m.sc. energy science and engineering...2020/02/07  · eulers formula, plane of complex numbers,...

281
M.Sc. Energy Science and Engineering Module Guide Version of 12th May 2020

Upload: others

Post on 01-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

M.Sc. Energy Science and Engineering

Module Guide

Version of 12th May 2020

Page 2: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

Table of Contents

Compulsory Courses ......................................................................................... 1

Basic Modules ............................................................................................................ 1

Chemistry for Energy Scientists and Engineers ........................................................................ 1

Introduction to Business Administration ................................................................................. 3

Electrical Engineering and Information Technology ................................................................ 5

Energy Finance ......................................................................................................................... 7

Energy technologies in civil engineering and architecture ...................................................... 9

Energy Technologies in Mechanical Engineering ................................................................... 10

Materials Science for Renewable Energy Systems ................................................................ 11

Renewable Energies, Energy scenarios and Climate protection ........................................... 12

Compulsory Modules ................................................................................................13

Interdisciplinary Energy Project IEP ....................................................................................... 13

Master-Thesis Energy Science and Engineering .................................................................... 15

Compulsory Elective Courses ........................................................................... 17

Subject Area „Energy-related Building Design and Infrastructure“ .............................17

Mini-Research-Project „Energy-related Building Design and Infrastructure“ ....................... 17

Energy-efficient Building Design .......................................................................................... 19

Building in Existing Structures - Energy-Related Renovation ................................................ 19

Construction in existing contexts -Technologies and Economics .......................................... 21

Building Physics / Materials of Construction ......................................................................... 23

Computational Methods for Building Physics and Construction Materials ........................... 24

Fachmodul F: Building Technology ........................................................................................ 26

Facadetechnology .................................................................................................................. 27

Facade technology 2 .............................................................................................................. 29

Building Technology/ Materials of Construction II ................................................................ 31

Glass and Façade project ....................................................................................................... 32

Green Building Design I .......................................................................................................... 34

Green Building Design II ......................................................................................................... 36

Constructive building physics ................................................................................................ 38

Smart Building ........................................................................................................................ 40

Strategical Facility Management and Sustainable Design ..................................................... 41

Building Services Engineering I .............................................................................................. 43

Building Service Engineering II ............................................................................................... 45

Page 3: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

Elective Course F: Structural Design ...................................................................................... 47

Infrastructure Planning ........................................................................................................ 48

Infrastructure planning .......................................................................................................... 48

Spatial development in national and international contexts ................................................ 50

Spatial development and planning practice .......................................................................... 52

Subject Area „Energy-efficient Mobility and Transportation Concepts“ ......................54

Mini-Research-Project „Energy-efficient Mobility and Transportation Concepts“ ............... 54

Railway Systems and Technology B ....................................................................................... 56

Railway Engineering C ............................................................................................................ 58

Control of Drives .................................................................................................................... 60

Electric drives for cars ............................................................................................................ 62

Electric Railways ..................................................................................................................... 64

Flight Propulsion Fundamentals ............................................................................................ 66

Railway Vehicle Engineering .................................................................................................. 68

Innovation for Railway Systems ............................................................................................. 70

Motor Development for Electrical Drive Systems ................................................................. 72

Commuter Railway Systems (C) ............................................................................................. 74

Planning and Application of Electrical Drives (Drives for Electric Vehicles) .......................... 76

Proseminar Electrical Engineering and Information Technology .......................................... 77

Systemic observation of air traffic ......................................................................................... 78

Thermal Turbomachinery and Flight Propulsion ................................................................... 80

Combustion Engines I............................................................................................................. 82

Combustion Engines II............................................................................................................ 84

Subject Area „Energy Materials“ ................................................................................86

Mini-Research-Project „Energy Materials“ ............................................................................ 86

Ceramic Materials: Syntheses and Properties. Part II............................................................ 88

Principles of Solid State and Structural Inorganic Chemistry I (M.AC6) ................................ 90

Functional Materials .............................................................................................................. 92

Interfacial Engineering ........................................................................................................... 94

Heterogenous Catalysis (M.TC5) ............................................................................................ 96

Magnetism and Magnetic Materials ...................................................................................... 98

Materials Science of Thin Films............................................................................................ 100

Mechanical Properties of Metals ......................................................................................... 102

Semiconductor Interfaces .................................................................................................... 104

Surfaces and Interfaces ........................................................................................................ 106

Materials Engineering .......................................................................................................... 108

Page 4: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

Subject Area „Renewable Energies and Technologies“ ............................................. 110

Mini-Research-Project „Renewable Energies and Technologies“ ....................................... 110

Electrochemistry for Energy Applications I: Fundamentals ................................................. 112

Electrochemistry for Energy Applications II ......................................................................... 114

Energy Systems II ................................................................................................................. 116

Materials chemistry in electrocatalysis for energy applications ......................................... 118

Biomass ............................................................................................................................. 120

Waste Treatment Technology: Fascilities, concepts and plants .......................................... 120

Wastewater Technology 2 ................................................................................................... 122

Sewage sludge - producton and treatment technologies.................................................... 124

Renewable Raw Materials for Chemical and Biochemical Transformations (M.TC9) ......... 126

Geothermal Energy ............................................................................................................ 128

Geothermal Energy I ............................................................................................................ 128

Geothermal Energy III .......................................................................................................... 130

Geothermal Energy IV .......................................................................................................... 131

Geothermal Energy V ........................................................................................................... 132

Geothermal Energy VI .......................................................................................................... 133

Groundwater modeling ........................................................................................................ 134

Solar Energy ....................................................................................................................... 136

Applied Optics ...................................................................................................................... 136

Fundamentals and Technology of Solar Cells ...................................................................... 138

Hydropower ....................................................................................................................... 140

Numerical modeling in Hydraulic Engineering..................................................................... 140

Engineering Hydromechanics and Hydraulics II ................................................................... 142

Hydraulic Engineering II ....................................................................................................... 144

Hydraulic Engineering III ...................................................................................................... 146

Wind, water and wave energy - optimization and scaling ................................................... 148

Subject Area „Multimodal Energy Systems and Sustainability Impact Assessment" .. 150

Mini-Research-Project „Multimodal Energy Systems and Sustainability Impact Assessment"

................................................................................................................................................... 150

Power Systems II .................................................................................................................. 152

Power Systems III ................................................................................................................. 154

Energy and Climate Change ................................................................................................. 156

Energy Efficiency .................................................................................................................. 158

Energy Efficiency and Energy Flexibility in Production ........................................................ 160

Energy Management and Optimization ............................................................................... 162

Page 5: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

Regulation of Power Supply ................................................................................................. 164

Life cycle assessment of products and systems ................................................................... 166

Modeling of material flow Systems I ................................................................................... 168

Modeling of material flow systems II ................................................................................... 170

Proseminar Electrical Engineering and Information Technology ........................................ 172

Simulation of Electrical Power Networks ............................................................................ 173

Technology and Economics of Multimodal Energy Systems ............................................... 175

Industrial Environmental Protection.................................................................................... 177

Environmental planning ....................................................................................................... 179

Environmental Sciences at TU Darmstadt ........................................................................... 181

Pathways of Decarbonization .............................................................................................. 183

Economical optimization of energy supply for energy intensive production units ............. 185

Subject Area „Future Power Plant Technologies“ ..................................................... 187

Mini-Research-Project „Future Power Plant Technologies“ ................................................ 187

Combustion Power Plants ................................................................................................... 189

Electrical Machines and Drives ............................................................................................ 189

Energy Systems I .................................................................................................................. 191

Energy Systems III (Innovate energy conversion procedure) .............................................. 193

Gas Dynamics ....................................................................................................................... 195

Large Generators and High Power Drives ............................................................................ 196

High Voltage Switchgear and Substations ........................................................................... 198

High Voltage Technology I ................................................................................................... 200

High Voltage Technology II .................................................................................................. 202

Advanced Heat Transfer ...................................................................................................... 204

Power Plants and Renewable Energies ................................................................................ 206

Modeling of Technical Turbulent Flows ............................................................................... 208

New Technologies of Electrical Energy Converters and Actuators ...................................... 210

Design, building, commissioning and operation of power plants ....................................... 212

Technical Combustion I ........................................................................................................ 214

Tutorial Thermal Power Plants ............................................................................................ 216

Nuclear Power ................................................................................................................... 218

Introduction to Accelerator Physics ..................................................................................... 218

Intense Laser Beams ............................................................................................................ 220

Ions and Atoms in Plasmas .................................................................................................. 222

Measurement Techniques in Nuclear Physics ..................................................................... 224

Radiation Biophysics ............................................................................................................ 226

Page 6: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

Cross-sectional Topics of Energy Science and Engineering ........................................ 228

Mini-Research-Project „ Cross-sectional Topics of Energy Science and Engineering“ ........ 228

Introduction to Scientific Computing with Python .............................................................. 230

Future Electrical Power Supply ............................................................................................ 232

Electrical Power Engineering ............................................................................................... 234

Power Laboratory I .............................................................................................................. 236

Power Laboratory II ............................................................................................................. 238

Machine Learning & Energy ................................................................................................. 239

Policy-Analyse in the context of Energy Science and Engineering ...................................... 241

Project Seminar Energy Information Systems ..................................................................... 243

Environmental Information Systems ................................................................................... 245

Power Grids ....................................................................................................................... 247

Calculation of Transients in electrical Power Systems......................................................... 247

Power Cable Systems ........................................................................................................... 249

Statistical Physics of Networks ............................................................................................ 251

Overvoltage Protection and Insulation Coordination in Power System .............................. 253

Physical and Chemical Fundamentals .................................................................................. 255

Chemical Kinetics (M.PC8) ................................................................................................... 255

Chemical Processes (M.TC7) ................................................................................................ 257

Chemical Reaction Engineering (M.TC6) .............................................................................. 259

Electrochemistry (M.PC5) .................................................................................................... 260

Electromagnetic Compatibility............................................................................................. 262

Homogeneous Catalysis (M.AC4) ......................................................................................... 264

Materials Chemistry ............................................................................................................. 266

Mesoscopic Chemistry (M.AC5) ........................................................................................... 268

Physical Chemistry of Solids - Condensed Matter A (M.PC9) .............................................. 270

Physical Chemistry of Soft Materials - Condensed Matter B (M.PC10/M.TH8/M.MC4) ..... 272

Spectroscopy (M.PC4) .......................................................................................................... 274

Page 7: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

1

Compulsory Courses

Basic Modules

Module Title

Chemistry for Energy Scientists and Engineers

Module No.

07-03-0305

Credit Points

5 CP

Work load

150 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-03-0301-ue Übung Chemistry for Energy Scientists and Engineers

0 Übung 0

07-03-0301-vl Chemistry for Energy Scientists and Engineers

0 Vorlesung 0

2 Content of Teaching

Scientific fundamentals for chemical processes: Chemical thermodynamics; Ideal and real mixtures; Phase diagrams; Chemical kinetics; Catalysis; Electrochemistry. Chemistry of fuels. Knowledge of inorganic substances and materials relevant for energy conversion and the efficient usage of energy: Synthesis of characterization of solids; Oxides; Refractory materials; Ionic conductors; Electrode materials; Physical properties.

3 Learning Outcomes

Students gain basic knowledge in fundamentals of chemistry and chemical processes. They develop an

under-standing of the principles and methods in chemistry.

They understand the difference between classes of substances like organic fuels and inorganic materials

for energy conversion. They know about general methods of chemical synthesis and characterization.

They are capable to continue participating in advanced courses in chemistry.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 8: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

2

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 9: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

3

Module Title

Introduction to Business Administration

Module No.

01-10-1028/f

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. rer. pol. Dirk Schiereck

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

01-10-0000-vl Introduction to Business Administration

0 Vorlesung 2

2 Content of Teaching

This course serves as an introduction into studies of business administration for students of other siences. The course will provide a broad spectrum of knowledge from the "birth" of business administration as an university science field until its fragmentation into many specialized disciplines. Core topics will include basics of business administration (definitions and German legal forms), some Marketing concepts, introduction into Production Management (business process optimization and quality management), basic knowledge of organisational and personnel related topics, fundamental concepts of finance and investment as well as internal and external reporting standards.

3 Learning Outcomes

The couse encourages students who have not been confronted with business studies before to think

economicially. Furthermore, it should enable students to better understand actions of managers and

corporations in general.

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

Page 10: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

4

Thommen, J.-P. & Achleitner, A.-K. (2006): Allgemeine Betriebswirtschaftslehre, 5. Aufl., Wiesbaden. Domschke, W. & Scholl, A. (2008): Grundlagen der Betriebswirtschaftslehre, 3. Aufl., Heidelberg.

10 Comment

Page 11: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

5

Module Title

Electrical Engineering and Information Technology

Module No.

18-st-3020

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. rer. nat. Florian Steinke

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-3020-ue Electrical Engineering and Information Technology

0 Übung 1

18-st-3020-vl Electrical Engineering and Information Technology

0 Vorlesung 3

2 Content of Teaching

Euler’s formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell relation, electrical displacement density, Gauss theorem, capacity, inductivity, operational amplifier, non-linear parts, electric induction, law of refraction, theorem of Kirchhoff, Ohm’s law, periodic and non-periodic processes, transfer locus, power calculation, transformers, transmission line equations, travelling waves, Fourier series and transformation

3 Learning Outcomes

After the course, the student is able to name the electric variables, to calculate the electric components

and networks, to calculate and adopt the electric and magnetic fields, to utilize direct- and alternating

current circuits, to use vector diagrams and is aware of multiphase systems and travelling waves.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 120 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

MSc ESE

9 Literature

A lecture script and slides are provided via Moodle.

Page 12: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

6

10 Comment

Page 13: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

7

Module Title

Energy Finance

Module No.

01-16-1M02

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. rer. pol. Dirk Schiereck

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

01-16-1M01-vu Energy Finance 0 Vorlesung 2

2 Content of Teaching

With the adoption of the energy turnaround, the nuclear phaseout and an even faster shift to the utilization of renewable resources in the future, related funding issues have gained considerable political importance. Questions concerning financing of renewable energies will be discussed on the one hand. The renewable energy industry sector is used to analyze specific financing problems along the entire business life cycle. It starts from early stage financing through institutional investors (Venture Capital), followed by financing the growth and maturity phase, including Initial Public Offerings (IPOs), and ends with consolidation of corporate takeovers (M&A) and outsourcing of project financing. On the other hand we discuss the costs of the energy turnaround from the viewpoint of – currently predominant – utilities, which generate energy from conventional resources. It comes to the question of potential changes in the cost of capital derived from the nuclear phaseout or additional costs resulting from deconstruction of old power plants. Furthermore selling of electricity networks and the use of released financial resources is under consideration.

3 Learning Outcomes

Students will be able to evaluate the advantages and disadvantages of different funding options both in

the field of renewable energy providers as well as the established (conventional) power companies. They

can decide on what forms of financing are generally useful, and what approach should be used here.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

Page 14: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

8

9 Literature

to be announced in class.

10 Comment

Page 15: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

9

Module Title

Energy technologies in civil engineering and architecture

Module No.

13-C0-M025

Credit Points

5 CP

Work load

150 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-C0-0038-vl Energy technologies in civil engineering and architecture

0 Vorlesung 2

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

10 Comment

Page 16: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

10

Module Title

Energy Technologies in Mechanical Engineering

Module No.

16-13-6420

Credit Points

5 CP

Work load

150 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. Johannes Janicka

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-13-6420-ue Energy Technologies in Mechanical Engineering

0 Übung 0

16-13-6420-vl Energy Technologies in Mechanical Engineering

0 Vorlesung 0

2 Content of Teaching

fehlt

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 17: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

11

Module Title

Materials Science for Renewable Energy Systems

Module No.

11-01-4404

Credit Points

5 CP

Work load

150 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-4404-ue Exercises Materials Science for Renewable Energy Systems

0 Übung 1

11-01-4404-vl Materials Science for Renewable Energy Systems

0 Vorlesung 2

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 90 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 18: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

12

Module Title

Renewable Energies, Energy scenarios and Climate protection

Module No.

13-K3-M012

Credit Points

5 CP

Work load

150 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K3-0010-vü Renewable Energies, Energy scenarios and Climate protection

0 Vorlesung und Übung

3

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

• Modulprüfung (Studienleistung, Studienleistung, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, Studienleistung, Gewichtung: 0)

8 Associated study programme

9 Literature

10 Comment

Page 19: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

13

Compulsory Modules

Module Title

Interdisciplinary Energy Project IEP

Module No.

11-01-4409

Credit Points

6 CP

Work load

180 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-4409-ps Interdisciplinary Energy Project IEP 0 Projektseminar 0

2 Content of Teaching

• Ausschnittsweise Bearbeitung eines möglichst praxisnahen Planungs- oder Forschungsprojektes durch studentische Projektteams.

• Das nötige Fachwissen sowie konkrete Randbedingungen werden u. a. durch die betreuenden Fachgebiete mittels regelmäßiger Sprechstunden eingebracht.

3 Learning Outcomes

Die Studierenden besitzen die Fähigkeit, fachspezifische Probleme nach wissenschaftlichen Grundsätzen

selbstständig zu bearbeiten. Sie haben im Team thematisch fächerübergreifend ein Grundverständnis für

die Arbeits- bzw. Denkweisen, Methoden und Erkenntnismöglichkeiten unterschiedlicher Disziplinen

entwickelt. Sie sind der Lage, die Ergebnisse in adäquater Form schriftlich und mündlich zu präsentieren

und wissenschaftlich zu diskutieren.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 60 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Page 20: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

14

10 Comment

Page 21: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

15

Module Title

Master-Thesis Energy Science and Engineering

Module No.

11-03-5000

Credit Points

30 CP

Work load

900 h

Individual study

900 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Die Master-Thesis bildet den Abschluss des Masterstudiums. Sie stellt eine eigenständige wissenschaftliche Leistung der Studierenden dar. Dabei sollen bereits erworbene Kenntnisse der wissenschaftlichen Arbeit auf ein ausgewähltes Thema anwendet werden. Die Thesis stellt einen wesentlichen Teil der Forschungsorientierung des Studiengangs dar.

• Auseinandersetzung mit einem neuen Thema und Erstellung eines Arbeitsplans ausgehend vom Stand der Forschung.

• Durchführung einer experimentellen und/oder theoretischen Forschungsarbeit an einem energiebezogenen Thema unter Anwendung wissenschaftlicher Erkenntnisse und Methoden, Auswertung und Aufbereitung der Ergebnisse.

• Erörterung der Fragestellung, Darstellung der fundierten, theoretischen Kenntnisse, Dokumentation und Bewertung der Ergebnisse in einer schriftlichen Arbeit in angemessener Form nach professionellen Standards (Master-Thesis)

• Präsentation der Ergebnisse in einem Vortrag mit anschließender wissenschaftlicher Diskussion

3 Learning Outcomes

Die Studierenden sollen in diesem Modul ihre bereits erworbenen Kenntnisse der wissenschaftlichen

Arbeit vertiefen und die Kompetenz erwerben, diese auf ein selbst gewähltes Thema eigenständig

anzuwenden, und sich damit für weitere wissenschaftliche Arbeiten qualifizieren. Sie vertiefen dabei

ihre forschungspraktische Handlungskompetenz.

Die Studierenden sind in der Lage, sich innerhalb der vorgegebenen Frist in eine Problemstellung der

aktuellen Energieforschung einzuarbeiten. Sie kennen die Grundlagen zu einem aktuellen,

forschungsbezogenen Thema in der Energiewissenschaft und kennen die einschlägigen

wissenschaftlichen Publikationen der gewählten Forschungsrichtung. Sie sind in der Lage, ihre

Kenntnisse und Qualifikationen sowie neu erworbene Methoden auf wissenschaftliche Themen in

ausreichender Tiefe und Breite anzuwenden. Darüber hinaus können sie die wissenschaftlichen

Ergebnisse ihrer Arbeit professionell dokumentieren und in einem wissenschaftlichen Vortrag vor

Fachpublikum präsentieren.

