mozaic trigger system for transverse momentum physics

34
Mozaic trigger system for transverse momentum physics G.Vesztergombi, A.Agocs, B.Bozsogi, A.Fulop CBM Collaboration Meeting GSI – Dubna 13-18 Oct, 2008

Upload: zamora

Post on 11-Jan-2016

73 views

Category:

Documents


1 download

DESCRIPTION

Mozaic trigger system for transverse momentum physics. G.Vesztergombi , A.Agocs, B.Bozsogi, A.Fulop CBM Collaboration Meeting GSI – Dubna 13-18 Oct , 200 8. Motivation for new measurements below = 20 GeV. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mozaic trigger system for transverse momentum physics

Mozaic trigger system for transverse momentum physics

G.Vesztergombi, A.Agocs, B.Bozsogi, A.Fulop

CBM Collaboration Meeting

GSI – Dubna13-18 Oct, 2008

Page 2: Mozaic trigger system for transverse momentum physics

Motivation for new measurements below = 20 GeVs

Practically no high or medium Pt data between Einc = 24 and 200 GeV

Mysterious transition around 80-90 GeV: convex versus concave spectra

Energy threshold for Jet-quenching?

Emergence of Cronin-effect in pA interactions is completely unknown

energy dependencecentrality dependenceparticle type dependenceparticle correlations

Production of Upsilon (9.5 GeV) particles near the threshold.

Page 3: Mozaic trigger system for transverse momentum physics

NA49 (CERN) results at 158FODS (IHEP) at 70 GeV

Beier (1978)

Page 4: Mozaic trigger system for transverse momentum physics

Y production

Due to high mass ( 9.5 GeV/c2) two high pT particle in leptonic decay:

pT > 3 GeV/c

High selectivity for high pT pair even without PID

Page 5: Mozaic trigger system for transverse momentum physics

Benchmark NA49 pp at E = 158 GeV 30 events/spill Events Energy > 3 GeV/c > 4 GeV/c > 5 GeV/c

2 106 158 100 1 0.01Estimates with the assumption 1011 proton/sec 109 interaction/sec

1 day=1014 158 5 109 5 107 5 105

Suppression 10-1 10-2 10-3

1 day=1014 90 5 108 5 105 500

20 day=2 1015 90 1010 107 104

20 day=2 1015 45 107 10 0

Suppression 10-3 10-6 10-10

For symmetric nuclei max energy 90/2 assumed

CBM Perspectives

Page 6: Mozaic trigger system for transverse momentum physics

Special requirements for Y-> e+e- and high pT

Extremely high intensity - Pile-up

Segmented multi-target - Relaxed vertex precision

Straight tracks - High momentum tracks

DREAM: 109 interactions/sec

Page 7: Mozaic trigger system for transverse momentum physics

High transverse momentum means high 3-momentum

Illustration for mid-rapidity at sqrt(s) 7 and 14 GeV

( )ELab

( )( ) =plong

ptrans 0 0 1

0

0

22Tpm

0

longp >= 0Lab

E >= 22Tpm

ptrans

Beam ptrans Lab

E

25 55525 2 5

5 22

Page 8: Mozaic trigger system for transverse momentum physics

z [cm]

x,y

[cm

]

Px=Py = 1 GeV/c; Pz= 5 GeV/c

Px=Py= 3 GeV/c Pz = 10 GeV/c

High ( > 5 GeV/c ) momentum Straight track

Page 9: Mozaic trigger system for transverse momentum physics

“Straight” tracks from main vertex

1-dim Hough – transform:- histogram

N(i) in bins

M(i) = N(i) + N(i+1 ) in 2bins

Correct for bin boundary crossing:

Tracks with pxz > pmin remains within the pminwedge

SELECTION on pxz

Page 10: Mozaic trigger system for transverse momentum physics

i

i+1

j

j+1

3 dimensional scheme

k=1

k=2

k=3

Mosaic cells in plane “k” : M(i,j,k)

