  • 8/19/2019 Motor Sikron

    122/146

     According to the first condition, the flux through the surface is

    zero. The second condition states that the flux density isorthogonal to the surface.

    = ± 21 A A

     A

    Pole 2

    Pole 1

    − A

    = A   0

    = A   0

    In the analysis of electricalmachines, symmetry of the field is

    often utilised. The vector potential

    is forced to be periodic on the

    boundaries of the solution sector.

     A

    Ferromagnetic non-linearity of iron

    Iron is used to increase the magnetic flux of a machine. Its

    permeability is a very complicated function of flux density.=> The field equations become non-linear 

  • 8/19/2019 Motor Sikron

    123/146

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    -1500 -1000 -500 0 500 1000 1500

    H [A/m]

       B

       [   T   ]

     Iron sample in alternating field Field in the yoke of electrical machine

    Modelling motion

    Usually, there is a slotting

    on both stator and rotor surfaces, and there is no

    reference frame in which

  • 8/19/2019 Motor Sikron

    124/146

    the motion would not affect

    the material properties.

    The stator and rotor fieldsmust be solved in their own

    reference frames and

    forced to be continuous

    over the air gap.

    σ σ φ µ 

    ⎛ ⎞   ∂∇ × ∇ × + + ∇ =⎜ ⎟ ∂⎝ ⎠

    10

    t

     A A

    σ σ φ µ 

    ⎛ ⎞   ∂∇ × ∇ × + + ∇ =⎜ ⎟ ∂⎝ ⎠

    1 ' ' ' 0'   t

     A' A'

    In air gap:   = A A'

    Simplification I – Two-dimensional field

    The solution of a time- and motion-dependent, non-linear,

    three-dimensional magnetic field requires too muchcomputation power and time.

  • 8/19/2019 Motor Sikron

    125/146

    The field is usually assumed to be two-dimensional,

    independent from the coordinate parallel to shaft of themachine (z-direction).

    The solution task is reduced significantly as the vector 

    potential has only one component and the scalar potential is asimple, linear function of the coordinate parallel to the shaft.

    ( )φ φ 

    ⎧⎪   =

    ⎪ =⎨⎪⎪   = − +⎩

    0

    ( , , )

    ( , , )z

    z

     A x y t

     J x y t

    u tz

    l

     A e

     J e=>

      ( )σ σ 

    µ 

    ∂⎡ ⎤−∇ ⋅ ∇ + =⎢ ⎥ ∂⎣ ⎦

    ( , , )1( , , )

      u t A x y t A x y t

    t l

    Circuit equations

    Electrical machines are typically supplied from voltage

    sources. The voltage induced in a winding should beintegrated along the winding

  • 8/19/2019 Motor Sikron

    126/146