Die eigenständige Organisation und Anfertigung der Master-Thesis soll zudem Schlüsselkompetenzen in

Zeitmanagement, Projektplanung und wissenschaftlichem Schreiben fördern und vertiefen. Die

Studierenden haben die Fähigkeit, eine wissenschaftliche Fragestellung über einen längeren Zeitraum zu

verfolgen, und verfügen über Planungs- und Strukturierungsfähigkeit in der Umsetzung eines

Page 22: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

16

thematischen Projektes und die Kommunikationsfähigkeit im schriftlichen Ausdruck.

4 Prerequisites for Participation

Vorliegen von 75 Kreditpunkten innerhalb des Studiengangs M.Sc. Energy Science and Engineering sowie ggf. der Auflagen

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Hausarbeit, Standard)

• Modulprüfung (Fachprüfung, mündlich, Dauer 60 min., Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Hausarbeit, Gewichtung: 4)

• Modulprüfung (Fachprüfung, mündlich, Dauer 60 min., Gewichtung: 1)

8 Associated study programme

Abschluss des Studienganges M.Sc. Energy Science and Engineering, Qualifizierung zu wissenschaftlicher Tätigkeit und Promotion.

9 Literature

Wird vom Betreuer der Thesis bekannt gegeben.

10 Comment

Page 23: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

17

Compulsory Elective Courses

Subject Area „Energy-related Building Design and Infrastructure“

Module Title

Mini-Research-Project „Energy-related Building Design and Infrastructure“

Module No.

11-01-4410

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Das Mini-Forschungsprojekt wird in einem Fachgebiet oder Institut eines am Studienbereich Energy Science and Engineering beteiligten Fachbereichs durchgeführt.

Der Inhalt der zu bearbeitenden Fragestellung ist in Absprache mit dem jeweiligen Lehrenden festzulegen und orientiert sich an aktuellen, energierelevanten wissenschaftlichen Fragestellungen mit Bezug zum Themenbereich „Energie – Bau – Infrastruktur“. Idealerweise erfordert die Aufgabenstellung eine interdisziplinäre Herangehensweise.

Der/die Studierende wird zu einer weitestgehend eigenständigen Bearbeitung der Themenstellung angeleitet.

3 Learning Outcomes

Die Studierenden

• sind kompetent in der selbständigen Einarbeitung in das Thema der Aufgabenstellung sowie in der Dokumentation und Präsentation ihrer Arbeit

• sind befähigt, die im Studium erworbenen Kenntnisse und Fähigkeiten mit Fragestellungen der aktuellen Forschung zu verbinden

• können forschungsnahe Experimente oder Projektarbeiten eigenständig strukturieren, planen und durchführen

• wählen zur Bearbeitung einer Aufgabenstellung adäquate Hilfsmittel und Methoden aus und setzen diese ein bzw. wenden diese an

• können die erhaltenen Ergebnisse unter Berücksichtigung des aktuellen Forschungsstands einschätzen und angemessen interpretieren

• sind in der Lage, die konkreten Fragestellungen, Lösungsvorschläge, unternommene Arbeitsschritte und die erhaltenen Ergebnisse in einer Präsentation sowie einem schriftlichen Bericht in wissenschaftlichem Stil vorzustellen und in der entsprechenden Fachsprache zu diskutieren

sollen nach dem absolvieren des Moduls in der Lage sein, auch umfangreichere Forschungs- und

Entwicklungsprojekte selbständig durchzuführen

4 Prerequisites for Participation

B.Sc. in einer Natur-oder Ingenieurwissenschaft

Page 24: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

18

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

6 Requirement for receiving Credit Points

Regelmäßige Anwesenheit bei vereinbarten Präsenzterminen, Abgabe eines schriftlichen Berichts

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Wird bei der Aufgabenstellung bekanntgegeben bzw. ist durch eigene Recherche zu ermitteln

10 Comment

Page 25: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

19

Energy-efficient Building Design

Module Title

Building in Existing Structures - Energy-Related Renovation

Module No.

13-D3-M015

Credit Points

6 CP

Work load

180 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D3-0010-vl Bauen im Bestand - Energetische Sanierung

0 Vorlesung 0

2 Content of Teaching

The preservation of the structure is increasingly important due to environmental protection and conservation of resources. One important aspect of such preservation is the taking of energy-saving measures with the goal of significantly reducing energy consumption. Possibilities of assessment of the current condition, possible economic measures to energy-related renovation of the external walls and the installation engineering are presented. The relevant principles are clarified and examples are given. The students should work out the possibilities and calculations through a case study.

3 Learning Outcomes

The students are able to identify adequate and legally-sound concepts with respect to an energy-related

upgrade, a modernisation of the installation engineering and a technical renovation. The solutions must

be balanced and objectively discussed. Futhermore, decisions must be made and substantiated.

Software programs may be used for simulations and calculations to be able to present an optimal

concept. Specific measures can be assessed based on economic, ecological, technical and legal

perspectives.

4 Prerequisites for Participation

Empfohlen: Konstruktive Bauphysik

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 45 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Studienleistung

7 Grading System

Modulabschlussprüfung:

Page 26: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

20

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

-Normen -WTA-Schriftenreihe -Publikationen der DGZfP

10 Comment

Page 27: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

21

Module Title

Construction in existing contexts -Technologies and Economics

Module No.

13-A0-M006

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-A0-0014-vl Building Technology and Economy in Existing Structures

0 Vorlesung 4

2 Content of Teaching

- Life cycle of bulidings - Life cycle oriented construction managment - Construction economics - cost planning - Bases of construction technologies and management in existing contexts - Building maintenance - Construction contracts of power plants - Demolition works

3 Learning Outcomes

The students will be able to …

- classify the various phases in the life cycle of buildings and understand the advantages of a life cycle

orientated approach of construction projects

- structure the costs and operating costs in the life cycle of buildings and are capable of defining cost

planning processes

- recognize the special needs of construction in existing contexts

- describe the requirements of a systematic building maintenance

- classify and differentiate the various kinds of contracts with regards to planning, construction and in

operation through the example of power plants

- understand the special requirements concerning the preparation and implementation of demolition

work in contrast to other construction works and will so be able to design the process of demolition

work

4 Prerequisites for Participation

Kenntnisse des Moduls Baubetrieb A2

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

Page 28: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

22

Unbenotete Studienleistung, Art wird zu Beginn der LV bekannt gegeben

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Klingenberger: Skript Baubetrieb Bauen im Bestand - Verfahrenstechnik und Ökonomie Schetter: Skript Lebenszyklusorientiertes Projektmanagement Steding: Skript Komplexe Verträge im Kraftwerksbau Motzko: Praxis des Bauprozessmanagements, Ernst & Sohn Verlag

10 Comment

Page 29: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

23

Module Title

Building Physics / Materials of Construction

Module No.

15-01-0324

Credit Points

5 CP

Work load

150 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

15-01-0324-vl Materials of Construction - Lecture and Excercise

0 Vorlesung 4

15-01-0324-vu Building Physics I 0 Vorlesung und Übung

2

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 30: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

24

Module Title

Computational Methods for Building Physics and Construction Materials

Module No.

13-D3-M020

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. Eduardus Koenders

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D3-0022-vl Computational Methods for Building Physics and Construction Materials

0 Vorlesung 2

13-D3-0023-ue Computational Methods for Building Physics and Construction Materials (Ü)

0 Übung 2

2 Content of Teaching

The lectures will address the different computational methods, solution strategies, discretization and implementation possibilities for physical processes that occur in building physics and/or construction materials. Emphasis will be on the micro to macro scale level and on processes that are active in porous construction materials such as concrete, geopolymers, insulation materials, etc. Typical problems that will be addressed in this module will be on modelling moisture and/or reactive transport in porous media, heat transport, phase change materials and energy storage, insulation materials, temperature imposed deformations and stresses, and cement hydration. The module will provide a full solution strategy, so from physical problem, to analysis, schematization and to a computational solution.

3 Learning Outcomes

To educate students how to assess physical problems in building physics and/or construction

materials and to know how to solve these problems computationally. Students should be able to solve

simple physical problems them selves using supporting platforms like Excell or Matlab.

4 Prerequisites for Participation

Basic knowledge in english, building physics and construction materials.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 90 min, Standard)

• Modulprüfung (Studienleistung, Hausarbeit, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 31: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

25

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 1)

• Modulprüfung (Studienleistung, Hausarbeit, Gewichtung: 0)

8 Associated study programme

M.Sc. - Bauingenieurwesen – II. Wahlpflichtbereich

9 Literature

Mehling, H.; Cabeza F. (2008): Heat and cold storage with PCM: An up to date introduction into basics and applications, Springer Verlag, Berlin, Heidelberg. Ekkehard Holzbecher, Environmental Modeling Using MATLAB, Springer 2007, ISBN 978-3-540-72936. Numerical integration and Differential Equations, Matlab documentation, MathWorks 2015. Transport Processes in Porous Media, Autoren: Coutelieris, Frank A., Delgado, J.M.P.Q, Springer Verlag, Berlin, Heidelberg. Heat and Mass Transfer, Autoren: Baehr, Hans Dieter, Stephan, Karl, Springer Verlag, Berlin, Heidelberg. Kattan, P. I. (2008): MATLAB Guide to Finite Elements: An Interactive Approach, Springer Verlag, Berlin, Heidelberg. Pietruszka, D. (2014): MATLAB® und Simulink® in der Ingenieurpraxis: Modellbildung, Berechnung und Simulation, Springer Vieweg Verlag, Wiesbaden. Vorlesungsfolien und weitere ergänzende Literatur

10 Comment

Page 32: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

26

Module Title

Fachmodul F: Building Technology

Module No.

15-02-6425

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

15-02-6425-ue Übung Klima- und Nutzungsgerechtes Bauen

0 Übung 2

15-02-6425-vl Vorlesung Energie und Technologie 0 Vorlesung 2

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Bausteinbegleitende Prüfung:

• [15-02-6425-ue] (Studienleistung, Sonderform, Standard)

• [15-02-6425-vl] (Studienleistung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Bausteinbegleitende Prüfung:

• [15-02-6425-ue] (Studienleistung, Sonderform, Gewichtung: 50%)

• [15-02-6425-vl] (Studienleistung, mündliche / schriftliche Prüfung, Gewichtung: 50%)

8 Associated study programme

9 Literature

10 Comment

Page 33: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

27

Module Title

Facadetechnology

Module No.

13-M4-M002

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-M4-0002-vu Fassadentechnik 1 0 Vorlesung und Übung

4

2 Content of Teaching

Komplexe Konstruktionsprinzipen und System von Fassaden Methodik zur Integration von Fassaden und verwandter Technologien in den Gebäudeentwurf. Integartion fassadenrelevanter Funktionen Experimentelle Konstruktions-, Detail- und Produktionsentwicklung

3 Learning Outcomes

Vertiefendes Verständnis zu Fassadenkonstruktionen sowie deren Verknüpfung mit dem Gebäude

Verständnis der Abhängigkeiten von Konstruktionsprinzipien, Systemlösungen, physikalischen und

funktionalen Anforderungen vor dem Hintergrund von aktuellen und neuen Material- Produktions- und

Konstruktionstechnologien.

4 Prerequisites for Participation

B.Sc. Bau- bzw. Umweltingenieurwissenschaften B.Sc. Architektur

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Hausarbeit, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 15 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Hausarbeit, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

8 Associated study programme

Page 34: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

28

9 Literature

Andrea Compagno: Intelligente Glasfassaden, Birkhäuser Verlag, Berlin 2002 Gerhard Hausladen, et al,: Clima Design, Callwey Verlag, München 2004 Gerhard Hausladen, et al,: Clima Skin, Callwey Verlag, München 2006 Thomas Herzog, et al, Fassadenatlas, Birkhäuser Verlag, Basel/Boston/Berlin 2005 Ulrich Knaack, Prinzipien der Konstruktion - Fassaden, Birkhäuser Verlag 2007 Eberhard Oesterle, et al, Doppelfassaden, Prestel; 2001 Uta Pottgiesser,: Fassadenschichtungen Glas, Bauwerk Verlag, Berlin, 2004

10 Comment

Page 35: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

29

Module Title

Facade technology 2

Module No.

13-M4-M003

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr.-Ing. Ulrich Knaack

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-M4-0003-vl Fassadentechnik 2 - Vorlesung 0 Vorlesung 2

13-M4-0004-ue Fassadentechnik 2 - Übung 0 Übung 2

2 Content of Teaching

Materialrelated façade technology and construction principles: steel, aluminum, wood, composite, GRP, glass, polymer etc. Materialspecific applications (structural design, building physics, services, construction, function) Materialrelated system solutions Applications in building examples (new building, refurbishment) Potential for future development

3 Learning Outcomes

Knowledge about materials used in facade constructions

Understanding of the materialrelated constructive dependencies

Knowledge about the usual materialspecific system solutions

Understanding of potential sources of error and damage images.

4 Prerequisites for Participation

B.Sc Bauingenieurwesen und Geodäsie oder B.Sc Architektur

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 15 min, Standard)

6 Requirement for receiving Credit Points

Passing the examnination and the study achievement

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

Page 36: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

30

8 Associated study programme

MSc BI

9 Literature

Skript und Reader, ggf. wird weitere Literatur während der Lehrveranstaltung bekannt gegeben Andrea Compagno: Intelligente Glasfassaden, Birkhäuser Verlag, Berlin 2002 Gerhard Hausladen, et al,: Clima Design, Callwey Verlag, München 2004 Gerhard Hausladen, et al,: Clima Skin, Callwey Verlag, München 2006 Thomas Herzog, et al, Fassadenatlas, Birkhäuser Verlag, Basel/Boston/Berlin 2005 Ulrich Knaack, Prinzipien der Konstruktion - Fassaden, Birkhäuser Verlag 2007 Eberhard Oesterle, et al, Doppelfassaden, Prestel; 2001 Uta Pottgiesser,: Fassadenschichtungen Glas, Bauwerk Verlag, Berlin, 2004

10 Comment

Angebot SoSe

Page 37: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

31

Module Title

Building Technology/ Materials of Construction II

Module No.

15-01-0334

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

15-01-0334-vl Materials of ConstructionII - Lecture 0 Vorlesung 2

15-01-0334-vu Foundations of Building Technology - Lecture

0 Vorlesung und Übung

2

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Bausteinbegleitende Prüfung:

• [15-01-0334-vl] (Studienleistung, Klausur, Dauer 90 min, Standard)

• [15-01-0334-vu] (Studienleistung, mündliche Prüfung, Dauer 15 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Bausteinbegleitende Prüfung:

• [15-01-0334-vl] (Studienleistung, Klausur, Gewichtung: 50%)

• [15-01-0334-vu] (Studienleistung, mündliche Prüfung, Gewichtung: 50%)

8 Associated study programme

9 Literature

10 Comment

Page 38: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

32

Module Title

Glass and Façade project

Module No.

13-M0-M001

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr.-Ing. Ulrich Knaack

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-M0-0002-vl Glas und Fassade Projekt - Vorlesung 0 Vorlesung 2

13-M0-0003-ue Glas und Fassade Projekt - Übung 0 Übung 2

2 Content of Teaching

Project example from practice (new building, refurbishment) Planning process: development, engineering, construction, preparation for tender, construction supervision, quality assurance (production, assembly) Construction design guidelines and regulations (overview, DIN / EN, HOAI / AOH (e.g. VFT), etc) Sources of failure in construction design, manufacturing and assembly using example projects Damage analysis, damage analysis (recording, analysis, documentation)

3 Learning Outcomes

Understanding of the construction design and process, knowledge of detailing contents, methods,

guidelines and regulations of the facade planning. Analysis capability of defect sources and damage

images

4 Prerequisites for Participation

B.Sc Bauingenieurwesen und Geodäsie (B.Sc Architektur)

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Hausarbeit, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 15 min, Standard)

6 Requirement for receiving Credit Points

Passing the examnination and the study achievement

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Hausarbeit, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

Page 39: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

33

8 Associated study programme

M.Sc. Bauingenieurwesen – III. Fachlicher Wahlbereich

9 Literature

Skript und Reader, ggf. wird weitere Literatur während der Lehrveranstaltung bekannt gegeben Thomas Herzog, et al, Fassadenatlas, Birkhäuser Verlag, Basel/Boston/Berlin 2005 Ulrich Knaack, Prinzipien der Konstruktion - Fassaden, Birkhäuser Verlag 2007 Jens Schneider, et al, Glasbau - Grundlagen, Berechnung, Konstruktion Springer Verlag 2016 Ulrich Knaack: Konstruktiver Glasbau, Müller Verlag Jan Cremer, Detail Atlas Gebäudeöffnungen, Birkhäuser Verlag 2015

10 Comment

Angebot SoSe

Page 40: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

34

Module Title

Green Building Design I

Module No.

13-D1-M007

Credit Points

6 CP

Work load

180 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D1-0015-vl Green Building Design I 0 Vorlesung 0

13-D1-0016-ue Green Building Design I - Übung 0 Übung 0

2 Content of Teaching

Constructional topics based on current building activities with a focus on Green Building will be processed as a seminar. This includes targeted research questions about materials (e.g. steel, glass, and insulation) and technologies (e.g. air conditioning, energy supply and distribution, controlling of building envelopes). Selected examples of structures and own student projects relevant design principles are developed. With supervised student projects also outstanding, existing buildings and their construction are examined - also including classic historical buildings.

3 Learning Outcomes

After the successful completion the course students will understand the relationships of the relevant

solutions used in the construction industry for Green Building Design. They will possess technological

and physical skills.

The students will have the ability to detect different solutions, to find out, to explain factual and

understandable, to make decisions, and to justify.

The students will have the ability to edit subject-specific problems independently according to scientific

principles.

4 Prerequisites for Participation

Empfohlen wird der Besuch der Lehrveranstaltungen Grundlagen des konstruktiven Hochbaus - Teil I oder Baukonstruktion

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Unbenotete Studienleistung

7 Grading System

Modulabschlussprüfung:

Page 41: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

35

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

z.B. Stahlbau-, Mauerwerks-, Holzbau-, Betonatlas, alle Edition Detail, Nachhaltiges Bauen, Energieatlas. Weitere Literatur: s. Homepage zum Fachgebiet www.kgbauko.de

10 Comment

Page 42: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

36

Module Title

Green Building Design II

Module No.

13-D1-M008

Credit Points

6 CP

Work load

180 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D1-0017-vl Green Building Design II 0 Vorlesung 0

13-D1-0018-ue Green Building Design II - Übung 0 Übung 0

2 Content of Teaching

Constructional topics, based on current building activities with an emphasis on self-developed concepts will be deeply processed in the form of a seminar. This includes targeted research questions about materials (e.g. steel, glass, and insulation) and technologies (e.g. air conditioning, energy supply and distribution, controlling of building envelopes). Selected examples of structures and own student projects relevant design principles are developed. With supervised student projects also outstanding, existing buildings and their construction are examined - also including classic historical buildings.

3 Learning Outcomes

After the successful completion the course students will understand the relationships of the relevant

solutions used in the construction industry for Green Building Design. They possess technological and

physical aspects.

The students will have the ability to detect different solutions, to find out, to explain factual and

understandable, to make decisions, and to justify.

The students will have the ability to edit subject-specific problems independently according to scientific

principles.

4 Prerequisites for Participation

Empfohlen wird der Besuch der Lehrveranstaltungen Grundlagen des konstruktiven Hochbaus - Teil I oder Baukonstruktion

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

6 Requirement for receiving Credit Points

Unbenotete Studienleistung

7 Grading System

Modulabschlussprüfung:

Page 43: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

37

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

z.B. Stahlbau-, Mauerwerks-, Holzbau-, Betonatlas, alle Edition Detail, Nachhaltiges Bauen, Energieatlas. Weitere Literatur: s. Homepage zum Fachgebiet www.kgbauko.de

10 Comment

Page 44: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

38

Module Title

Constructive building physics

Module No.