(i,j) Corridor contains: M(i,j,k), M(i,j+1,k), M(i+1,j,k), M(i+1,j+1,k) k=1,2,3

Page 11: Mozaic trigger system for transverse momentum physics

MAPS vs Hybrid

Vertex resolution: dz = 1 mm, dx,dy= 0.05 mm

High intensity: radiation hard

Practical 4+ 2 + 3 = 9 planes ( 4 Hybrids + 5 strips)

Selectivity depends on the availability of TOF information

Page 12: Mozaic trigger system for transverse momentum physics

s = sqrt(XX*XX+YY*YY) - delta

delta

Sagitta:

10-20 cm track sections are practically straight fractals

(XX,YY,ZZ)

4 hybrids 2 + 3 strips

2 4 6Basic planes

* * **

** **

*

Silicon planes

Page 13: Mozaic trigger system for transverse momentum physics

Basic planes: #2 = (x2,y2,z2) pixel , #4 = (x4,y4,z4) pixel, #6 = (x6,z6) strip

Parallel processing: CORRIDOR # corNum

Straight tracking in #2 and #4 planes in space => (mx,bx) and (my,by) Approximation: starting direction is given by (mx,my)

Separate track matching in xand y for planes 5-9

Matching in #1 and #3 pixel planes in space

TUBE definition:

x-tube: xi = mx*(zi-z2) +bx +parabol(x6,z6,zi) +/- deltaxiy-tube: yi = my*(zi-z2) +by +/- deltayi

New algorithm

Page 14: Mozaic trigger system for transverse momentum physics

4-5 GeV/c

pT > 1.0

Page 15: Mozaic trigger system for transverse momentum physics

7-8 GeV/c

pT > 1.0

Page 16: Mozaic trigger system for transverse momentum physics

9-10 GeV/c

pT > 1.0

Page 17: Mozaic trigger system for transverse momentum physics

15-17 GeV/c

pT > 2.5

Page 18: Mozaic trigger system for transverse momentum physics

20-40 GeV/c

pT > 2.5

Page 19: Mozaic trigger system for transverse momentum physics

Acceptance

Npoint=9

+ -

pxz

pT

Page 20: Mozaic trigger system for transverse momentum physics

Selecting only tracks with pT>2.5 GeV/c

Npoint=9

Page 21: Mozaic trigger system for transverse momentum physics

PileupFixed pT-cut at 1.8GeV/c

No pileup : Tracks with ptin > 1.8: 1136 ptin < 1.8 but ptrec > 1.8: 430

Npileup = 10 : Tracks with ptin > 1.8: 1136 FAKE and ptrec error : 1 + 430

Npileup = 100 : Tracks with ptin > 1.8: 1136 FAKE and ptrec error : 28 + 430

Npileup = 1000 : Tracks with ptin > 1.8: 1136 FAKE and ptrec error : 464 + 430

No LOSS of GOOD tracks due to pileup (exhaustive search!!!)

Number of FAKE triggers even in 1000-fold pileup is < 50 %

Page 22: Mozaic trigger system for transverse momentum physics

Pileup cont.

pT dependence: No pileup 1000-fold pileup

1.8 GeV/c 430/1136 464+430/1136

2.0 GeV/c 312/704 363+312/704

2.2 GeV/c 208/453 306+208/453

2.4 GeV/c 151/301 265+151/301

2.6 GeV/c 103/213 205+103/213

3.0 GeV/c 52/154 168+ 52/154

The FAKE/GOOD ratio is moderately increasing with pT

Page 23: Mozaic trigger system for transverse momentum physics

Deviations within the tubedx Charge*dx

Page 24: Mozaic trigger system for transverse momentum physics

Y-deviations

Page 25: Mozaic trigger system for transverse momentum physics

Difference between exact direction and mx

pT > 1.0 GeV/c pT > 2.5 GeV/cpxz

Page 26: Mozaic trigger system for transverse momentum physics

DAQ scheme

Page 27: Mozaic trigger system for transverse momentum physics

Mozaic DAQ systemTwo separate systems:

