mrs dec 2010 steel with copper precipitates dierk raabe

29
O. Dmitrieva, P.-P. Choi, T. Hickel, N. Tillack, D. Ponge, J. Neugebauer, D. Raabe Düsseldorf, Germany WWW.MPIE.DE [email protected] Thanks to: DFG MRS Fall Conference 30. November 2010 Dierk Raabe Copper nanoprecipitates in steel studied by atom probe tomography and ab initio based Monte Carlo simulation

Upload: dierk-raabe

Post on 23-Jun-2015

311 views

Category:

Documents


2 download

DESCRIPTION

Copper nanoprecipitates in steel studied by atom probe tomography and ab initio based Monte Carlo simulation Authors: O. Dmitrieva, P.-P. Choi, T. Hickel, N. Tillack, D. Ponge, J. Neugebauer, D. Raabe MRS Fall Meeting 2010

TRANSCRIPT

Page 1: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

O. Dmitrieva, P.-P. Choi, T. Hickel, N. Tillack, D. Ponge, J. Neugebauer, D. Raabe

Düsseldorf, [email protected]

Thanks to: DFG

MRS Fall Conference 30. November 2010 Dierk Raabe

Copper nanoprecipitates in steel studied by atom probe tomography and ab initio based Monte Carlo simulation

Page 2: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Motivation: Electromobility

Fe-3%Si-1% (2%) Cu model system

Fe-3%Si-Cu engineering alloy

Simulations (DFT + kMC, model system)

Conclusions and challenges

Overview

Raabe: Adv. Mater. 14 (2002), Roters et al. Acta Mater.58 (2010)

Page 3: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

3

Avoid use of permanent magnets and use instead electrical magnets in synchronous electrical engines

High strength soft magnetic steels in car engines reduce CO2 emission

www.mpie.de

Motivation

Page 4: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

4

Electrical steels for electrical cars

Page 5: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

5

Electrical steels

Standard soft magnetic steel: based on

Fe3 wt. % Si

ferritic phase, coarse grains

soft-magnetic properties

Improvement of the mechanical strength!

precipitation hardening: 1-2 wt. % Cu, aging at 450°C

Page 6: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

6

Nano-precipitates in soft magnetic Fe-3%Si steels

size Cu precipitates (nm)

{JP 2004 339603}

15 nm

magneti

c lo

ss (

W/k

g)

Fe-Si steel with Cu nano-precipitates

nanoparticles too small for Bloch-wall interaction but effective as dislocation obstacles

mechanically very strong soft magnets for motors

{Jä

nic

he e

t al.,

Werk

stoff

kunde S

tahl}

20 nm

0,2 µm0,1 µm 0,3 µm

Page 7: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Overview

www.mpie.de

Motivation: Electromobility

Fe-3%Si-1% (2%) Cu model system

Fe-3%Si-Cu engineering alloy

Simulations (DFT + kMC, model system)

Conclusions and challenges

Page 8: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

8

Precipitation hardened materials

Precipitation hardened electrical steels:

nucleation of copper precipitates in iron-silicon matrix

Fe

Si 3 wt. %

Cu 1 wt. %

Fe

Si 3 wt. %

Cu 2 wt.%

• solute annealing 950°C-1150°C for 1h

• water quenching

• age hardening at 400-450°C for 10 min - 100 h

I. II.

Fe-3wt% Si

Cu

CuCu

www.mpie.de

Page 9: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

9

Precipitation hardened electrical steels

Time, min

Atom probe tomography

10 min 120 min 6000 min

www.mpie.de

Page 10: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

10

3D Atom Probe Tomography

LEAP (Local Electrode Atom Probe) 3000X HR

3-dimensional reconstructed

model of specimen(about 100 Millions of atoms)

200 nm

initiated evaporationbyor

Time of flight

spatial resolution

layer-by-layer

high voltage 10 kV

+ –

100 nm

48Ti+2

55Mn+2

54Fe+2

56Fe+2 58Ni+2

60Ni+2

24 26 28

time of flight mass / charge state

Page 11: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

11

APT results: 3D atomic maps (Laser mode at 60K, 0.4 nJ)

120 min

Cu 1 wt.%

nm

Fe; Cu

nm

Iso-concentration surfaces at Cu 11 at.%www.mpie.de

Page 12: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

12

120 min

20 nm

20 nm

6000 min

20 nm

20 nm

120 min 6000 min

Iso-concentration surfaces at Cu 11 at.%

Cu 1 wt.% Cu 2 wt.%

APT results: 3D atomic maps (Laser mode at 60K, 0.4 nJ)