13-D3-M001

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D3-0002-vl Buildingphysics 0 Vorlesung 4

2 Content of Teaching

With the growing requirements for the comfort of users, the building energy optimisation, the automation of the regulation, the extent of the required knowledge of building physics planner increases. The event focuses on the complex interactions between building materials, components and buildings. Fundamental physical processes for thermal and hygrothermal behaviour have to be processed as well as the transfer of noise and spread of fire. The background and the required application of the relevant standards and laws are thereby considered as well as the component-specific simulation. Requirements and compliance demonstrations are treated for residential and as well for non-residential buildings.

3 Learning Outcomes

After completing this module, students can:

- recognize problems of building physics

- understand basic interaction between heat, moisture and sound insulation

- perform basic verifications of heat, moisture and sound insulation

- understand the goals of energy efficient building as well as constructional and technical measure

- apply simplified verifications of the most recent version of the energy saving ordinance

- get an overview of the structural fire protection

In addition to the ability of estimating different solutions and to explain these objectively and intelligly,

the students are able to make decisions and to justify them. They are capable of working independently

on subject-specific problems based on heat, humidity, noise and fire protection.

4 Prerequisites for Participation

Empfehlung: Bauphysik

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

6 Requirement for receiving Credit Points

Bestandene Studienleistung

Page 45: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

39

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

- Vorlesungsunterlagen - Häupl, P., Homann, M., Kölzow, C., Riese, O., Maas, A., Höfker, G., Nocke, C. : Lehrbuch der Bauphysik - Schall, Wärme, Feuchte, Licht, Brand, Klima; Vieweg+Teubner;ISBN 978-3-519-55014-3, 2012 - W. Willems, K. Schild, S. Dinte

10 Comment

Page 46: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

40

Module Title

Smart Building

Module No.

15-01-0344

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

15-01-0344-ue Smart Building Design - Excercise 0 Übung 2

15-01-0344-vl Smart Building Design - Lecture 0 Vorlesung 2

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

Die Anerkennung der Übung ist Voraussetzung für die mündliche Prüfung.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, mündliche Prüfung, Dauer 15 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, mündliche Prüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 47: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

41

Module Title

Strategical Facility Management and Sustainable Design

Module No.

13-D2-M001

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D2-0026-se Facility Management and Sustainable Design

0 Seminar 4

2 Content of Teaching

Main contents are: - Specifications of FM processes - Life Cycle of buildings/Life Cycle Costs - Real Estate Controlling and Management -Integration of the FM-approach - Public Private Partnership (PPP) - Basic principles of sustainability -Life Cycle Assessment (environmental impacts of buildings, sustainability assessments/certification)

3 Learning Outcomes

Attending the seminar and passing the exam will enable students

- to describe strategic ecological and economical problems, which result from the complexity of a

building’s life cycle

- to identify the environmental and economic interactions between the individual life cycles phases of

buildings

- to calculate ecologic and economic impacts of buildings over a defined time scheduleperiod

- to optimize the design of a building under consideration of life cycle aspects and principles of

sustainable construction and operation

4 Prerequisites for Participation

Keine Voraussetzungen notwendig

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

6 Requirement for receiving Credit Points

Art, Umfang und Anrechnung der zu erbringenden Studienleistungen (z.B. testierte Hausübung, Teilnahme an Exkursion) werden am Anfang der LV bekanntgegeben.

Page 48: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

42

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Nävy, J.: Facility Management, Springer Verlag, 2006 Braun, H.P.: Facility Management Erfolg in der Immobilienwirtschaft, Springer Verlag, 2007

10 Comment

Page 49: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

43

Module Title

Building Services Engineering I

Module No.

13-D2-M002

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. Carl-Alexander Graubner

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D2-0008-vl Indoor Environment II 0 Vorlesung 3

13-D2-0009-ue Indoor Environment II 0 Übung 1

2 Content of Teaching

The lecture focusses on special topics of building services: - Electrical engineering (high and low voltage systems, lightning protection and lighting) - Elevator systems, - Fire protection, - Fire extinguishing systems, - Sanitary engineering, - Building ventilation systems, - Air conditioning and refrigeration systems, - Heating technology, - Building automation, - Renewable Energies.

3 Learning Outcomes

On successful completion of this module, students are able to:

1. Name subject matters and technologies of disciplines of building service and describe their functions

and

2. Identify necessary building equipment and its components.

4 Prerequisites for Participation

Keine Voraussetzungen notwendig

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

Art der zu erbringenden Studienleistungen werden zu Beginn der Lehrveranstaltung bekanntgegeben

6 Requirement for receiving Credit Points

Passing the examnination and the studyachievement

7 Grading System

Page 50: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

44

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

M.Sc. Bauingenieurwesen - II. Wahlpflichtbereich M.Sc. Umweltingenieurwissenschaften - II. Wahlpflichtbereich

9 Literature

c.-A. Graubner: Skript Technische Gebäudeausrüstung, Institut für Massivbau, TU Darmstadt Laasch: Haustechnik - Teubner Verlag Stuttgart. Pistohl/RechenauerI Scheuerer: Handbuch der Gebäudetechnik, Band 1 - Werner Verlag Pistohl/RechenauerI Scheuerer: Handbuch der Gebäudetechnik, Band 2 - Werner Verlag Daniels: Gebäudetechnik - Oldenbourg Industrieverlag Wellpott: Technischer Ausbau von Gebäuden - Kohlhammer

10 Comment

Page 51: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

45

Module Title

Building Service Engineering II

Module No.

13-D2-M003

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. Carl-Alexander Graubner

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-D2-0006-vl Building Engineering I (B) 0 Vorlesung 2

13-D2-0007-ue Building Engineering I (B) 0 Übung 2

2 Content of Teaching

The lecture focusses on the basics of the following disciplines of building services: - Electrical engineering (high and low voltage systems, lightning protection and lighting), - Elevator systems, - Structural fire protection, - Fire extinguishing systems, - Sanitary engineering, - Building ventilation systems, - Air conditioning and refrigeration systems, - Heating technology, - Building automation, - Renewable Energies.

3 Learning Outcomes

On successful completion of this module, students are able to:

1. Name subject matters and technologies of disciplines of building service and describe their functions,

2. Identify necessary building equipment and its components and

3. Design building equipment.

4 Prerequisites for Participation

The successful participation of the course Building Services Engineering I is recommended, but not required.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

Type will be announced at lecture start

6 Requirement for receiving Credit Points

Passing the examnination and the studyachievement

Page 52: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

46

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

M.Sc. Bauingenieurwesen - II. Wahlpflichtbereich M.Sc. Umweltingenieurwissenschaften - II. Wahlpflichtbereich

9 Literature

C.-A. Graubner: Skript Technische Gebäudeausrüstung, Institut für Massivbau, TU Darmstadt Laasch: Haustechnik - Teubner Verlag Stuttgart. Pistohl/Rechenauer/Scheuerer: Handbuch der Gebäudetechnik, Band 1 - Werner Verlag Pistohl/Rechenauer/Scheuerer: Handbuch der Gebäudetechnik, Band 2 - Werner Verlag Daniels: Gebäudetechnik - Oldenbourg Industrieverlag Wellpott: Technischer Ausbau von Gebäuden - Kohlhammer

10 Comment

Page 53: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

47

Module Title

Elective Course F: Structural Design

Module No.

15-02-6517

Credit Points

3 CP

Work load

90 h

Individual study

45 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

15-02-6517-se Wahlfach Tragwerksentwicklung 0 Seminar 3

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Bausteinbegleitende Prüfung:

• [15-02-6517-se] (Studienleistung, Abgabe, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Bausteinbegleitende Prüfung:

• [15-02-6517-se] (Studienleistung, Abgabe, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 54: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

48

Infrastructure Planning

Module Title

Infrastructure planning

Module No.

13-K4-M007

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K4-0017-vl Infrastrukturplanung 0 Vorlesung 2

13-K4-0018-ue Infrastrukturplanung - Übung 0 Übung 2

2 Content of Teaching

The course provides insights into the historical development and the overarching characteristics of technical infrastructure systems (such as energy, waste, wastewater, transport and telecommunications) and their importance for the development of cities and regions. The students deal with the interactions between different infrastructure sectors, current changes in the supply of infrastructure services as a result of technical innovations, liberalization and privatization processes and new environmental regulations and the conditions of infrastructure supply in the global South. The course gives an overview on the organizational dimensions in the supply of infrastructure services and characteristics in its public regulation and planning. Building on this and refering to specific case studies, the course addresses the planning procedures for infrastructure facilities, the coordination of multiple interests in the supply of infrastructure services and the development of new planning solutions.

3 Learning Outcomes

The students have the ability to weigh different solutions, to explain them in an comprehensible way

and finally make decisions and justify them.

The students have the ability and willingness to engage in an interdisciplinary and internationally

oriented analysis of infrastructural problems and solutions and of their relevance for sustainable urban

and regional development;

The students have the ability to discuss and critically reflect problems in infrastructure planning

autonomously according to scientific principles.

4 Prerequisites for Participation

Empfohlen: Grundlagen der räumlichen Planung oder gleichwertige Veranstaltungen.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 30 min, Standard)

6 Requirement for receiving Credit Points

Page 55: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

49

Studienleistung erforderlich, Art wird zu Beginn der LV bekanntgegeben

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Informationsmaterialien werden zu Beginn der LV bereitgestellt.

10 Comment

Page 56: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

50

Module Title

Spatial development in national and international contexts

Module No.

13-K4-M004

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K4-0011-se International context of spatial development

0 Seminar 4

2 Content of Teaching

In the context of case studies students deal with current problems of spatial development, particularly in international and transnational contexts and deal with the respective systems of spatial policies and planning. They analyze and reflect the insights gained from international cases regarding their differences and similarities with the conditions of spatial development and spatial planning in Germany.

3 Learning Outcomes

Students deepen their understanding of the social, political, economic and environmental contexts of

spatial planning and development, especially in the development of metropolitan regions. They learn

about exemplary national and international regions and specific fields of spatial planning in national or

international contexts. Based on these examples they confront specific problems of spatial planning,

planning methods and instruments, the actors of spatial development and solutions in selected cases

and discuss these issues scientifically. As a result, students are able to recognize the place-specific

characteristics of the case study and discuss them against the background of general problems in and

solutions to spatial development and planning.

4 Prerequisites for Participation

Mindestens eine der folgenden Veranstaltungen: Städtische und regionale Infrastrukturplanung oder Städtische und regionale Umweltplanung. Nach individueller AbSprache können die Vorkenntnisse durch gleichwertige Veranstaltungen nachgewiesen werden

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 30 min, Standard)

• Modulprüfung (Studienleistung, Referat, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Hausarbeit, Referat, Anwesenheitspflicht

7 Grading System

Modulabschlussprüfung:

Page 57: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

51

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, Referat, Gewichtung: 0)

8 Associated study programme

9 Literature

Wird jeweils bei Beginn der Veranstaltung bekannt gegeben.

10 Comment

Page 58: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

52

Module Title

Spatial development and planning practice

Module No.

13-K4-M010

Credit Points

6 CP

Work load

180 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K4-0023-se Räumliche Entwicklung und Planungspraxis

0 Vorlesung 0

2 Content of Teaching

Based on case studies from the Rhein-Main region and the state of Hesse, this course deals with selected problems of urban and regional development and their planning solutions. By inviting experts from relevant fields and by visiting practioners in spatial planning in the region, students become acquainted with the specific problems of planning practice, the actors and institutions of spatial development as well as the scope for action in the region. They are able to discuss these issues scientifically. On the basis of the knowledge gained in this course, students are capable of recognizing the special characteristics of the analysed example and can set these insights in relation to other spatial planning contexts. By working on case studies, students deal with relevant problems of spatial development in the Rhein-Main region and in the state of Hesse. They expand their theoretical knowledge through addressing concrete problems of spatial planning and through discussions with planning experts. Based on academic Literature, students develop their own theses, conceptualise planning solutions and are able to present and discuss them.

3 Learning Outcomes

Students develop an understanding of the institutions and framework conditions of spatial planning.

They assess and conceptualise spatial planning solutions in the context of their social, cultural,

economic, environmental, technical and legal framework conditions.

Students have the ability to consider the advantages and disadvantages of different solutions. They are

able to argue in an objective and understandable manner for their final decision.

Students have the ability and willingness to engage in interdisciplinary and international cooperation

across technical, administrative and political boundaries.

Students have the ability to deal with specific problems by independently using scientific principles.

Students are capable of representing their working results in an appropriate manner.

4 Prerequisites for Participation

Mindestens eine der folgenden Veranstaltungen: Städtische und regionale Infrastrukturplanung oder Städtische und regionale Umweltplanung. Nach individueller AbLanguage können die Vorkenntnisse durch gleichwertige Veranstaltungen nachgewiesen werden.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 30 min, Standard)

Page 59: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

53

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Anwesenheit und aktive Mitarbeit im Seminar, Mündliche Präsentation, Schriftliche Ausarbeitung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

Informationsmaterialien werden zu Beginn der Veranstaltung bereitgestellt.

10 Comment

Page 60: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

54

Subject Area „Energy-efficient Mobility and Transportation Concepts“

Module Title

Mini-Research-Project „Energy-efficient Mobility and Transportation Concepts“

Module No.

11-01-4411

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Das Mini-Forschungsprojekt wird in einem Fachgebiet oder Institut eines am Studienbereich Energy Science and Engineering beteiligten Fachbereichs durchgeführt.

Der Inhalt der zu bearbeitenden Fragestellung ist in Absprache mit dem jeweiligen Lehrenden festzulegen und orientiert sich an aktuellen, energierelevanten wissenschaftlichen Fragestellungen mit Bezug zum Themenbereich „Energieeffiziente Mobilitäts- und Transportkonzepte“. Idealerweise erfordert die Aufgabenstellung eine interdisziplinäre Herangehensweise.

Der/die Studierende wird zu einer weitestgehend eigenständigen Bearbeitung der Themenstellung angeleitet.

3 Learning Outcomes

Die Studierenden

• sind kompetent in der selbständigen Einarbeitung in das Thema der Aufgabenstellung sowie in der Dokumentation und Präsentation ihrer Arbeit

• sind befähigt, die im Studium erworbenen Kenntnisse und Fähigkeiten mit Fragestellungen der aktuellen Forschung zu verbinden

• können forschungsnahe Experimente oder Projektarbeiten eigenständig strukturieren, planen und durchführen

• wählen zur Bearbeitung einer Aufgabenstellung adäquate Hilfsmittel und Methoden aus und setzen diese ein bzw. wenden diese an

• können die erhaltenen Ergebnisse unter Berücksichtigung des aktuellen Forschungsstands einschätzen und angemessen interpretieren

• sind in der Lage, die konkreten Fragestellungen, Lösungsvorschläge, unternommene Arbeitsschritte und die erhaltenen Ergebnisse in einer Präsentation sowie einem schriftlichen Bericht in wissenschaftlichem Stil vorzustellen und in der entsprechenden Fachsprache zu diskutieren

sollen nach dem absolvieren des Moduls in der Lage sein, auch umfangreichere Forschungs- und

Entwicklungsprojekte selbständig durchzuführen

4 Prerequisites for Participation

B.Sc. in einer Natur-oder Ingenieurwissenschaft

5 Type of Examination

Page 61: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

55

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

6 Requirement for receiving Credit Points

Regelmäßige Anwesenheit bei vereinbarten Präsenzterminen, Abgabe eines schriftlichen Berichts

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Wird bei der Aufgabenstellung bekanntgegeben bzw. ist durch eigene Recherche zu ermitteln

10 Comment

Page 62: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

56

Module Title

Railway Systems and Technology B

Module No.

13-J1-M001

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-J1-0001-vl Railway Systems and Railway Engineering B

0 Vorlesung 2

13-J1-0002-ue Railway Systems and Railway Engineering B

0 Übung 2

2 Content of Teaching

Based on the basic knowledge given in the elementary course of Traffic and Transport I (A) this course aims at providing expert knowledge. This includes the following fields of subject: Derivation of the boundary conditions for the layout of lines and stations based on economic, physiological and physical requirement; calculation of design elements taking into account their mutual influence; construction of the train track in the horizontal plan and sheer plan considering topographical gaps, discontinuities and civil engineering constructive works; dimension of switches and their construction; conceptual design of stations; principles of infrastructure design, catenary systems and power supply.

3 Learning Outcomes

The students have an improved understanding of the relationships and methods in designing

infrastructural elements.

The students have the ability to solve complex problems in the field of Railway Systems and Technology

(B) independently, based on scientific principles.

The students have a deepened ability to identify possible solutions, to weigh them up , to decide and to

present and defend their decisions

4 Prerequisites for Participation

Verkehr I

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Testierte Hausübung, erfolgreich abgeschlossenes Kolloquium, bestandene Fachprüfung

7 Grading System

Page 63: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

57

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

Skripte werden zu Beginn der Lehrveranstaltung ausgegeben. Weiterführende Literatur wird zu Beginn der Lehrveranstaltung bekannt gegeben

10 Comment

Page 64: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

58

Module Title

Railway Engineering C

Module No.

13-J1-M002

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-J1-0003-vl Railway Systems and Railway Engineering C

0 Vorlesung 2

2 Content of Teaching

Modelling of infrastructure and trains for capacity and of operation studies. Determination of operational quality and capacity for railways. Occupancy of lines, track groups and switching zones. Development of delays and obstructions in railway operation. Different methods of planning and traffic management.

3 Learning Outcomes

The students have the ability to measure the railway capacity both on technical and economical aspects

considering current and future conditions and to determine and evaluate operational quality.

Students have the ability to penetrate solutions for the specific field of railway operation and traffic

management and to solve very complex problems independently, based on scientific principles.

Based on their gained knowledge and expertise the students have the ability to create innovative

methods and approaches solving problems in the field railway engineering.

4 Prerequisites for Participation

Verkehr I (A) Verkehr II (A)

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 60 min, Standard)

6 Requirement for receiving Credit Points

Anwesenheitspflicht, bestandende Fachprüfung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

Page 65: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

59

9 Literature

Skripte werden zu Beginn der Lehrveranstaltung ausgegeben. Weiterführende Literatur wird zu Beginn der Lehrveranstaltung bekannt gegeben

10 Comment

Page 66: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

60

Module Title

Control of Drives

Module No.

18-gt-2020

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr.-Ing. Gerd Griepentrog

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-gt-2020-ue Control of Drives 0 Übung 2

18-gt-2020-vl Control of Drives 0 Vorlesung 2

2 Content of Teaching

Control structures for drives; Design of controllers for drives; VSIs for drives; Space Vectors as basis of modelling AC-machines; Reference frames for description of AC-machines; Control oriented block diagram for DC-drive; Structure and design of the controllers; Control oriented block diagram for Permanent Magnet Synchronous Machine (PMSM); Control oriented block diagram for Induction machine (IM) Torque control for AC-machines using linear or switching controllers. Field Oriented Control and Direct Torque Control for PMSM and IM. Models and observers for rotor flux of IM Speed control, including oscillatory load. Resolver and Encoder.

3 Learning Outcomes

After an active participation in the course including solving all exercises prior to the respective tutorial

students should be able to:

1.) develop the control-oriented block diagrams for the DC-machine operating in base speed range as

well as in field weakening range.

2.) design the control loops for 1.) concerning the structure and the control parameters.

3.) Understand and apply space vectors and master their application in different rotating frames of

reference.

4.) Develop the dynamic equations of the permanent exited synchronous machine and the induction

machine and to simplify these equations by help of suitable rotating reference frames and represent

these equations as non-linear control-oriented block diagram.

5.) Design the control loops according to 4.) especially the field-oriented control concerning the

structure of the control loops and the control parameters.

6.) Understand the deduction of equations given in the literature for machine types, which are not

discussed in this lecture, e.g. for the doubly fed induction machine.

7.) Derive the models and the observers for the rotor flux for the induction machine in different frames

of reference and to apprise the benefits and drawbacks of the different solutions.

8.) Design the control loops for the super-imposed speed controls even for mechanically oscillating

loads.