PRETRACKING network: Pixel [#2 , #4] + Strip [#6x]

TRACK-QUALITY TUBE network:Pixel [ #1, #3] + Strip[#5x, #5y, #6y, #7x, #7y, #8x, #8y, #9x, #9y]

In each network parallel CORRIDOR processors: CorID =corNUMNumber of CORRIDOR processors: ndx*ndy

Data select their routes according to plane number and corNUM

In plane „zi” track-hit „xi,yi” calculates its corridor address:

corNum = idx*ndy + idy

Page 28: Mozaic trigger system for transverse momentum physics

Corridor processors

OLD system: consecutive cycling on all „planes”

If only 2 points per plane: number of cycles = 2(4+2*5) = 214 = 16384

NEW system: cycling only on 3 „planes” (for pixels x and y has common cycle)

If only 2 points per plane: number of cycles = 2(2+1) = 23 = 8

The PRETRACKING is producing a list containing:

corNUM, x1,x3,x5,x7,x8,x9, y1,y3,y5,y6,y7,y8,y9

There is NO PROCESSING TIME in the TRACK-QUALITY TUBE network becauseIt is only an ASSOCIATIVE memory which provides YES/NO.

The gain in processing time (if only 2 points per plane): 211 = 2048-fold

Page 29: Mozaic trigger system for transverse momentum physics

Mozaic trigger for low pT

Page 30: Mozaic trigger system for transverse momentum physics

Silicon tracker in FAIR-CBM experiment

Special trigger for high intensity 1O9 interaction/sec in pp,pA reactions

SIMULATION: 4 hybrid(pixel) + 5 strip = 9 silicon planes

“Mosaic” front-end structure (dx,dy) regions in M(i,j,k) buffers.

Exhaustive search for all tracks in (pmin,pmax) corridors.

TEST RESULT: 1000-fold PILEUP in pC interactions

Corridor-width optimized for tracks pT > 3 GeV/c

Algorithm efficiency: 100 %, with some multiple solutions picking up some random points, giving practically the same track-parameters

Highly parallel algorithm is well adapted for processor clusters.

Can be adapted for AA to reconstruct ALL particles with low pT corridors

Page 31: Mozaic trigger system for transverse momentum physics

END

Page 32: Mozaic trigger system for transverse momentum physics

For discussion:

Page 33: Mozaic trigger system for transverse momentum physics

Physical mosaic cells can be different from logical cells.

Hybrid (pixel) : logical cells may be created by softwareStrip planes: hardware should be harmonized

Corridors can be filled by hardware or software

Number of processor can be less than number of corridors

Corridor’s processing speed can be very fast if they are narrow

Corridors can be arranged hierarchically for processing order

Page 34: Mozaic trigger system for transverse momentum physics

0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 2 0 00 3 22 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 04 0 48 73 44 7 1 0 0 0 1 1 0 0 0 0 1 0 0 00 0 34 81 90 81 35 0 0 0 0 0 0 0 1 0 1 0 0 00 2 28 83 92 87 89 81 25 0 1 0 2 0 1 0 0 0 1 00 0 17 69 93 89 91 86 87 78 16 1 1 0 0 1 0 0 0 00 0 4 40 86 90 90 85 91 87 86 63 13 1 0 1 0 0 1 10 1 1 18 72 94 91 90 89 85 87 87 83 42 9 0 1 0 1 00 0 0 9 52 88 90 88 85 86 93 93 91 89 77 50 8 0 0 30 0 1 0 28 72 88 90 90 91 85 90 86 91 90 84 80 37 0 00 0 0 0 8 51 74 92 92 87 91 86 91 95 90 83 93 88 75 260 0 0 1 1 37 62 89 87 87 88 84 85 92 96 92 91 90 90 89

Plong [GeV/c]

Ptrans [G

eV/c]

10 20 30 40 50

7+2 Points efficiency

2

0

4

6