450°C aging

Fe-Si-Cu, LEAP 3000X HR

www.mpie.de

Page 13: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

13

APT results: quantification

Cu 1 wt.% Cu 2 wt.%

“Enrichment factor”:

Fe 0.68Cu 40.1Si 0.75

Fe 0.65Cu 44.0Si 0.68

Fe 0.77Cu 17Si 0.78

Fe 0.56Cu 31.9Si 0.58

volume fraction of clusters 2% 2% 5% 3-5%

120 min 6000 min 120 min 6000 min

3.2 nm ± 0.8 nm 5.0 nm ± 0.8 nm 4.3 nm ± 0.8 nm 6.5 nm ± 1.4 nm

Matrix (without clusters):Cu 0.2 at% Cu 0.1 at% Cu 0.2 at% Cu 0.1 at%

Cluster:Fe 62.9 at%Cu 32.1 at%Si 5.0 at%

Cluster:Fe 60.7 at%Cu 35.2 at%Si 4.1 at%

Cluster:Fe 51.8 at%Cu 44.6 at%Si 3.6 at%

Cluster:Fe 71 at%Cu 24 at%Si 5 at%

content in clustercontent in alloy

6.11023 0.91023 6.41023 0.61023

clusters number density, m-3

www.mpie.de

Page 14: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

14

APT results: Proximity histogram

20 nm

Cu 2 wt.%; 450°C/6000 min

• kinetic reasons?

(different stages of particle growth)

• slow diffusion; misfit ?

residual Fe-content

diffuse interface

Cluster size5 nm8 nm

bigger cluster

smaller cluster

matrixnm

cluster center

www.mpie.de

Page 15: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Overview

Motivation: Electromobility

Fe-3%Si-1% (2%) Cu model system

Fe-3%Si-Cu engineering alloy

Simulations (DFT + kMC, model system)

Conclusions and challenges

www.mpie.de

Page 16: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

16

Overall content in the analysis volume:

Fe 92.1 at.%

Cu 1.49 at.%

Al 0.56 at.%

Si 5.83 at. %

APT results

www.mpie.de

Page 17: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

O. Dmitrieva

17

Fe Si 17924-1FB3wt%Si, 2wt%Cu

Iso-concentration-Surfaces at Cu 6 at.%

3D-concentration profiles

www.mpie.de

Page 18: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

18

d = 5.0 ± 1.0 nm(density corrected:d = 6.0 ± 1.4 nm)

Cluster analysis

(cluster analysis: Nmin=100,dmax=0.7 nm)

www.mpie.de

Page 19: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Overview

Motivation: Electromobility

Fe-3%Si- 1% (2%) Cu model system

Fe-3%Si-Cu engineering alloy

Simulations (DFT + kMC, model system)

Conclusions and challenges

www.mpie.de

Page 20: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 21: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 22: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 23: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 24: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

24

Ab-initio, binding energies: Cu-Cu in Fe matrix

Fe-Si steel with Cu nano-precipitates

Page 25: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

25

Ab-initio, binding energies: Si-Si in Fe matrix

Fe-Si steel with Cu nano-precipitates

Page 26: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

26

For neighbor interaction energy take difference (in eV)

(repulsive) = 0.390 (attractive) = -0.124 (attractive) = -0.245

ESiSibin

ESiCubin

E CuCubin

Ab-initio, binding energies

Fe-Si steel with Cu nano-precipitates

Page 27: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

27

Ab-initio, use binding energies in kinetic Monte Carlo model

www.mpie.de

Page 28: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

Overview

Motivation: Electromobility

Fe-3%Si-1% (2%) Cu model system

Fe-3%Si-Cu engineering alloy

Simulations (DFT + kMC, model system)

Conclusions and challenges

www.mpie.de

Page 29: MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe

29

Conclusions and challenges

Soft magnetic steels for electromobility

Increase mechanical strength without loosing good soft magnetic properties

Use nanoprecipitates with size below Bloch wall thickness

APT suited to provide statistics and composition of nanoparticles

Ab-initio thermodynamics in system Fe-Si-Cu

Kinetics: QM – kMC

Coupling DFT/kMC with atomic-scale experiments

www.mpie.de