4 Prerequisites for Participation

BSc ETiT or equivalent, especially Control Theory and Electrical Machines / Drives

Page 67: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

61

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 90 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc EPE, MSc MEC, Wi-ETiT

9 Literature

Lecture notes, instructions for exercises are available in Moodle for download. Literature:

• Mohan, Ned: “Electric Drives and Machines”

• De Doncker, Rik; et. al.: “Advanced Electrical Drives”

• Schröder, Dierk: “Elektrische Antriebe – Regelung von Antriebssystemen”

• Leonhard, W.: “Control of Electrical Drives”

10 Comment

Page 68: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

62

Module Title

Electric drives for cars

Module No.

18-bi-2150

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2150-ue Electric drives for cars 0 Übung 1

18-bi-2150-vl Electric drives for cars 0 Vorlesung 2

2 Content of Teaching

This course introduces the students to the different design aspects of electric drives used in automotive applications, comprising both high power density high speed traction and small mass produced auxiliary drives. Since the target audience comprises students from different degree programmes, the course first reviews basics of electromagnetic power conversion principles and design principles of PM based machines. The discussion of the electric drives themselves comprises the various facets of their design as part of a complex system, such as operating requirements, configurations, material choices, parasitic effects and their mitigation, electric and thermal stress, as well as manufacturing related questions, notably as they affect the design of the mass produced auxiliary drives.

3 Learning Outcomes

At the end of the course, the students will know about design principles of PM based machines, electric

drives: topologies, operating areas, dynamic performance and configuration of traction drives for hybrid

cars and electric vehicles as they apply to electric drives for cars. In addition to traction drives, they will

also be familiar with auxiliary drives used in cars. They will understand the parasitic effects of inverter

induced bearing currents, the insulation material used for the electric winding and the winding stress at

inverter supply. They will be familiar with the different cooling principles and thermal modelling, as well

as the thermal aspects of the integration into the car. They will also know about the main failure modes

that may occur with electric drives used for cars, the different lamination sheets used and their

manufacturing.

4 Prerequisites for Participation

Completed Bachelor of Electrical Engineering or equivalent degree.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

Module final exam:

• Module exam (Technical examination, optional, standard grading system)

6 Requirement for receiving Credit Points

Pass module final exam

Page 69: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

63

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 70: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

64

Module Title

Electric Railways

Module No.

18-bi-2140

Credit Points

5 CP

Work load

150 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2140-vl Electric Railways 0 Vorlesung 3

2 Content of Teaching

• Mechanics of traction

• Electrical part of traction vehicles

• Converter and motors for electrical traction

• Monitoring systems

• Comparison of different power supply systems

• DC- and AC- systems for light- and heavy rail

• Problems of earthing and earth return currents

• Sub stations, converters, power plants

3 Learning Outcomes

Comprehension of the basic concepts of electric traction vehicles and power supply for electric railways

4 Prerequisites for Participation

Basic knowledge in electrical machines and drives

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

Page 71: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

65

8 Associated study programme

MSc ETiT, MSc MEC, MSc Wi-ETiT

9 Literature

Text book for the lecture. Bendel, H. u.a.: Die elektrische Lokomotive. Transpress, Berlin, 1994. Filipovic, Z: Elektrische Bahnen. Springer, Berlin, Heidelberg, 1995. Steimel, A.: Elektrische Triebfahrzeuge und ihre Energieversorgung. Oldenburg Industrieverlag, 2006. Bäzold, D. u.a.: Elektrische Lokomotion deutscher Eisenbahnen. Alba, Düsseldorf, 1993. Obermayer, H. J.: Internationaler Schnellverkehr. Franckh-Kosmos, Stuttgart, 1994; Guckow, A.; Kiessling, F.; Puschmann, R.: Fahrleitungen el. Bahnen. Teubner, Stuttgart, 1997. Schaefer, H.: Elektrotechnische Anlagen für Bahnstrom. Eisenbahn-Fachverlag, Heidelberg, 1981

10 Comment

Page 72: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

66

Module Title

Flight Propulsion Fundamentals

Module No.

16-04-5010

Credit Points

8 CP

Work load

240 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Heinz-Peter Schiffer

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-04-5010-vl Flight Propulsion Fundamentals 0 Vorlesung 4

2 Content of Teaching

Theoretical fundamentals of flight propulsion sytems; thermodynamic cycle; components; pollutant formation.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Depict and explain the thermodynamic cycle of an aerospace propulsion engine including the most

relevant cycle parameters for a single-spool jet engine and to explain the consequences for the

thermodynamic cycle if cycle parameters (e.g. turbine inlet temperature), flight conditions (e.g. flight

Mach-number) and ambient conditions (e.g. ambient pressure) are varied.

Derive the equation for thrust, the Euler work equation and the efficiency equations for a jet engine

(thermal efficiency, propulsive efficiency) by applying the conservation equations for mass, momentum

and energy.

List the todays and future design requirements for a jet engine and to explain the significance and

concequences of these requirements for the jet engine components, the loss mechanisms, and the

formation of pollutants.

[/list]

4 Prerequisites for Participation

Basic knowledge in thermodynamics and fluid mechanics (especially compressible flow) is essential.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

Written exam 90 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

Page 73: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

67

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WP Bachelor MPE

9 Literature

Lecture notes 'Flight Propulsion and Gas Turbines ' and Lecture View Foils (Internet homepage of the chair: www.glr.maschinenbau.tu-darmstadt.de). Bräunling, W. J. G.: Flugzeugtriebwerke, Springer Verlag. Cohen, H.; Rogers, G. F. C.: Gas Turbine Theory, Longman Group Limited.

10 Comment

Page 74: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

68

Module Title

Railway Vehicle Engineering

Module No.

18-bi-2050

Credit Points

3 CP

Work load

90 h

Individual study

45 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2050-vl Railway Vehicle Engineering 0 Vorlesung 2

2 Content of Teaching

From the comprehensive and interdisciplinary domain of the railway technology (vehicle technology, signal and safety technology, construction engineering and railway operating technology) the lecture picks out the domain of the automotive engineering with the emphasis of the mechanical part. It offers an interrelated introduction into selected chapters of the rail vehicle engineering with special emphasis in the railway-specific technical solutions and procedures. The lecture is divided into 7 chapters, whereby chapters 1-4 cover the theoretical basic topics and chapters 5-7 present the fundamental components of the rail vehicle.

3 Learning Outcomes

Basic understanding of mechanical parts of railways and their components.

4 Prerequisites for Participation

Bachelor in Electrical Engineering, Mechatronics or Mechanical Engineering

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

In general, the examination takes place in form of a written exam (duration: 90 minutes). If up to 20

students register in semesters in which the lecture does not take place, there will be an oral examination

(duration: 30 min.). The type of examination will be announced within one working week after the end

of the examination registration phase.

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc MEC, MSc EPE, MSc WI-ETiT

Page 75: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

69

9 Literature

References/Textbooks: Detailed textbook; Filipovic, Z: Elektrische Bahnen. Springer, Berlin, Heidelberg, 1995. Obermayer, H.J.: Internationaler Schnellverkehr.Franckh-Kosmos, Stuttgart, 1994.

10 Comment

Page 76: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

70

Module Title

Innovation for Railway Systems

Module No.

13-J1-M007

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-J1-0009-se Innovationen im System Bahn 0 Seminar 1

13-J1-0010-ue Erarbeitung von innovativen Lösungen für den Aufgabenbereich

0 Übung 1

2 Content of Teaching

Varying research projects from the fields of operations, vehicle technology, infrastructure and sustainability focusing on innovation in railway operations. " Innovation for Railway Systems" is a multi-part lecture/workshop. It starts with a kick-off event: students independently choose a topic from the overview given. A variety of possible solutions for the chosen topic is developed by the students. From this variety of possible solutions several are selected together with the supervisors and worked out in detail by the students afterwards. The report shall be presented in a suitable form and withstand further discussions.

3 Learning Outcomes

In addition to the professional knowledge in railway system students acquire skills in the areas of

innovation management and creativity and problem-solving techniques. This includes an independent

development of interdisciplinary solutions for practice as well as the summary in form of a report.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Sonderform, Standard)

6 Requirement for receiving Credit Points

Aktive Teilnahme, bestandene Fachprüfung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Sonderform, Gewichtung: 1)

8 Associated study programme

MSc

Page 77: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

71

9 Literature

10 Comment

Page 78: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

72

Module Title

Motor Development for Electrical Drive Systems

Module No.

18-bi-2032

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2030-ue Motor Development for Electrical Drive Systems

0 Übung 1

18-bi-2030-vl Motor Development for Electrical Drive Systems

0 Vorlesung 2

2 Content of Teaching

For the wide field of the drive technology at low and medium power range from 1 kW up to about 500 kW…1 MW the conventional drives and the current trends of developments are explained to the students. Grid operated and inverter-fed induction drives, permanent-magnet synchronous drives with and without damper cage ("brushless dc drives"), synchronous and switched reluctance drives and permanent magnet and electrically excited DC servo drives are covered. As a "newcomer" in the electrical machines field, the transversal flux machines and modular synchronous motors are introduced.

3 Learning Outcomes

For the students who are interested in the fields of design, operation or development of electrical drives

in their future career, the latest knowledge about

• modern computational methods (e.g. finite elements),

• advanced materials (e.g. high energy magnets, ceramic bearings),

• innovative drive concepts (e.g. transversal flux machines) and

• measurement and experiment techniques are imparted.

4 Prerequisites for Participation

Completed Bachelor of Electrical Engineering or equivalent degrees

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 79: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

73

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc MEC, not MSc EPE

9 Literature

A detailed script is available for the lecture. In the tutorials design of PM machines, switched reluctance drives and inverter-fed induction motors are explained.

10 Comment

Page 80: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

74

Module Title

Commuter Railway Systems (C)

Module No.

13-J1-M003

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-J1-0005-vl Commuter Railway Systems (C) 0 Vorlesung 2

2 Content of Teaching

Design principles for classical and innovative railway systems for public transportation (legal basics, financing, layout of lines and stations). Operation of commuter railway systems (personnel and vehicle planning, vehicles for classical and innovative railway systems), compilation of time-tables, integrated regular interval time-tables. Presentation of selected international projects.

3 Learning Outcomes

The students have the ability to selcet the most suitable approach solving problems regarding the design

of commuter railway systems.

The students have the ability to and to solve very complex problems in the field of commuter railway

systems independently, based on scientific principles.

Based on their gained knowledge and expertise the students have the ability to create innovate methods

and approaches solving problems in the field of commuter railway systems.

4 Prerequisites for Participation

Verkehr I Verkehr II

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 60 min, Standard)

6 Requirement for receiving Credit Points

Anwesenheitspflicht, bestandene Fachprüfung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

Page 81: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

75

9 Literature

Skripte werden zu Beginn der Lehrveranstaltung ausgegeben. Weiterführende Literatur wird zu Beginn der Lehrveranstaltung bekannt gegeben.

10 Comment

Page 82: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

76

Module Title

Planning and Application of Electrical Drives (Drives for Electric Vehicles)

Module No.

18-bi-2120

Credit Points

5 CP

Work load

150 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2120-se Planning and application of electrical drives (Drives for electric vehicles)

0 Seminar 2

2 Content of Teaching

Mono- and hybrid drive concepts, motor technology, DC and AC machines, drive systems, car dynamic, energy storage; Seminary work: simulation of car with electric drive train, presentation of seminary work

3 Learning Outcomes

Knowledge on design proceduces for electric modulation systems for electric and hybrid cars

4 Prerequisites for Participation

Bachelor in Electrical Engineering or Mechatronics, "Electrical Drives and Machines" and "Power electronics" recommended

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc MEC, MSc EPE, MSc WI-ETiT

9 Literature

Textbook; Binder, A.: Electric machines and drives I, Darmstadt Univ. of Technology Mitschke, M.: Dynamik der Kraftfahrzeuge, Springer Verlag Berlin

10 Comment

Page 83: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

77

Module Title

Proseminar Electrical Engineering and Information Technology

Module No.

18-bi-1000

Credit Points

2 CP

Work load

60 h

Individual study

30 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-1000-ps Proseminar Electrical Engineering and Information Technology

0 Proseminar 2

2 Content of Teaching

Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multi media technology.

3 Learning Outcomes

The student will be able to understand and analyse scientific papers, to present technical facts properly

and well structured. He knows how to summarize and present the given topic.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

BSc ETiT, BSc MEC, BSc iST

9 Literature

10 Comment

Page 84: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

78

Module Title

Systemic observation of air traffic

Module No.

16-23-3144

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-23-3144-vl Systemic observation of air traffic 0 Vorlesung 2

2 Content of Teaching

The objective of the lecture is to convey a full understanding of the contemporary global air transportation system. The legal framework and relevant stakeholders (airports, airlines, air traffic management and passengers) are analyzed and interactions as well as areas of overlaping interests are underlined. The focus is on the equipment, the operational processes and the corresponding challenges like capacity bottlenecks, noise emission and the economic situation. The current state of research (NextGen, SESAR) is presented. Simulations and case studies are used to consolidate the content of the lectures.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Derive the overall system and its' interfaces.

Classifiy the contemporary challenges, assess strengths and weaknesses of the system and illustrate

approaches to its feature development.

[*]Transfer the course of action of current reserach to future challenges.

[/list]

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Standard)

Oral exam 20 min per participiant

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

Page 85: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

79

8 Associated study programme

WPB Master MPE III (Wahlfächer aus Natur- und Ingenieurwissenschaft) WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik) Master Mechatronik Master of Traffic and Transport

9 Literature

Course notes available. Textbooks: Schmitt, Gollnick: Air Transport System, Springer 2015; Hirst: The Air Transport System, Woodhead Publishing 2008; Mensen: Handbuch der Luftfahrt, Springer 2013; Scheiderer: Angewandte Flugleistung, Springer 2008

10 Comment

Page 86: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

80

Module Title

Thermal Turbomachinery and Flight Propulsion

Module No.

16-04-5070

Credit Points

8 CP

Work load

240 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Heinz-Peter Schiffer

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-04-5020-vl Flight Propulsion 0 Vorlesung 2

16-04-5040-vl Thermal Turbomachinery 0 Vorlesung 2

2 Content of Teaching

Thermal Turbomachinary: Description of the function and characteristical features of turbomachines (gas turbine, steam trubine, radial compressor, radial turbine, turbo charger) in which density changes are essential for transfer of energy Flight Propulsion: Off-design performance; controls; by-pass engines; afterburner; noise production; ramjets; rocket and hybrid engines;

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Explain the differences between the various types of thermal trubomachines for example stationary gas

turbines, steam turbines, radial compressors/turbines and turbochargers.

Explain the fundamentals of similarity in fluid mechanics and the component characteristics of a

compressor/turbine and the non-dimensional parameters used in performance maps of components.

Explain the sources for noise generation in a jet engine.

Describe and explain the function and characteristical features of derivatives of a single-spool jet engine

(e.g. jet engine with afterburning, twin-spool jet or fan engine, turboshaft engine) and the advantages

and disadvantages of the different engine types and further the possible fields of application for these

engines.

Describe and explain possibilities for the optimisation of a rocket engine (thrust and efficiency

optimisation).

[/list]

4 Prerequisites for Participation

Basic knowledge in thermodynamics and fluid mechanics (especially compressible flow) is essential, fundamentals in turbomachinery

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

Oral exam 30 min

Page 87: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

81

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau) WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)

9 Literature

Lecture notes 'Flight Propulsion and Gas Turbines ' and Lecture View Foils (Internet homepage of the chair : www.glr.maschinenbau.tu-darmstadt.de); Traupel, W.:'Thermische Turbomaschinen', Springer Verlag; Lechner, C., Seume, J.:'Stationäre Gasturbinen',

10 Comment

Page 88: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

82

Module Title

Combustion Engines I

Module No.

16-03-5010

Credit Points

6 CP

Work load

180 h

Individual study

135 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. techn. Christian Beidl

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-03-5010-vl Combustion Engines I 0 Vorlesung 3

2 Content of Teaching

Introduction: Historic review, economic and ecological aspects, classification of engines. Fundamentals of the thermodynamic process: Carnot cycle, constant-volume cycle, constant-pressure cycle, Seiliger cycle. Fundamentals of engine construction: Crank shaft, con-rod, bearing, piston, piston rings, piston pin, liner, cylinder head gasket, cylinder head, charge cycle. Parameters: Mean pressure, power, torque, fuel consumption, efficiency, cylinder charge, air fuel ratio, kinematics of the crank mechanism, compression ratio, characteristic diagrams, main dimensions. Fuel: Chemical configuration, characteristics, heat value, characteristics of ignition, production, alternative fuels. Basics of carburation: Spark-ignition engines, diesel engines, spreading, conditioning. Carburation of spark-ignition engines: Carburator, electronic fuel injection, HCCI (Homogeneous Charge Compression Ignition). Ignition of spark-ignition engines: Requirements, spark plug, ignition systems, magnetic systems, knock control systems.Mixture formation of diesel engines: basics, classification of different methods, mixture distribution and mixture formation, injection systems

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Explain the physical principles of combustion engines.

Explain the economic and ecological relevance of combustion engines.

Describe the basics of the engine construction.

Explain the difference by mixture formation and ignition process of spark ignited engines and diesel

engines.

[*]Explain the ignition and ignition systems of the spark ignited engine.

[/list]

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

Page 89: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

83

Written or oral exam (optional) [written: 1 h 30 min; oral: 1 h 30 min (per group with 4 people]

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WP Bachelor MPE Bachelor Mechatronik

9 Literature

VKM I - script, available at the secretariat

10 Comment

Page 90: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

84

Module Title

Combustion Engines II

Module No.

16-03-5020

Credit Points

6 CP

Work load

180 h

Individual study

135 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. techn. Christian Beidl

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-03-5020-vl Combustion Engines II 0 Vorlesung 3

2 Content of Teaching

• Electronic motor management: Configuration and structure, actuators and sensors, main

functions, application, interfaces.

• Ignition and combustion of hydrocarbons: Kinetic gas theory, internal combustion, correlation

between in-cylinder pressure and heat release, efficiency, basics of the combustion (SI-engine /

diesel-engine), abnormal combustion, combustion chamber shape and combustion processes.

• Emissions: Components, corruptive effects, formation, influence of the operating point, internal

motoric methods, aftertreatment, measuring systems, emission tests.

• Charge cycle: Influence of the charge cycle on engine characteristics, systems, camshaft

drivetrains, parameters of the charge cycle, variable valve timing, special solutions.

• Charging: Characteristics and advantages of charging, different systems, design criterion for

turbocharging, multi-stage charging, performed variants.

• Noise: Basics, sources, measures against noise, regulations

• Hybrid systems: Basics, functionalities, classification, components, challenges, research methods

and certification, performed variants.

• Acquisition and analysis of engine indication: Measurement chain, measurement of pressure

and cylinder capacity, analysis, calculation of heat release, characteristic resultsDesign of

experiments.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Design combustion chambers with the knowledge acquired on the connenction of combustion chamber

shape, combustion processes, and ignition.

Describe the charge chaniging of a combustion engine, identify variants, and advance engines

Explain hybrid technology.

[*]Reproduce specific measuring methods in the fields of optimizing engines (indication, design of

Page 91: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

85

experiments).

[/list]

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

oral or written (optional)

written exam 1 h 30 min;

oral exam: 1 h 30 min (per group of 4)

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau) Master Mechatronik

9 Literature

VKM II - script, available at the secretariat

10 Comment

Page 92: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

86

Subject Area „Energy Materials“

Module Title

Mini-Research-Project „Energy Materials“

Module No.

11-01-4412

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Das Mini-Forschungsprojekt wird in einem Fachgebiet oder Institut eines am Studienbereich Energy Science and Engineering beteiligten Fachbereichs durchgeführt.

Der Inhalt der zu bearbeitenden Fragestellung ist in Absprache mit dem jeweiligen Lehrenden festzulegen und orientiert sich an aktuellen, energierelevanten wissenschaftlichen Fragestellungen mit Bezug zum Themenbereich „Energiematerialien“. Idealerweise erfordert die Aufgabenstellung eine interdisziplinäre Herangehensweise.

Der/die Studierende wird zu einer weitestgehend eigenständigen Bearbeitung der Themenstellung angeleitet.

3 Learning Outcomes

Die Studierenden

• sind kompetent in der selbständigen Einarbeitung in das Thema der Aufgabenstellung sowie in der Dokumentation und Präsentation ihrer Arbeit

• sind befähigt, die im Studium erworbenen Kenntnisse und Fähigkeiten mit Fragestellungen der aktuellen Forschung zu verbinden

• können forschungsnahe Experimente oder Projektarbeiten eigenständig strukturieren, planen und durchführen

• wählen zur Bearbeitung einer Aufgabenstellung adäquate Hilfsmittel und Methoden aus und setzen diese ein bzw. wenden diese an

• können die erhaltenen Ergebnisse unter Berücksichtigung des aktuellen Forschungsstands einschätzen und angemessen interpretieren

• sind in der Lage, die konkreten Fragestellungen, Lösungsvorschläge, unternommene Arbeitsschritte und die erhaltenen Ergebnisse in einer Präsentation sowie einem schriftlichen Bericht in wissenschaftlichem Stil vorzustellen und in der entsprechenden Fachsprache zu diskutieren

sollen nach dem absolvieren des Moduls in der Lage sein, auch umfangreichere Forschungs- und

Entwicklungsprojekte selbständig durchzuführen

4 Prerequisites for Participation

B.Sc. in einer Natur- oder Ingenieurwissenschaft

5 Type of Examination

Page 93: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

87

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

6 Requirement for receiving Credit Points

Regelmäßige Anwesenheit bei vereinbarten Präsenzterminen, Abgabe eines schriftlichen Berichts

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Wird bei der Aufgabenstellung bekanntgegeben bzw. ist durch eigene Recherche zu ermitteln

10 Comment

Page 94: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

88

Module Title

Ceramic Materials: Syntheses and Properties. Part II

Module No.

11-01-7342

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Dr. Emanuel Ionescu

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-7342-vl Synthesis and Properties of Ceramic Materials II

0 Vorlesung 2

2 Content of Teaching

• Powder Processing • Shaping Techniques • Pyrolysis Processes • Sintering • Silicon carbide, silicon nitride, silicon oxycarbides, silicon carbonitrides

3 Learning Outcomes

The student has gained practical experience with and remembers different processing techniques for

ceramic materials. Furthermore, he/she has gained the competence to correlate the relationship

between (micro)structure/phase composition of ceramics and their property profiles. The student gets

acquainted with modern processing techniques for ceramic materials and is able to follow advanced

textbooks and scientific Literature.

4 Prerequisites for Participation

none

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. W. D. Kingery, Introduction to Ceramics, Wiley ,1976.

Page 95: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

89

2. J. R. Reed, Introduction to the Principles of Ceramic Processing, Wiley, 1987. 3. U. Schubert, N. Hüsing, Synthesis of Inorganic Materials, Wiley-VCH, 2000. 4. P. Colombo, G. D. Soraru, R. Riedel, H.-J. Kleebe, Polymer-Derived Ceramics: from Nanostructure to Applications, DEStech Publications Inc., 2009. 5. R. Riedel, I.-W. Chen, Ceramics Science and Technology, vols. 1-4, Wiley-VCH, 2008-2014. 6. N. Bansal, A. R. Boccaccini, Ceramics and Composites Processing Methods, Wiley, 2012.

10 Comment

Cycle: each winter semester

Page 96: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

90

Module Title

Principles of Solid State and Structural Inorganic Chemistry I (M.AC6)

Module No.

07-03-0025

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-03-0007-vl Principles of Solid State and Structural Inorganic Chemistry I (M.AC6)

0 Vorlesung 2

2 Content of Teaching

Charakteristika anorganischer Festkörper, kooperative Phänomene, kristalliner Zustand; Präparative Methoden (Hochtemperatur- und Hochdrucksynthese, Einkristallzucht, Chemischer Transport, Solvothermalsynthese, Sol-Gel-Verfahren, Topochemische Reaktionen, Dünne Schichten); Symmetrie, Kristallographie, Strukturtypen; Struktur und Bindung (Nichtmetalle, Metalle, kovalente, ionische und intermetallische Verbindungen); Strukturbestimmende Faktoren (Isosteriebeziehungen, Elektronenmangelverbände, Gitterenergie, Raumerfüllung, Radienkriterien, elektrostatische Valenz, Kristallfeldeffekte, Polarisationseffekte, Kugelpackungen und Lückenbesetzung, Polyederverknüpfung, Substitutionsmischkristalle, Überstrukturen, Valenzelektronenkonzentration); Struktur-Eigenschaftsbeziehungen (Piezoelektrizität, Ferroelektrizität, Magnetismus, Ionenleitung, Halbleiter, Härte); Reaktivität im Festkörper (Fehlerkonzept, Nichtstöchiometrie, Punktfehler, Scherstrukturen); Thermodynamische Stoffcharakterisierung (Phasendiagramme, Phasenumwandlungen); Spezielle Verbindungsklassen (Perowskite, Spinelle, Silicate, HT-Supraleiter); Elektronische Struktur von Festkörpern (Bändermodell, Zustandsdichten, Bandlücken).

3 Learning Outcomes

Studierende verstehen die Zusammenhänge zwischen Aufbau, Bindungscharakter und Eigenschaften

anorganischer Festkörper, um das Potential chemischer und struktureller Differenzierung von

Materialien, auch im Hinblick auf eine Funktionalisierung und Anwendung, erkennen und einsetzen zu

lernen.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 97: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

91

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

10 Comment

Page 98: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

92

Module Title

Functional Materials

Module No.

11-01-4104

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr.-Ing. Oliver Gutfleisch

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-1036-vl Functional Materials 0 Vorlesung 4

2 Content of Teaching

Functional Materials and specific devices: • Conductivity in metals, • Semiconductors, • Thermoelectricity, • Organic semiconductors, • Ionic conductors, • Dielectric and ferroelectric materials, • Introduction to magnetism and magnetic materials, • Magnetic materials and their applications (permanent and soft magnets), • Magnetocaloric materials, • Metal Hydrides, • Superconductors.

3 Learning Outcomes

Gaining knowledge of the most important principles in the before mentioned material classes. Focusing

not only on the physical principles but also materials synthesis and application of the most important

functional materials. Furthermore applications of these material classes will be discussed. The students

will be able to develop and characterise simple devices constructed from the above mentioned

materials.

4 Prerequisites for Participation

recommended: good knowledge of Materials Science I-VI (Bachelor course), knowledge of basic solid state physics

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

Page 99: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

93

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

M.Sc. Materials Science: Mandatory Course Materials Science. In order to avoid doubling of curricular elements, students who graduated from TU Darmstadt with a Bachelor in Materials Science within the study regulations from 2008 are NOT allowed to take this module for credit and must instead take more Elective Courses Materials Science to compensate for the missing 6 CP.

9 Literature

1. K.Nitzsche, H.-J.Ullrich, „Funktionswerkstoffe der Elektrotechnik und Elektronik“, Deutscher Verlag für Grundstoffindustrie, Leipzig (1993). 2. O. Kasap, “Principles of Electronic Materials and Devices”, Mcgraw-Hill Publ. Comp. (2005). 3. Rolf E.Hummel, „Electronic properties of materials“, Springer Verlag (1993). 4. J.C.Anderson et al., „Materials Science“, Chapman & Hall Verlag (1990). 5. C.Kittel, „Einführung in die Festkörperphysik“, 14. Auflage, Oldenburg Verlag, München (2006). 6. H.Ibach, H.Lüth, "Festkörperphysik", 6. Auflage, Springer Verlag, Berlin (2002). 7. E.A.Silinsh, V.Capek, "Organic molecular crystals" , AIP Press (1994). 8. W.Brütting, "Physics of organic semiconductors", Wiley- VCH (2005). 9. W.Buckel, R.Kleiner „Supraleitung“, 6. Auflage, Wiley-VCH Verlagsgesellschaft (2004). 10. J. M. D. Coey, “Magnetism and Magnetic Materials”, Cambridge University Press (2010). 11. B. D. Cullity, “Introduction to Magnetic Materials”, Wiley-IEEE Press (2008). 12. O’Handley, “Modern magnetic materials: principles and applications”, Wiley & Sons (2000) 13. Darren P. Broom, “Hydrogen Storage Materials: The characterisation of Their Storage Properties (Green Energy and Technology)”, Springer (2011).

10 Comment

Cycle: each winter semester

Page 100: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

94

Module Title

Interfacial Engineering

Module No.

16-15-5050

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Steffen Hardt

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-15-5050-vl Interface Science 0 Vorlesung 2

2 Content of Teaching

Thermodynamics of interfaces, contact angle, wetting, film coating, colloidal solutions, Brownian motion, viscosity of dispersions, electrolyte systems, conductivities, electrolysis, current-voltage-characteristics, electrodialysis, DLVO theory, stability of colloidal solutions, foams, emulsions, dispersions.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Explain and judge contact angles phenomena.

Analyse and model flocculation with particles.

[*]Judge the stability of colloidal systems based on the underlying DLVO theory

[/list]

4 Prerequisites for Participation

Prerequisite is knowledge in the fields of thermodynamics and fluid mechanics.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

Oral exam 30 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

8 Associated study programme

Master PST Pflicht WPB Master MPE III (Wahlfächer aus Natur- und Ingenieurwissenschaft)

Page 101: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

95

9 Literature

Lecture notes will be made available via Moodle.

10 Comment

Page 102: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

96

Module Title

Heterogenous Catalysis (M.TC5)

Module No.

07-06-0006

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-06-0006-vl Heterogenous Catalysis (M.TC5) 0 Vorlesung 2

2 Content of Teaching

Die Heterogene Katalyse ist eine der bedeutsamsten Zukunftstechnologien, da sie wie kein anderes technisches Prinzip die ökonomische und ökologische Wertschöpfung miteinander verbindet. Die meisten industriell durchgeführten Reaktionen zur Produktion von Grundstoffen, Zwischen- und Endprodukten verlaufen nur in Gegenwart von Katalysatoren. In der Vorlesung Heterogene Katalyse wird gelehrt, wie Katalysatoren hergestellt, materialseitig und kinetisch charakterisiert und - unter Berücksichtigung wesentlicher Katalysekonzepte - in Forschung und Industrie eingesetzt werden. Grundlagen der Heterogenen Katalyse Moderne Methoden der Synthese von heterogenen Katalysatoren Physikalisch-chemische Charakterisierung von heterogenen Katalysatoren Prinzipien: Redoxkatalyse, Säure-Base-Katalyse Anwendung von Katalysatoren (Selektivhydrierung, Partialoxidation, Umweltkatalyse) Catalytic Reaction Engineering; Mikro-/Makrokinetik Katalytische Reaktionsmechanismen Neue experimentelle Methoden und Trends der Entwicklung heterogener Katalysatoren Aktuelle Ergebnisse aus der Entwicklung neuer Feststoffkatalysatoren und -materialien

3 Learning Outcomes

Die Studenten sollen in der Lage sein, auf der Basis grundsätzlicher Katalysekonzepte und unter

Berücksichtigung wichtiger Resultate der modernen Katalyseforschung (z.B. „Nano-Catalysis“, Rational

Catalyst Design“) heterogene Katalysatoren je nach Anwendungsfall herzustellen, mit physikalisch-

chemischen Methoden zu charakterisieren und zur Weiterentwicklung/Optimierung von Katalysatoren

für bedeutsame Reaktionen der chemischen Industrie beitragen zu können.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Page 103: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

97

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

10 Comment

Page 104: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

98

Module Title

Magnetism and Magnetic Materials

Module No.

11-01-2001

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. rer. nat. Lambert Alff

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-2001-vl Magnetism and Magnetic Materials 0 Vorlesung 2

2 Content of Teaching

• Basic notions of magnetism • Magnetism in atoms and ions • Magnetism in metallic materials • Crystal field symmetry and Exchange Interaction • Magnetically ordered structures • Magnetic order, symmetry and phase transitions • Micromagnetism and domain behavior • Experimental methods in magnetism • Selected (hot) topics from current research

3 Learning Outcomes

The student is able to remember the basic notions of magnetism for a broad range of situations and

materials. The student has the competence to differentiate different types of magnetism and their

origin, and to correlate them with materials properties. He/she is qualified to evaluate experimental and

theoretical methods for goal-oriented research in the area of magnetism and magnetic materials. The

student remembers modern magnetic materials and their use in current applications. The student has a

first insight in modern research in magnetism and magnetic materials and a beginner’s competence to

follow advanced textbooks and scientific Literature.

4 Prerequisites for Participation

recommended: module „Quantum Mechanics for Materials Science”

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

Page 105: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

99

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. S. Blundell: Magnetism in Condensed Matter, Oxford University Press (2001) 2. J. M.D. Coey: Magnetism and Magnetic Materials, Cambridge University Press (2009) 3. D. Jiles: Introduction to Magnetism and Magnetic Materials, Chapman & Hall (2001) 4. R. Skomski: Simple Models of Magnetism, Oxford University Press (2008) 5. N. Spaldin, Magnetic Materials, Cambridge University Press (2006) 6. L. Alff, Magnetismus und magnetische Materialien, Lecture notes (2004)

10 Comment

Cycle: each winter semester

Page 106: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

100

Module Title

Materials Science of Thin Films

Module No.

11-01-2004

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. rer. nat. Lambert Alff

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-2004-vl Thin Film Fabrication and Surface Techniques

0 Vorlesung 2

2 Content of Teaching

• Introduction to thin film technology • Nucleation: Thermodynamics and kinetics • Structure and strain • Thermal Evaporation • Sputtering • Chemical vapor deposition (CVD) • Molecular beam epitaxy (MBE) • Pulsed laser deposition (PLD) • Thin film deposition of oxides • Thin films for solar cells

3 Learning Outcomes

The student has gained a broad overview on and remembers relevant thin film deposition methods.

He/she is able to identify the advantages and disadvantages of each deposition method for different

applications and needs. The student has the competence to apply fundamental thin film science to novel

materials. The student has the competence to differentiate different types of deposition methods

according to their physical and chemical principles. He/she is qualified to evaluate thin film methods for

goal-oriented research in the diverse fields of thin film applications. The student has a first insight in

modern research in thin films and a beginner’s competence to follow advanced textbooks and scientific

Literature.

4 Prerequisites for Participation

none

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Page 107: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

101

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. M. Ohring: Materials Science of Thin Films, Academic Press (2002) 2. L. B. Freund and S. Suresh: Thin Film Materialss, Cambridge University Press (2003). 3. R. Eason (Ed.): Pulsed Laser Deposition of Thin Films, Wiley (2007) 4. 17. IFF-Ferienkurs: Dünne Schichten und Schichtsysteme, Forschungszentrum Jülich (1986)

10 Comment

Cycle: each summer semester

Page 108: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

102

Module Title

Mechanical Properties of Metals

Module No.

11-01-2006

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Apl. Prof. Dr.-Ing. Clemens Müller

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-9092-vl Mechanical Properties of Metals 0 Vorlesung 2

2 Content of Teaching

• Microstructure – Property Relationship • Tensile Testing • Fracture Toughness • Fatigue Life Time • Fatigue Crack Propagation • Crack Closure Effects • Long Crack and Short Crack Behaviour

3 Learning Outcomes

The student is able to remember the basic notions of the behaviour of metallic materials under static

and dynamic loading. He/she has the competence to differentiate the relevant mechanisms and their

microstructural dependence. They are able to decide about the optimal microstructure for the prevailing

mechanical loading and have basic knowledge about methods to produce the relevant microstructures.

He/she is qualified to assess experimental and theoretical methods for goal-oriented research in the

area of improving mechanical properties by microstructural optimization. The student has a beginner’s

competence to follow advanced textbooks and scientific Literature.

4 Prerequisites for Participation

recommended: Bachelor module “Materials Science IV: Mechanical Properties”

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

Page 109: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

103

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. Mechanical Behavior of Engineering Materials, J. Rösler, Springer Verlag 2. Materials Science and Engineering, R. W. Cahn et al. VCH-Verlag 3. Materials for Engineering, J. W. Martin. The Institute of Materials, London 4. Deformation and Fracture Mechanics of Engineering Materials, R.W. Hertzberg, John Wiley & Sons, Inc 5. Werkstoffkunde und Werkstoffprüfung, W. Domke. Verlag W. Girardet, Essen

10 Comment

Cycle: each winter semester

Page 110: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

104

Module Title

Semiconductor Interfaces

Module No.

11-01-8162

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Apl. Prof. Dr. rer. nat. Andreas Klein

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-8162-vl Semiconductor Interfaces 0 Vorlesung 2

2 Content of Teaching

• Carrier concentrations in semiconductors • Excess carriers and carrier recombination • Space charge layers • Schottky diodes and p/n-junctions • Charge transport characteristics of semiconductor diodes • Solar cells, light emitting diodes, semiconductor lasers • Barrier formation at semiconductor interfaces

3 Learning Outcomes

The student is able to remember the basic notions of semiconductor physics including carrier

concentrations in thermal equilibrium and non-equilibrium situations. The student has the competence

to develop energy band diagrams and understand the function of all basic semiconductor structures.

He/she is qualified to evaluate semiconductor devices and remembers most important semiconductor

materials, their properties and their use in current applications. The student is aware of several

materials limitations of semiconductor devices.

4 Prerequisites for Participation

recommended: fundamentals of solid state physics

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

Page 111: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

105

9 Literature

1. Klein, Semiconductor Interface, Lecture Notes (2009) 2. S.M. Sze, and K.K. Ng: Physics of Semiconductor Devices, John Wiley & Sons, Hoboken (2007) 3. P.Y. Yu, and M. Cardona: Fundamentals of Semiconductors. Physics and Materials Properties, Springer, Berlin (2001)

10 Comment

Cycle: each winter semester

Page 112: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

106

Module Title

Surfaces and Interfaces

Module No.

11-01-4105

Credit Points

5 CP

Work load

150 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. Wolfram Jaegermann

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-7922-vl Surfaces and Interfaces 0 Vorlesung 3

2 Content of Teaching

• surfaces of solids: thermodynamics of surface formation, structure of surfaces, electronic structure of surface and surface potentials • kinetics of surface reactions: physisorption and chemisorption, surface diffusion, surface reactions and catalysis • internal surfaces: structural models, thermodynamics of internal surfaces, epitaxy and growth modes • solid/electrolyte interfaces: thermodynamics and electrochemical double layers, thermodynamics of electrochemical reactions, kinetics of electrochemical reactions, corrosion and corrosion modes

3 Learning Outcomes

The student is able to understand and treat the specific effects of surfaces and interfaces in materials

science, he/she differentiates between thermodynamically and kinetically determined properties,

he/she knows the important terms and definitions and related theoretical concepts used in

surface/interface science and electrochemistry, he/she has reached a conceptual understanding how

surfaces/interfaces affect the properties of presented devices, he/she will reach a materials science

related understanding of electrochemical processes, he/she will be able to transfer this knowledge to

any future envisaged problems and materials, the student has reached the competence to differentiate

between bulk and surface effects in devices and to correlate them with material’s properties, he/she is

qualified to evaluate experimental and theoretical methods in his/her possible future research involving

surface/interface effects and electrolyte interfaces, he/she will have the competence to follow advanced

textbooks and scientific Literature.

4 Prerequisites for Participation

recommended: elementary knowledge in physics, especially quantum mechanics and solid state physics

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Page 113: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

107

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

M.Sc. Materials Science: compulsory module

9 Literature

1. H. Lüth, "Surfaces and Interfaces of Solid Materials", Springer Verlag (1995) 2. K. Christmann, "Introduction to Surface Physical Chemistry", Steinkopff Verlag Darmstadt, Springer Verlag New York (1991) 3. H.D. Dörfler, "Grenzflächen und Kolloidchemie" VCH-Verlagsgesellschaft (1994) 4. Zangwill, "Physics at Surfaces", Cambridge University Press 5. E.S. Machlin, "Thermodynamics and Kinetics", Columbia University New York 6. M.Henzler, W.Göpel, "Oberflächenphysik des Festkörpers", Teubner Stuttgart (1991) 7. M.A. Herman, H. Sitter, "Molecular Beam Epitaxy", Springer-Verlag (2nd Ed.) 8. Carl H. Hamann, W. Vielstich "Elektrochemie", Wiley VCH, (3. Aufl.) 9. Helmut Kaesche, "Die Korrosion der Metalle", Springer-Verlag (3. Aufl.)

10 Comment

Cycle: each winter semester

Page 114: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

108

Module Title

Materials Engineering

Module No.

11-01-1038

Credit Points

5 CP

Work load

150 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Oliver Gutfleisch

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-9312-vl Materials Engineering 0 Vorlesung 3

2 Content of Teaching

• Bauteildesign basierend auf Materialeigenschaften • Rohstoffgewinnung und -verarbeitung • Gussverfahren • Sintertechnologie • Beschichtungs- und Dünnschichtverfahren • Umformvorgänge • Fügeverfahren • Recycling und Ressourceneffizienz

3 Learning Outcomes

Der/die Studierende bekommt einen ersten Einblick in die Techniken der Rohstoffgewinnung und der

darauffolgenden Verarbeitungstechniken zur Herstellung von Materialien und Bauteilen auf schmelz-

oder pulvermetallurgischem Weg. Dies schließt eine Behandlung von relevanten theoretischen

Grundlagen mit ein. Dem/der Studierenden gelingt es, Parallelen zu ziehen zwischen Prozessierung und

Eigenschaften von Materialien. Er/sie erwirbt eine erste Qualifikation, materialspezifische

Verarbeitungsrouten für das Design und die Herstellung von Bauteilen auszuwählen. Außerdem

bekommt er/sie ein erweitertes Level an Kompetenz zur Auswahl und Anwendung von angemessenen

Beschichtungs- und Fügeverfahren. Begleitend zu den genannten Themenschwerpunkten werden dem

Studenten/der Studentin die Themen Ressourcenschonung und Recycling näher gebracht.

4 Prerequisites for Participation

empfohlen: Grundlagen der Material- und Ingenieurwissenschaft

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

Bestehen der Prüfung

7 Grading System

Modulabschlussprüfung:

Page 115: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

109

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

B.Sc. Materialwissenschaft: Pflichtmodul

9 Literature

1. Werkstoffwissenschaft und Fertigungstechnik. Eigenschaften, Vorgänge, Technologien. Ilschner, Singer. Springer-Verlag, Berlin 2. Manufacturing with Materials, Edwards, Endean, Butterworth 3. Materials Science and Engineering, R. W. Cahn et al. VCH-Verlag 4. Handbuch der Fertigungstechnik, G. Spur, Hanser-Verlag 5. The Production of Inorganic Materials, J. W. Evans, L. C. DeJonghe, Mc Millan 6. Materials for Engineering, J. W. Martin. The Institute of Materials, London 7. Werkstoffkunde und Werkstoffprüfung, W. Domke. Verlag W. Girardet, Essen 8. Werkstofftechnik – Teil 2: Anwendung, W. Bergmann. Hanser Studien Bücher

10 Comment

Turnus: jedes Sommersemester

Page 116: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

110

Subject Area „Renewable Energies and Technologies“

Module Title

Mini-Research-Project „Renewable Energies and Technologies“

Module No.

11-01-4413

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Das Mini-Forschungsprojekt wird in einem Fachgebiet oder Institut eines am Studienbereich Energy Science and Engineering beteiligten Fachbereichs durchgeführt.

Der Inhalt der zu bearbeitenden Fragestellung ist in Absprache mit dem jeweiligen Lehrenden festzulegen und orientiert sich an aktuellen, energierelevanten wissenschaftlichen Fragestellungen mit Bezug zum Themenbereich „Erneuerbare Energien und Technologien“. Idealerweise erfordert die Aufgabenstellung eine interdisziplinäre Herangehensweise.

Der/die Studierende wird zu einer weitestgehend eigenständigen Bearbeitung der Themenstellung angeleitet.

3 Learning Outcomes

Die Studierenden

• sind kompetent in der selbständigen Einarbeitung in das Thema der Aufgabenstellung sowie in der Dokumentation und Präsentation ihrer Arbeit

• sind befähigt, die im Studium erworbenen Kenntnisse und Fähigkeiten mit Fragestellungen der aktuellen Forschung zu verbinden

• können forschungsnahe Experimente oder Projektarbeiten eigenständig strukturieren, planen und durchführen

• wählen zur Bearbeitung einer Aufgabenstellung adäquate Hilfsmittel und Methoden aus und setzen diese ein bzw. wenden diese an

• können die erhaltenen Ergebnisse unter Berücksichtigung des aktuellen Forschungsstands einschätzen und angemessen interpretieren

• sind in der Lage, die konkreten Fragestellungen, Lösungsvorschläge, unternommene Arbeitsschritte und die erhaltenen Ergebnisse in einer Präsentation sowie einem schriftlichen Bericht in wissenschaftlichem Stil vorzustellen und in der entsprechenden Fachsprache zu diskutieren

sollen nach dem absolvieren des Moduls in der Lage sein, auch umfangreichere Forschungs- und

Entwicklungsprojekte selbständig durchzuführen

4 Prerequisites for Participation

B.Sc. in einer Natur- oder Ingenieurwissenschaft

5 Type of Examination

Page 117: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

111

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

6 Requirement for receiving Credit Points

Regelmäßige Anwesenheit bei vereinbarten Präsenzterminen, Abgabe eines schriftlichen Berichts

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Wird bei der Aufgabenstellung bekanntgegeben bzw. ist durch eigene Recherche zu ermitteln

10 Comment

Page 118: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

112

Module Title

Electrochemistry for Energy Applications I: Fundamentals

Module No.

11-01-7300

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. Wolfram Jaegermann

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-7300-vl Electrochemistry for Energy Applications I: Fundamentals

0 Vorlesung 2

2 Content of Teaching

• Electrochemical Thermodynamics • Electrochemical Kinetics • Electrochemical Methods • Fuel cells • Electrolysis

3 Learning Outcomes

The student will be introduced to the main concepts of heterogeneous electrochemistry (electrodics),

basic electrochemical methods and main materials science questions related to the use and application

of electrochemical converter devices. He/she will learn to evaluate experimental and theoretical results

obtained with different electrochemical, surface science and theoretical techniques, and obtain a first

insight in modern electrodics applied for continuing experimental work in this field. Moreover, he/she

obtains basic competence to follow advanced textbooks and scientific Literature.

4 Prerequisites for Participation

recommended: modules “Surfaces and Interfaces” and “Quantum Mechanics for Materials Science”

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

Page 119: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

113

9 Literature

1. G. Wedler; Lehrbuch der Physikalischen Chemie 2. P.W. Atkins; Physikalische Chemie (Physical Chemistry) 3. C.H. Hamann, W. Vielstich; Elektrochemie (Electrochemistry) 4. W. Schmickler; Grundlagen der Elektrochemie 5. W. Vielstich, A. Lamm, H. Gasteiger (eds); Handbook of Fuel Cells: Fundamentals, Technology, Application 6. G. Hoogers (ed.); Fuel Cell Technology Handbook

10 Comment

Cycle: each summer semester

Page 120: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

114

Module Title

Electrochemistry for Energy Applications II

Module No.

11-01-7301

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. Wolfram Jaegermann

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-7301-vl Electrochemistry for Energy Applications II

0 Vorlesung 2

2 Content of Teaching

• Solid State Ionics • Battery Fundamentals • Li-Ion Batteries • Semiconductor Electrochemistry • Electrochemical Solar Cell • Photocatalysis • Photoelectrochemical Hydrogen Production

3 Learning Outcomes

The student will be introduced to the main concepts of heterogeneous electrochemistry (electrodics),

solid state ionics and main materials science questions related to the use and application of

electrochemical storage and converter devices. He/she will learn to combine electrochemical concepts

and solid state concepts for dealing with energy devices and to evaluate experimental and theoretical

results obtained with different electrochemical, surface science and theoretical techniques, and obtain a

first insight in modern electrodics applied for continuing experimental work in this field. Moreover,

he/she obtains basic competence to follow advanced textbooks and scientific Literature.

4 Prerequisites for Participation

recommended: modules “Surfaces and Interfaces”, “Quantum Mechanics for Materials Science” and “Electrochemistry in Energy Applications I: Converter Devices”

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

Page 121: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

115

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. G. Wedler; Lehrbuch der Physikalischen Chemie 2. C.H. Hamann, W. Vielstich; Elektrochemie (Electrochemistry) 3. J. Maier, Physical Chemistry of Ionic Materials 4. Thomas B. Reddy, David Linden, Handbook of batteries 5. Robert A. Huggins , Advanced Batteries, Materials Science Aspects 6. M. Wakihara, O. Yamamoto (eds.), Lithium Ion Batteries, Fundamentals and Performance 7. R. Memming; Semiconductor Electrochemistry 8. C.A. Grimes, O.K. Varghese, S. Ranjan; Light, Water, Hydrogen

10 Comment

Cycle: each winter semester

Page 122: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

116

Module Title

Energy Systems II

Module No.

16-20-5020

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Bernd Epple

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-20-5020-vl Energy Systems II 0 Vorlesung 2

2 Content of Teaching

Energy conversion concepts on the basis of biomass, solarthermics and photovoltaics, hydroelectricity, wind power, and geothermics.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Identify chemical and physical properties of biomass with regard to different energy engineering

purposes.

Explain the utilization of solar energy, in particular solarthermics, and photovoltaics.

Know the essentials of wind power and describe the working principle of a wind turbine and its control

systems.

Calculate the energy systems covered in this course.

[/list]

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 90 min, Standard)

Written exam 90 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau)

Page 123: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

117

WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)

9 Literature

Course notes will be available at the beginning of the course

10 Comment

Page 124: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

118

Module Title

Materials chemistry in electrocatalysis for energy applications

Module No.

11-01-2022

Credit Points

5 CP

Work load

150 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. rer. nat. Ulrike Kramm

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-2022-ue Exercises Materials chemistry in electrocatalysis for energy applications

0 Übung 0

11-01-2022-vl Materials chemistry in electrocatalysis for energy applications

0 Vorlesung 0

2 Content of Teaching

Within the synthesis process of electrocatalysts it is important to consider the distinct application target already at an early stage. In this lecture, we will discuss the most important fabrication processes for electrocatalysts, important techniques for their characterization and electrochemical evaluation. The selected examples focus on energy applications such as fuel cells and water electrolysis. Topics: Electrocatalysis (Introduction, Fundamentals, Reaction mechanisms) Catalyst synthesis (Preparation of nanoparticles, Thin films, New and innovative catalyst concepts) Characterization (Selected spectroscopic and analytical methods, In-situ and post-mortem characterization) Important Parameters for catalyst application (Activity, Selectivity, Stability) Applications (Different types of fuel cells, water splitting reactions, and others)

3 Learning Outcomes

Due to the parallel exercises in which important recent publications on catalyst synthesis,

characterization and applications are evaluated, the students become experts in the field of materials

development for electrocatalysis. They will be able to perform a qualified evaluation of related

publications, proposals etc.. In addition to this, they learn how to present research results. For their own

work, the students are able to decide on their own, which characterization techniques are most suited

for the one or other types of catalyst as also the main aspects for each of the characterization methods

will be discussed.

4 Prerequisites for Participation

A Bachelor degree in natural science or engineering. It is recommended to study the basics of electrochemistry (moduls 11-01-7300 or 07-04-0006) in parallel or before.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

Page 125: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

119

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

To be announced in the lecture

10 Comment

Cycle: each summer semester

Page 126: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

120

Biomass

Module Title

Waste Treatment Technology: Fascilities, concepts and plants

Module No.

13-K1-M003

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. Liselotte Schebek

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K1-0003-vl Waste management II - logistics and techniques

0 Vorlesung 2

13-K1-0004-ue Wastemanagement 0 Übung 2

2 Content of Teaching

Waste prevention - principles, consumer behavior, product design, accounting, Waste recycling, waste management concepts, logistics, Waste technology: chemical, biological and technical principles: • Waste recycling - sorting technology, processing technology, material recycling and energy recovery, • Biological waste treatment - process technology, treatment methods, fascilities used, planning and dimensioning principles, • Mechanical-biological waste treatment - process technology, treatment methods, fascilities used, planning and dimensioning principles, • Thermal treatment of waste - process technology, treatment methods, fascilities used, planning and dimensioning principles, • Landfilling - Process engineering, multi-barrier system, types of landfill, planning and dimensioning principles, • Investment planning - basic evaluation, project schedule, project management, approval, construction and commissioning, controling, • Role play planning workshop

3 Learning Outcomes

Once the students have successfully completed the module:

- Understand the essential functions of u waste technology,

- They can describe the main aggregates of Waste Management Technology,

Page 127: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

121

- They can waste plan, design, operate and maintain waste treament plants taking into account

technical, economic and ecological aspects,

- They have the ability to weigh different solutions, explain objective and understandable, to make

decisions and justify it.

- They are able to display and present the results of their work in a suitable form,

- They have the ability to handle themself specialized problems using scientific principles.

4 Prerequisites for Participation

Grundkenntnisse in Abfallwirtschaft

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 60 min, Standard)

6 Requirement for receiving Credit Points

Unbenotete Studienleistung (Art wird zu Beginn der LV bekannt gegeben)

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Skript und Reader, ggf. wird weitere Literatur während der Lehrveranstaltung bekannt gegeben

10 Comment

Page 128: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

122

Module Title

Wastewater Technology 2

Module No.

13-K2-M002

Credit Points

6 CP

Work load

180 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. Peter Cornel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K2-0001-vu Wastewater Technology II 0 Vorlesung 2

2 Content of Teaching

Biological wastewater treatment (Fundamentals of biology, Fundamentals of the activated sludge process, Dimensioning / calculation of the activated sludge process with nutrient removal, Secondary settlement tank, Aeration) Sludge treatment (Utilisation and disposal, Sludge quantities and qualities (characteristics), Targets / aims of sludge treatment, Sludge stabilisation, Reduction of sludge volume (thickening, dewatering, drying), Sludge utilisation and disposal) System analysis (Reaction kinetics of biological processes, Reactor types and flow regimes) Biofilm processes (Biological contactors- und trickling filter, fixed bed reactors, fluidised bed reactors, Fundamentals, applications, dimensioning) Process combinations (Variants of the activated sludge process, Cascade, tank, membrane bioreactors, etc.) Multi-stage processes (Process combinations) Modelling and simulation in wastewater treatment (Static / dynamic simulation) Exercise Excursion to a wastewater treatment plant

3 Learning Outcomes

Students are able to design, construct, operate and maintain environmental plants concerning technical,

economic and ecological issues. They are capable to evaluate different solutions, to explain in an

objective and understandable way, to take and explain decisions. The students can present their results

in an appropriate manner; furthermore they can handle specific problems on their own in a scientific

way. They are able to work in teams to solve together engineering tasks.

4 Prerequisites for Participation

Empfohlen: Abwassertechnik 1 „Grundlagen der Stadtentwässerung und Abwasserreinigung“

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 60 min, Standard)

Page 129: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

123

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Vorlesungsskript

10 Comment

Page 130: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

124

Module Title

Sewage sludge - producton and treatment technologies

Module No.

13-K2-M009

Credit Points

6 CP

Work load

180 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K2-0015-se Sewage sludge - Generation and treatment processes. Integra-tive approaches for residual management in wastewater tech- nology. (introduction 10/19/06, see notice)

0 Seminar 6

2 Content of Teaching

Sewage sludge: Seminar about sewage sludge and bio solids characteristics, treatment options, problems, future trends and latest legislative developments, Fundamentals of legislation, Quantity and quality of sewage sludge, Denomination of sewage sludge, characteristic values, analytical methods, Fundamentals of aerobic and anaerobic sludge stabilisation, Stabilisation processes, construction and equipment of sludge stabilisation plants, Fundamentals of thickening and dewatering, Conditioning, drying, incineration, Treatment and disposal of process water streams, Disposal of sewage sludge, outlook, New processes, trends, possibilities for reducing of sludge quantity

3 Learning Outcomes

Students are able to design, construct, operate and maintain environmental plants concerning technical,

economic and ecological issues. They are capable to evaluate different solutions, to explain in an

objective and understandable way, to take and explain decisions. The students can present their results

in an appropriate manner; furthermore they can handle specific problems on their own in a scientific

way. They are able to work in teams to solve together engineering tasks.

4 Prerequisites for Participation

AWT B1 - Abwassertechnik 2

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 30 min, Standard)

6 Requirement for receiving Credit Points

Hausarbeit und Präsentation, Laborpraktikum, Teilnahme an Werkstattterminen (Anwesenheitspflicht)

7 Grading System

Modulabschlussprüfung:

Page 131: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

125

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Handouts, DIN-Normen, DWA-Arbeits-/Merkblätter, ATV-Handbuch Klärschlamm, ernst & Sohn Verlag, 4. Auflage, Berlin, 1996

10 Comment

Page 132: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

126

Module Title

Renewable Raw Materials for Chemical and Biochemical Transformations (M.TC9)

Module No.

07-06-0010

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

Prof. Markwart Kunz

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-06-0010-vl Renewable Raw Materials for Chemical and Biochemical Transformations (M.TC9)

0 Vorlesung 2

2 Content of Teaching

Rohstoffe und Stofffluss in der chemischen Industrie, Nachwachsende Rohstoffe, Struktur, Übersicht über Fette und Öle als nachwachsende Rohstoffe, Übersicht über Kohlenhydrate als nachwachsende Rohstoffe (Rohstoffe(niedermolekular, hochmolekular), Technische Synthesestrategien, Beispiele für Polymere (Stärke)), Technische Synthesestrategien für niedermolekulare Kohlenhydrate, Technische Synthesestrategien für polymere Produkte auf Basis von Ölen und Fetten, Strategien für Produktentwicklungen.

3 Learning Outcomes

Die Studierenden sollen in der Lage sein, Strategien zur Nutzung nachwachsender Rohstoffe zu

entwickeln. Ziel ist es auch, dass die Studierenden die Chancen und Risiken, die die nachwachsenden

Rohstoffe im Vergleich zu den petrochemischen Rohstoffen bieten, kennen und bewerten lernen.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

Page 133: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

127

10 Comment

Page 134: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

128

Geothermal Energy

Module Title

Geothermal Energy I

Module No.

11-02-1334

Credit Points

6 CP

Work load

180 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-02-1334-pr Geothermal Energy I Lab and Field Course

0 Praktikum 2

11-02-1334-vu Geothermal Energy I 0 Vorlesung und Übung

3

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Bausteinbegleitende Prüfung:

• [11-02-1334-vu] (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

• [11-02-1334-pr] (Studienleistung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Bausteinbegleitende Prüfung:

• [11-02-1334-vu] (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 2)

• [11-02-1334-pr] (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

9 Literature

Page 135: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

129

10 Comment

Page 136: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

130

Module Title

Geothermal Energy III

Module No.

11-02-2216

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-02-2161-vu Geothermal Energy III (Mathematical Methods)

0 Vorlesung und Übung

4

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 137: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

131

Module Title

Geothermal Energy IV

Module No.

11-02-2217

Credit Points

6 CP

Work load

180 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-02-2152-pr Geothermal Laboratory and Field Course

0 Praktikum 2

11-02-2154-vu Geothermal Energy IV 0 Vorlesung und Übung

3

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Bausteinbegleitende Prüfung:

• [11-02-2152-pr] (Studienleistung, fakultativ, Standard)

• [11-02-2154-vu] (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Bausteinbegleitende Prüfung:

• [11-02-2152-pr] (Studienleistung, fakultativ, Gewichtung: 1)

• [11-02-2154-vu] (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 2)

8 Associated study programme

9 Literature

10 Comment

Page 138: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

132

Module Title

Geothermal Energy V

Module No.

11-02-2218

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-02-2155-vu Geothermal Energy V (Drilling Technologiy and Power Plants)

0 Vorlesung und Übung

4

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 139: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

133

Module Title

Geothermal Energy VI

Module No.

11-02-2246

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-02-2156-vu Geothermal Energy VI: Inorganic Chemistry of Deep Groundwaters

0 Vorlesung und Übung

4

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 140: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

134

Module Title

Groundwater modeling

Module No.

13-L2-M010

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-L2-0013-vl Modelling of groundwater in water resources engg. (C)

0 Vorlesung 2

2 Content of Teaching

- problems of hydraulic design - basics of flow- and transport processes in the subsurface - model set up, processes and scale - analytical and numerical methods - parameter estimation/pumping tests - Multidimensional flow problems - unsaturated water flow

3 Learning Outcomes

After this lecture the students will be able to:

- model ground water flow,

- estimate the parameters of groundwater flow in particular the transmissivities,

- compute water flow in the vadose zone,

- present the results in an appropriate form.

4 Prerequisites for Participation

Empfohlen: Hydromechanik I,Wasserbau, Wasserwirtschaft und Hydrologie

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

8 Associated study programme

Page 141: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

135

9 Literature

Grundwassermodellierung: Eine Einführung mit Übungen“, Kinzelbach Rausch 1995, „Grundwasserhydraulik“ I. David

10 Comment

Page 142: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

136

Solar Energy

Module Title

Applied Optics

Module No.

05-21-1485

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. phil. nat. Thorsten Kröll

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

05-21-4121-vl Applied Optics: Semiconductor Physics

0 Vorlesung 3

05-23-4121-ue Applied Optics: Semiconductor Physics

0 Übung 1

2 Content of Teaching

Effekte in der Optik, Instrumentierung der Optik, Anwendungen der Optik

3 Learning Outcomes

Die Studierenden

• wissen um die Grundlagen, Funktionen und Anwendungen von typischer Instrumentierung in der Optik

• besitzen Fertigkeiten in der Formulierung mathematisch-physikalischer Ansätze zur Manipulation von

Licht und können diese auf Aufgabenstellungen in den genannten Bereichen anwenden und

kommunizieren und

• sind kompetent in der selbständigen Bearbeitung von Problemstellungen zu den genannten

Themenbereichen und sind in der Lage, technische Aspekte der Optik zu analysieren und mögliche

Anwendungen einzuschätzen

4 Prerequisites for Participation

BSc in Physik

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Bestandene Studienleistung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

Page 143: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

137

8 Associated study programme

MSc. Physik: Mögliche Spezialvorlesung in den Studienschwerpunkten „O: Moderne Optik“ oder K: Kernphysik und nukleare Astrophysik “ oder „ H: Materie bei hoher Energiedichte “oder „ F: Physik der Kondensierten Materie “ oder „ B: Physik und Technik von Beschleunigern. Und Physikalisches Wahlfach für Studierende, die nicht Studienschwerpunkt „O: Moderne Optik“ gewählt haben.

9 Literature

wird von Dozent(in) angegeben; Beispiele: Saleh, Teich: Fundamentals of Photonics

10 Comment

Page 144: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

138

Module Title

Fundamentals and Technology of Solar Cells

Module No.

11-01-2005

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. Wolfram Jaegermann

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-8401-vl Fundamentals and Technology of Solar Cells

0 Vorlesung 2

2 Content of Teaching

• energy resources and scenarios • fundamentals of semiconductor and device physics • preparation and properties of single crystalline Si cells, compound semiconductor cells, high performance cells, thin film solar cells

3 Learning Outcomes

The student has gained the information to address and judge energy topics in their relevance for future

technology areas, he/she has gained a broad understanding of semiconductor physics as background of

the working principles of solar cells, he/she has been introduced to the materials science challenges

given for the different cell technologies, he/she has learned which preparation and processing

techniques are involved in the manufacturing and improvement of solar cells, he/she is qualified to

evaluate experimental and theoretical methods for possible future research in solar cell basic science

and technology, he/she has obtained the competence to follow advanced textbooks and scientific

Literature.

4 Prerequisites for Participation

recommended: modules “Surfaces and Interfaces”, “Quantum Mechanics for Materials Science”, “Electrochemistry in Energy Applications I: Converter Devices”

5 Type of Examination

Bausteinbegleitende Prüfung:

• [11-01-8401-vl] (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

7 Grading System

Bausteinbegleitende Prüfung:

• [11-01-8401-vl] (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

Page 145: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

139

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. W. Jaegermann, Solar Cells, Lecture material (latest version 2010) 2. Basic Semiconductor Physics Books e.g. Sze, Semiconductor Physics 3. Different specialized books and reviews on solar cells, to be announced

10 Comment

Cycle: each summer semester

Page 146: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

140

Hydropower

Module Title

Numerical modeling in Hydraulic Engineering

Module No.

13-L2-M006

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-L2-0007-vl Numerical modelling in waterresources engineering (C)

0 Vorlesung 2

2 Content of Teaching

Term model, basic steps toward a mathematical model result and sources of errors, fields of application of numerical models in hydraulic engineering, model equations for CFD; basic methods of solution FD, FV, FE; basic time integration schemes, boundary conditions, correctly posed problem, stability and convergence of methods, quality assessment, special transport schemes, parameterization of bed friction and turbulence (including LES), shallow water flow, examples from praxis.

3 Learning Outcomes

After this lecture students will be able to:

- differentiate the simplifying steps from reality to the model result,

- outline the check of these steps,

- select appropriate mathematical model formulations for specific tasks,

- explain numerical solution procedures in detail and their properties,

- simulate fre surface flows with computer models,

- work out engineering solutions by means of numerical models.

4 Prerequisites for Participation

Hydromechanik und Hydraulik I + II, TM3

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

Page 147: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

141

8 Associated study programme

9 Literature

Skript vorhanden

10 Comment

Page 148: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

142

Module Title

Engineering Hydromechanics and Hydraulics II

Module No.

13-L2-M014

Credit Points

6 CP

Work load

180 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-L2-0014-vl Technical Hydromechanics and Hydraulics II

0 Vorlesung 2

13-L2-0015-ue Technische Hydromechanik und Hydraulik II - Übung

0 Übung 0

2 Content of Teaching

• momentum conservation, mass flux, acceleration and velocity; • basic equations of hydromechanics and hydraulics: derivation of mass-, momentum and energy conservation laws; • Helmholtz laws of rotation; • Resistance formulas of Prandtl, Nikuradse and Colebrook-White; • local head loss; • non-Newtonian (Bingham) Fluids; • specific solutions of the Navier-Stokes equations • basic outline of turbulence and boundary layer theory • boundary layers and flow separation; • shock computation in unsteady pipe flow; • pipe network computation.

3 Learning Outcomes

After this lecture the students are able to:

- interpret and explain flow situations,

- reproduce and explain the conservative values of fluid mechanics,

- quantify flow resistance and head losses,

- apply similarity laws

- explain the phenomenon turbulence and use equations to estimate turbulent quantities,

- compute pipe networks.

4 Prerequisites for Participation

Technische Hydromechanik und Hydraulik I

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 60 min, Standard)

6 Requirement for receiving Credit Points

Page 149: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

143

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 1)

8 Associated study programme

9 Literature

Bollrich, G., Technische Hydromechanik Band 1, Verlage für Bauwesen, 1996; Schröder, R.C.M., Technische Hydraulik, Springer Verlag, 1994; Jirka G., Einführung in die Hydromechanik, 2007 (frei Internet)

10 Comment

Page 150: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

144

Module Title

Hydraulic Engineering II

Module No.

13-L2-M002

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-L2-0011-vl Hydraulic Engineering 0 Vorlesung 2

13-L2-0012-ue Student Research in Hydraulic Engineering and Water Management

0 Übung 2

2 Content of Teaching

Waterways engineering, navigation - Types of vessels - Ports - Watergates, locks - Waterways River rehabilitation - Ecological requirements - Rehabilitation planning - Waterways maintenance - Measures of ecological hydraulic engineering and their impact Fish passages - Requirements - ethohydraulics - fish passage upstream - protection of fishes - fish passage downstream

3 Learning Outcomes

After this lecture the students are able to

- delineate hydraulic waterways systems with their functionality,

- design rehabilitation measures,

- design a fish passage,

- evidence hydraulic conductivity for rehabilitation reaches,

- cooperate and organize their work.

4 Prerequisites for Participation

Wasserbau I, WWH, Technische Hydromechanik und Hydraulik I

5 Type of Examination

Modulabschlussprüfung:

Page 151: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

145

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Benotete Übung Wasserbau II

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

Wasserbau, Grundlagen, Gestaltung von wasserbaulichen Bauwerken und Anlagen, Patt/Gonsowski 2013, Teilweise Skript FG Wasserbau, Handouts

10 Comment

Page 152: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

146

Module Title

Hydraulic Engineering III

Module No.

13-L2-M003/3

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-L2-0005-vl Wasserbau III 0 Vorlesung 2

2 Content of Teaching

• Hydraulic experiments - similarity mechanics, scale model laws - planning and layout of hydraulic experiments - fixed bed models - movable bed models - hydraulically short models - model families - hybrid models • Hydrometry - basics - measuring principles - measuring instruments - evaluation of measurements

3 Learning Outcomes

After this lecture students will be able to

- plan and layout hydraulic experiments,

- outline hydraulic model families,

- explain measuring principles and methods for fluid flow with their advantages and disadvantages,

- evaluate different solutions,

- explain plain and fair,

- make decisions and substantiate them.

4 Prerequisites for Participation

Empfohlen: Wasserbau I, Wasserbau II

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Hausarbeit, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

6 Requirement for receiving Credit Points

Page 153: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

147

Hausübung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Hausarbeit, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Skript, themenspezifische Handouts, Wasserbau, Grundlagen, Gestaltung von wasserbaulichen Bauwerken und Anlagen, Patt/Gonsowski 2013, Teilweise Skript FG Wasserbau

10 Comment

Page 154: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

148

Module Title

Wind, water and wave energy - optimization and scaling

Module No.

16-10-5220

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Peter Pelz

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-10-5220-vl Wind, water and wave energy - optimization and scaling

0 Vorlesung 2

2 Content of Teaching

Fluid power systems and fluid work systems; System optimization vs. module optimization; Absolute measures for energy conversion processes; Operation of a water-power plant as optimization task; Selection of machines by means of the Cordier diagram; Scaling of efficiency; Optimal operation of wind turbines; Design of wind turbines; Possible designs of wave-power plants

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Optimise and scale fluid power systems.

Apply methods of structural mechanics, thermo dynamics and fluid mechanics to fluid power systems

and discuss innovations in social context.

[/list]

4 Prerequisites for Participation

fundamental mechanics and fundamental fluid mechanics recommended

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

Written exam 90 min or oral exam 30 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau)

Page 155: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

149

WPB Master PST III (Wahlfächer aus Natur- und Ingenieurwissenschaft)

9 Literature

Robert Gasch; Jochen Twele: Windkraftanlagen, Grundlagen, Entwurf, Planung und Betrieb, Verlag Teubner. Albert Betz: Einführung in die Theorie der Strömungsmaschinen, Verlag G. Braun Karlsruhe. Peter Pelz: On the upper limit for hydropower in an open channel flow, Article 2011 in: Journal of Hydraulic Engineering, URI: http://tubiblio.ulb.tu-darmstadt.de/id/eprint/41338. Johannes Falnes: Ocean Vaves and Oscillating Systems, Cambridge University Press.

10 Comment

Page 156: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

150

Subject Area „Multimodal Energy Systems and Sustainability Impact Assessment"

Module Title

Mini-Research-Project „Multimodal Energy Systems and Sustainability Impact Assessment"

Module No.

11-01-4414

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Das Mini-Forschungsprojekt wird in einem Fachgebiet oder Institut eines am Studienbereich Energy Science and Engineering beteiligten Fachbereichs durchgeführt.

Der Inhalt der zu bearbeitenden Fragestellung ist in Absprache mit dem jeweiligen Lehrenden festzulegen und orientiert sich an aktuellen, energierelevanten wissenschaftlichen Fragestellungen mit Bezug zum Themenbereich „Multimodale Energiesysteme und Nachhaltigkeitsbewertung“. Idealerweise erfordert die Aufgabenstellung eine interdisziplinäre Herangehensweise.

Der/die Studierende wird zu einer weitestgehend eigenständigen Bearbeitung der Themenstellung angeleitet.

3 Learning Outcomes

Die Studierenden

• sind kompetent in der selbständigen Einarbeitung in das Thema der Aufgabenstellung sowie in der Dokumentation und Präsentation ihrer Arbeit

• sind befähigt, die im Studium erworbenen Kenntnisse und Fähigkeiten mit Fragestellungen der aktuellen Forschung zu verbinden

• können forschungsnahe Experimente oder Projektarbeiten eigenständig strukturieren, planen und durchführen

• wählen zur Bearbeitung einer Aufgabenstellung adäquate Hilfsmittel und Methoden aus und setzen diese ein bzw. wenden diese an

• können die erhaltenen Ergebnisse unter Berücksichtigung des aktuellen Forschungsstands einschätzen und angemessen interpretieren

• sind in der Lage, die konkreten Fragestellungen, Lösungsvorschläge, unternommene Arbeitsschritte und die erhaltenen Ergebnisse in einer Präsentation sowie einem schriftlichen Bericht in wissenschaftlichem Stil vorzustellen und in der entsprechenden Fachsprache zu diskutieren

sollen nach dem absolvieren des Moduls in der Lage sein, auch umfangreichere Forschungs- und

Entwicklungsprojekte selbständig durchzuführen

4 Prerequisites for Participation

B.Sc. in einer Natur- oder Ingenieurwissenschaft

5 Type of Examination

Page 157: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

151

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

6 Requirement for receiving Credit Points

Regelmäßige Anwesenheit bei vereinbarten Präsenzterminen, Abgabe eines schriftlichen Berichts

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Wird bei der Aufgabenstellung bekanntgegeben bzw. ist durch eigene Recherche zu ermitteln

10 Comment

Page 158: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

152

Module Title

Power Systems II

Module No.

18-hs-2030

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Jutta Hanson

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hs-2030-ue Power Systems II 0 Übung 2

18-hs-2030-vl Power Systems II 0 Vorlesung 2

2 Content of Teaching

This lecture covers the essential aspects of the operation and analysis of power systems. The following topics will be covered:

• Operation of synchronous generators (steady-state operation, power chart, steady-state

stability, transient stability, transient behavior)

• Calculation of short-circuit currents (Decaying three-phase short-circuit currents)

• Neutral grounding in MV- and HV-Systems (Systems with isolated neutrals, resonant grounding

and solidly grounded neutrals)

• Network Protection

3 Learning Outcomes

At the end of the lecture, the student should have a profound understanding of synchronous generator

behavior, decaying short-circuit currents and their calculation and a basic understandning of neutral

point treatment and network protection. The different types of power system stability are known.

4 Prerequisites for Participation

Knowledge comparable to "Energieversorgung I" or basic knowledge of power system equipment and calculations using symmetrical components.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

Page 159: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

153

8 Associated study programme

MSc ETiT, MSc EPE, MSc Wi-ETiT

9 Literature

A script of the lecture, tutorials and past exams are available via Moodle.

10 Comment

Page 160: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

154

Module Title

Power Systems III

Module No.

18-hs-2080

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Jutta Hanson

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hs-2080-vl Power Systems III 0 Vorlesung 2

2 Content of Teaching

System behaviour of innovative equipment in the Transmission System Fields of application:

• Power transmission and voltage stability

• Ancillary services

• Power quality

Technology of innovative equipment:

• Power Electronics theory

• Motivation, technical realisation and operation / control of HVDC systems (LCC and VSC)

• Motivation, technical realisation and operation / control of power electronic devices for

reactive power compensation (SVC, STATCOM, SC)

• Practical examples and outlook

3 Learning Outcomes

After successful completion of this module, a student knows the driving forces for the utilisation of

innovative equipment (HVDC, reactive power compensation) in power systems. He understands the

system behaviour and operation of these devices and has realised the importance of modelling and

simulation for safe and reliable design and operation.

4 Prerequisites for Participation

Contents of "Power Systems I“

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

Page 161: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

155

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc MEC, MSc Wi-ETiT

9 Literature

Presentation slides

10 Comment

Page 162: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

156

Module Title

Energy and Climate Change

Module No.

16-20-5100

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr.-Ing. Bernd Epple

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-20-5100-vl Energy and Climate Change 0 Vorlesung 0

2 Content of Teaching

Introduction (energy market, fuels), thermodynamic fundamentals, conventional (fossil fueled) energy systems, Carbon Capture and Storage, renewable energies and nuclear energy.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Distinguish different concepts for energy conversion.

Explain and estimate emissions and their impacts on the greenhouse effect.

Estimate the potentials and limitations of renewable energies.

[/list]

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

Written exam 90 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WP Bachelor MPE

9 Literature

Course notes will be available during the course procedure.

Page 163: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

157

10 Comment

Page 164: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

158

Module Title

Energy Efficiency

Module No.

13-K3-M016

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. Liselotte Schebek

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K3-0016-vl Energy Efficiency 0 Vorlesung 2

2 Content of Teaching

In the lecture the different sorts of aspects of the energy effciency will be presented at the systemic level. The following points are addressed: Energy demand: Energy audits, efficiency indicators, energy demand forecast Energy efficiency in residential housings and trade, commerce and services: Building (renovation rates, existing buildings, remediation strategies) Devices (Ecodesign) Energy efficiency in industry: Sectoral Overview Cross-cutting technologies (Ecodesign) Important process technologies Energy management: Energy benchmarking, ISO 50001, cooperative approaches Energy efficiency policies: Financial instruments, regulatory instruments, etc.

3 Learning Outcomes

The students obtain the ability to assess the economic and environmental importance of energy demand

and energy efficiency.

4 Prerequisites for Participation

Keine Voraussetzung notwendig

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

Page 165: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

159

8 Associated study programme

9 Literature

9 Literatur Energietechnologien 2050 – Technologiebericht (Martin Wietschel et al. Hrsg.: Fraunhofer ISI, Karlsruhe; 2010, 1050 S., zahlr. Abb. u. Tab., Kartoniert; Fraunhofer Verlag ISBN 978-3-8396-0102-0) Betriebliches Energiemanagement in der industrie

10 Comment

Page 166: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

160

Module Title

Energy Efficiency and Energy Flexibility in Production

Module No.

16-09-3204

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Eberhard Abele

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-09-3204-vl Energy Efficiency and Energy Flexibility in Production

0 Vorlesung 2

2 Content of Teaching

Motivation for energy efficiency activities; basics from power supply industry and energy management; methods to increase energy efficiency in production; profitability and funding for energy efficiency activities; concepts for monitoring and controlling energy; energy intense processes and production infrastructure; motivation and possibilities for energy flexibility.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Identify and differentiate between energy monitoring methods in production.

Choose between technologies to increase energy efficiency in production.

[*]Name the basics of energy flexibility in production.

[/list]

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

Oral exam 30 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

8 Associated study programme

WPB Master MPE III (Wahlfächer aus Natur- und Ingenieurwissenschaft) WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)

Page 167: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

161

Master Energy Science and Engineering

9 Literature

Will be announced separately.

10 Comment

Page 168: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

162

Module Title

Energy Management and Optimization

Module No.

18-st-2010

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Florian Steinke

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-2010-pr Energy Management and Optimization Lab

0 Praktikum 1

18-st-2010-ue Energy Management and Optimization

0 Übung 1

18-st-2010-vl Energy Management and Optimization

0 Vorlesung 2

2 Content of Teaching

The lecture reviews the different levels of energy management. It then focuses on economic dispatch and discusses its different use cases like optimization of self-consumption, virtual power plants, electric vehicle load management or multi-modal neighborhood optimization. Relevant knowledge about the components to be controlled as well as the markets to be addressed is explained. After this introduction to economic dispatch‘s application environment, the lecture focuses on the methods employed. The underlying mathematical formulations as different types of optimization problems (LP, MILP, QP, stochastic optimization) are reviewed. In parallel, a practical introduction to numerical optimization is given (descent algorithms, convergence, convexity, programming languages for the formulation of optimization problems). Moreover, an introduction into simple methods for the prognosis of future values (linear regression) is provided.All methodological learning is accompanied by hands-on exercises using the Matlab/Octave and the GAMS/AMPL software environments.

3 Learning Outcomes

Students know the different use cases and formulations of economic dispatch. They have a basic

understanding of the typically employed optimization methods and are able to judge the quality of the

achieved results.

Moreover, students are independently able to formulate (energy) optimization problems and solve them

with the tool GAMS/AMPL.

4 Prerequisites for Participation

Standard knowledge of linear algebra and multivariate analysis as well as basic knowledge in the use of Matlab/Octave is required. Knowledge of the modules „Kraftwerke & EE“ or „Energiewirtschaft“ is helpful but not necessarry.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

Page 169: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

163

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc iST, MSc Wi-ETiT, MSc CE

9 Literature

Boyd, Vandenberghe: Convex Optimization, Cambridge University Press, 2004A GAMS Tutorial by Richard E. Rosenthal, https://www.gams.com/24.8/docs/userguides/userguide/_u_g__tutorial.html

10 Comment

Page 170: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

164

Module Title

Regulation of Power Supply

Module No.

18-hs-2010

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Jutta Hanson

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hs-2010-vl Regulation of Power Supply 0 Vorlesung 2

2 Content of Teaching

• Structure of the German energy economy with focus on electrical power supply

• Changes in the regulatory framework (unbundling, grid regulation)

• Effects of the “Energiewende” on the energy economy in Germany

• Energy turnaround: technologies, energy balance

• Renewable energy law (EEG)

• Incentive regulation (“Anreizregulierung”)

• Excursion to Mainova AG

3 Learning Outcomes

A student knows after successful completion of this module the basics, the driving forces and

developments of the German energy economy.

The effects of the German “Energiewende” and necessary technical changes for the energy sector are

also taught.

4 Prerequisites for Participation

Good knowledge of content of the lecture "Energietechnik"

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 171: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

165

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc EPE, MSc Wi-ETiT, MSc MEC, MSc iST, MSc iCE, MSc CE

9 Literature

Lecture Notes

10 Comment

Page 172: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

166

Module Title

Life cycle assessment of products and systems

Module No.

13-K3-M020

Credit Points

3 CP

Work load

90 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. Liselotte Schebek

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K3-0020-se Life Cycle Assessment von Produkten und Systemen: Einführung in die Projektarbeit und softwarespezifisches Arbeiten

0 Seminar 1

2 Content of Teaching

In project teams, students work independently on a life cycle assessment project based on current research questions. Besides the group work, there is an introduction to practical applications of LCA and software tools.

3 Learning Outcomes

1. Fundamental understanding of life cycle thinking in the analysis and evaluation of products and

systems

2. Working with life cycle assessment software and databases

3. Practical application of a LCA case study of products or technological systems independently

4. Work in independent teams

5. Result presentation in the terms of reports and oral presentations

4 Prerequisites for Participation

Modeling of material flow Systems I: material flow analysis and Life Cycle Assessment

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 15 min, Standard)

6 Requirement for receiving Credit Points

Passing the examination and the study achievement

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 1)

Page 173: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

167

8 Associated study programme

M.Sc. Umweltingenieurwissenschaften – Fachlicher Wahlbereich

9 Literature

DIN ISO 14044. Umweltmanagement - Ökobilanz - Anforderungen und Anleitungen (DIN ISO 14044); 2006. DIN EN ISO 14040. Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen (DIN EN ISO 14040); 2009. Hauschild M, Rosenbaum R, Olsen SI (eds.). Life Cycle Assessment: Theory and Practice. 1st ed. Cham: Springer International Publishing; 2018. Klöpffer W, Grahl B. Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2009.

10 Comment

Angebot: Sommersemester

Page 174: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

168

Module Title

Modeling of material flow Systems I

Module No.

13-K3-M003

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K3-0006-vl Stoffstromanalyse und Life Cycle Assessment (Ökobilanz)

0 Vorlesung 2

13-K3-0007-ue Stoffstromanalyse und Life Cycle Assessment (Ökobilanz) - Übung

0 Übung 2

2 Content of Teaching

The course introduces the foundations of modelling systems of the techno sphere based on process chain analysis followed by an introduction of the application of Life Cycle Assessments. The process chain analysis makes up the balance of all in- and out coming material and energy flows of all modelled technical processes within a well-defined system boundary. This is also the basis of the Life Cycle Assessment. The aim of a LCA is the compilation and assessment of environmental impacts throughout the whole life cycle including production, use and disposal of products, services and technologies. The individual steps are explained on basis of the ISO 14040/44 Norm: Predefinition of system frame and functional unit in dependency on the objectives, data basis and mathematical solution process of the life cycle inventory, principles of impact assessments, evaluation and interpretation of the results. Furthermore, important subsystems of the techno sphere will be analysed (e.g. energy sector) and the application of LCA within these sectors will be explained by means of concrete examples. Special focus is placed on the examination of innovative technologies and their contribution as well as the involvement of scenarios for future development (“consequential LCA”). In conclusion, the integration of social and economic aspects as well as possibilities and restrictions of a LCA will be discussed in the context of other system analytical methods.

3 Learning Outcomes

Recognizing the importance of material flow systems of the technosphere for economy and ecology

Teaching of basic and methodology of systems analysis tools material flow analysis and life cycle

assessment

Qualification for the application of Life Cycle Assessment in practical decision contexts, especially in

business

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

Page 175: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

169

6 Requirement for receiving Credit Points

Unbenotete Studienleistung (Art wird zu Beginn der LV bekannt gegeben)

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Wird zu Beginn der LV Bekannt gegeben.

10 Comment

Page 176: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

170

Module Title

Modeling of material flow systems II

Module No.

13-K3-M015

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K3-0017-vl Methoden für Szenarioanalysen 0 Vorlesung 2

13-K3-0018-ue Methoden für Szenarioanalysen - Übung

0 Übung 2

2 Content of Teaching

Based on the basics of material flow analysis and Life Cycle Assessment - which were conveyed in the lecture “Modeling of material flow systems I” - further approaches of these methods are conveyed in this lecture. Especially the models that are used in the correlation with scenario analysis and the research sector are investigated: The consequentional Life Cycle Assessment is future-orientated. Beside the product system itself, also changes in background system have to be modeled. The application of consequentional LCA are conveyed particularly via examples out of the energy-politics sector Macroeconomic models, especially Input-Output-Tables – enable a comprehensive balance of a product system and illustrate an alternative approach against process-chain-based models. Basics and applications of Input-Output-Tables are exemplified for the whole economy as well as for single sectors Dynamic material-flow-analysis contributes to the investigation of prospective developments of substance-storages and material-flows. Basics and applications are exemplified especially through examples out of the building sector In view of the importance for all model-approaches, scenario techniques are described extensively. Furthermore, the use of geographical information systems (GIS) is treated in the framework of modeling.

3 Learning Outcomes

The students achieve the ability for application of the described model-techniques in the framework of

scientific work. On the base of a well-founded comprehension of the various methodological

approaches, they can evaluate the validity and limitations of the particular approach and find suitable

strategies for various interrogation and practical issues.

4 Prerequisites for Participation

Empfohlen: Modellierung von Stoffstromsystemen I: Stoffstromanalyse und Life Cycle Assessment (Ökobilanz)

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

Page 177: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

171

6 Requirement for receiving Credit Points

Unbenote Studienleistung (Art wird zu Beginn der LV bekannt gegeben)

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

10 Comment

Page 178: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

172

Module Title

Proseminar Electrical Engineering and Information Technology

Module No.

18-st-1000

Credit Points

2 CP

Work load

60 h

Individual study

30 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Florian Steinke

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-1000-ps Proseminar Electrical Engineering and Information Technology

0 Proseminar 2

2 Content of Teaching

Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multi media technology.

3 Learning Outcomes

The student will be able to understand and analyse scientific papers, to present technical facts properly

and well structured. He knows how to summarize and present the given topic.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

BSc ETiT, BSc MEC, BSc iST

9 Literature

10 Comment

Page 179: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

173

Module Title

Simulation of Electrical Power Networks

Module No.

18-hs-2100

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Jutta Hanson

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hs-2100-pr Simulation of Electrical Power Networks

0 Praktikum 2

2 Content of Teaching

Modeling, simulating and planning electrical power networks with a wide range of nominal voltages under consideration of electrical equipment (overhead lines, cables, transformers, conventional power plants, renewable energy resources und reactive power compensation systems)

3 Learning Outcomes

The learning targets are the following:

• Modeling various electrical power systems using the appropriate techniques.

• Choice of static and dynamic simulation techniques after analysing the concrete simulation

processes.

• Understanding the behaviour of various equipment in the electric power system, especially

renewable energy resources.Interpretion of results based on the fundamental questions of

modeling and simulating electrical power systems.

4 Prerequisites for Participation

Basics of electrical power systems

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc WI-ET, MSc CE

Page 180: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

174

9 Literature

Script, Presentation Slides, Description of tutorial and basic network data

10 Comment

The module exam consists of three parts:

• Test at the beginning of each tutorial (1/3 of the final grade)

• Tutorial protocol (1/3 of the final grade)

• Submission of a report describing a project work after attending the tutorial (1/3 of the

final grade)

The maximum number of participants is limited to 20 students.

Page 181: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

175

Module Title

Technology and Economics of Multimodal Energy Systems

Module No.

18-st-2060

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Stefan Nießen

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-2060-pj Technology and Economics of Multimodal Energy Systems - simulation game

0 Projekt 1

18-st-2060-vl Technology and Economics of Multimodal Energy Systems

0 Vorlesung 2

2 Content of Teaching

Energy economical framework, structures of multimodal energy systems, investment and costing, energy trading, sources for flexibility including storage, regulation, sustainability, social acceptance

3 Learning Outcomes

The students learn the structures of energy supply systems including electricity, primary energies,

heating, cooling, transport and water desalination. They understand the underlying principles for the

design of energy systems for buildings, sites, cities and countries and are able to assess their adequacy

for different international locations considering costs, environmental impact and social acceptance.

The students learn to assess the economic viability of investments in energy asssets using new present

value and annuity. They learn the functionning of energy markets and different forms of trading and

settlement for energy transactions.

Based on an analysis of the impact of an increasing share of renewables in the system, the students

learn the technology of different sources for flexbility including demand-side-management, different

technologies for storage and for the coupling of different modes of energy. Storage technologies include

batteries, pumped hydro, hydrogen and inertia. Multimodal coupling technologies include power-heat,

heat-cooling, power-heat-water and industrial processes.

Energy systems are subject to numerous laws and regulations. Therefore, the students learn different

elements that define the regulatory framework such as feed-in tarifs, tax incentives, credit programs,

quotas and certificates.

The regulations are the result of societal processes. Therefore, the students analyze the different

interest groups, origins and impact of public opinion and the perception of risk.

4 Prerequisites for Participation

A completed Bachelor in any of the following subjects: electrical engineering, mechanical engi-neering, mechatronics, environmental sciences, business administration/engineering (Wirtschaftsingenieurwesen)

5 Type of Examination

Modulabschlussprüfung:

Page 182: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

176

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 120 min, Standard)

In general, the module is examined by written examination (duration: 120 min.). If 20 students or less

apply, the exam is oral (duration: 30 min.). The mode of examination will be communicated within one

working week after the end of the exam application phase.

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

•Downloadable slides •Book.energytransition.org/en •https://www.agora-energiewende.de/fileadmin2/Projekte/2018/A_word_on/Agora_Energiewende_a-word-on_flexibility_WEB.pdf

10 Comment

Page 183: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

177

Module Title

Industrial Environmental Protection

Module No.

13-K3-M018

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

2 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K3-0001-vl Industrial Environmental Management (see notice)

0 Vorlesung 2

01-14-0010-vu Quality Management and Environmental Management

0 Vorlesung und Übung

2

2 Content of Teaching

Lecture "Introduction into Industrial Environmental Protection" (Summer term) Industry and environment history of industrial environmental protection, industrial metabolism, industrial Ecology, management concepts Analysis: Environmental impacts and consequences, input-output analysis, industry specific material flows /-circuits Process-related environmental protection: Best available technology, IPPC Directive, Energy-/Materialefficiency Cycles of material, cleaner production, zero-emission, sustainable production Product-related environmental protection: product stewardship, green design, product cycles, product identification: standards and types, life cycle analysis Lecture "Quality and Environmental Controlling" (winter term) Basics Quality and Environmental Controlling in product and process development Quality and Environmental Control in production Cross-process approaches of Quality and Environmental Control Structure, assessment and certification of quality and environmental management systems External environmental reporting Integrated Quality and Environmental Contro

3 Learning Outcomes

The students have the ability to weigh and to explain different solutions in an objective and

understandable way, as well as to make decisions and justified these.

The students are able to present the results of their work in a suitable form.

The students have the ability to edit multiple specific problems according to scientific principles by

themselves.

4 Prerequisites for Participation

Keine Voraussetzungen notwendig

5 Type of Examination

Page 184: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

178

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 60 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Associated study programme

9 Literature

Ahsen, Anette von (2008) Cost-Oriented Failure Mode and Effects Analysis. International Journal of Quality and Reliability Management, 25. Jg. (2008), Nr. 5, S. 466-476 Ahsen, Anette von (2006) Integriertes Qualitäts- und Umweltmanagement. Mehrdimensionale Modellierung und Anwendung in der deutschen Automobilindustrie. Deutscher Universitäts-Verlag. Bahner, Olaf (2001) Innovationswirkungen normierter Umweltmanagementsysteme: eine ökonomische Analyse von EMAS I, EMAS II und ISO 14001. Deutscher Universitäts-Verlag. Baumast, Annett; Pape, Jens (Hrsg.) (2009) Betriebliches Umweltmanagement. Nachhaltiges Wirtschaften in Unternehmen. 4. Aufl., Ulmer. Deutscher Wirtschaftsdienst (Hrsg.) (2002) Praxishandbuch Stoffstrommanagement für Unternehmen, Kommunen und Behörden. Schmidt, Mario (2003) Einführung in die Methodik und Praxis des Life Cycle Assessments. Viewegs Fachbücher der Technik. Sterr, Thomas; Liesegang, Dietfried G. (2003) Industrielle Stoffkreislaufwirtschaft im regionalen Kon-text. Springer Verlag. Bundesumweltministerium/Umweltbundesamt (1997) Leitfaden Betriebliche Umweltkennzahlen.

10 Comment

Page 185: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

179

Module Title

Environmental planning

Module No.

13-K4-M008

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K4-0019-vl Umweltplanung 0 Vorlesung 2

13-K4-0020-ue Umweltplanung - Übung 0 Übung 2

2 Content of Teaching

Students will gain an insight into the history, of environmental policy and planning, in the problem dimensions of precautionary approaches in environmental conservation and into the institutional arrangements, the methods and selected instruments of environmental planning in different fields. The course will provide insights in relevant areas of environmental planning (e.g. landscape planning, protection of species and habitata, clean air planning, water management planning) and new planning approaches in sustainable resource management (e.g. integrated climate mitigation planning, ecological flow management) and deal with environmental assessment procedures (e.g. Strategic Environmental Assessment, Environmental Impact Assessment). The students will critically reflect the contribution of formal and informal planning in selected policy fields and discuss the challenges and perspectives of integrated approaches in environmental planning. The students will discuss the potentials and restrictions of environmental planning in specific case studies and develop solutions to integrate environmental aspects into other policy fields at an early planning stage.

3 Learning Outcomes

The students are able to assess environmental problems and to develop planning solutions in their

social, economic, ecological, technological and legal contexts.

The students have the ability to weigh different solutions, to explain them in an objective and

understandable way and finally make decisions and justify them.

The students have the ability and willingness to engage in an interdisciplinary and internationally

oriented analysis of environmental problems and their planning solutions.

The students have the ability to edit specific problems with scientific principles by themselves.

4 Prerequisites for Participation

Empfohlen: Grundlagen der räumlichen Planung oder Nachweis gleichwertiger Veranstaltungen.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 30 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

Page 186: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

180

6 Requirement for receiving Credit Points

Studienleistung erforderlich, Art wird zu Beginn der LV bekanntgegeben

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

Informationsmaterialien werden zu Beginn der LV bereitgestellt

10 Comment

Page 187: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

181

Module Title

Environmental Sciences at TU Darmstadt

Module No.

13-K3-M008

Credit Points

6 CP

Work load

180 h

Individual study

180 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-K3-0004-vl Umweltwissenschaften an der TUD 0 Vorlesung 0

13-K3-0005-ue Umweltwissenschaften an der TUD - Übung

0 Übung 0

2 Content of Teaching

The lecture series gives a comprehensive overview on the different disciplinary oriented research and working areas with environmental relevance. Speakers from various university departments present their current research and thereby point out different methodical approaches for elaborating problems in environmental sciences. The lecture is structured in three topics: 1. Scientific principles 2. Strategy for action and technical innovations 3. Human and social scienece references

3 Learning Outcomes

The students are familiar with current and relevant problems and research topics regarding

environmental science and are able to describe these adequately based on their basic scientific

knowledge.

Students are enabled to present their work results in an appropriate manner.

Students are capable of coping with scientific problems and resolving different solution strategies

autonomously.

4 Prerequisites for Participation

Keine Voraussetzungen nötig

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Unbenotete Studienleistung (Art wird zu Beginn der LV bekannt gegeben)

7 Grading System

Modulabschlussprüfung:

Page 188: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

182

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

Literaturliste: Grundlagen der Umweltwissenschaften; Foliensätze zu Präsentationen der Vorlesungseinheiten

10 Comment

Page 189: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

183

Modul name

Pathways of Decarbonization

Module No.

18-st-2050

Credit Points

3 CP

Work load

90 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. rer. nat. Florian Steinke

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-2050-se Pathways of Decarbonization 0 Seminar 1

2 Content of Teaching

Participants will examine different studies about future multi-modal energy systems. The course will focus mostly on works describing the transition of the energy system today into one with CO2 emissions reduced by 80% in 2050. Each student will examine one study on this topic, extract the most important messages and arguments, understand the background that lead to the publication of the study, and crosscheck the most important facts (either via own calculations or via comparison with further studies). All results will be summarized into a compact, but informative presentation and a short summary report. In a block meeting, students will present their results to their peers. They will thereby obtain a wide overview of future energy scenarios and related discussions.

3 Learning Outcomes

Students extend their understanding of the current (political) discussions about the energy transition.

They improve their presentation skills and exercise critical reasoning about the studies’ results and

claims.

4 Prerequisites for Participation

Knowledge of the modules „Energiemanagement & Optimierung “ or „Energiewirtschaft“ is helpful but not necessary.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

Module final exam:

• Module exam (Study achievements, Optional, weighting: 100)

6 Requirement for receiving Credit Points

Presentation and Report

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

Page 190: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

184

MSc ETiT, MSc Wi-ETiT, MSc ESE

9 Literature

10 Comment

Page 191: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

185

Module Title

Economical optimization of energy supply for energy intensive production units

Module No.

16-13-3284

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Dr. Christof Bauer

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-13-3284-vl Economical optimization of energy supply for energy intensive production units

0 Vorlesung 2

2 Content of Teaching

•Energy as an industrial production factor within the tension field of security of supply, economic efficiency and sustainability •Special characteristics of power and natural gas supply •Grid access and regulation, liberalization and harmonization in Germany and Europe •Technical and commercial basics of the power market •Potential and relevance of demand side management (DSM) •Technical and economic aspects of industrial natural gas supply •Political framework and its relevance for the economy of industrial energy supply

3 Learning Outcomes

On successful completion of this module, students should be able to:

1. Describe the complex interaction between technical, commercial and political aspects of grid

dependent energy supply, its influence on industrial energy supply and evaluate them within the

decision making process

2. Explain the practical options and economic drivers of the operational energy supply process

3. Assess the effects of changes within the political and regulatory framework

4. Evaluate and combine the available optimization instruments for cost efficient energy supply on the

basis of case studies

4 Prerequisites for Participation

„Energy Supply and Environmental Protection” recommended

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 192: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

186

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

9 Literature

Will be anounced in the course.

10 Comment

Page 193: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

187

Subject Area „Future Power Plant Technologies“

Module Title

Mini-Research-Project „Future Power Plant Technologies“

Module No.

11-01-4415

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Das Mini-Forschungsprojekt wird in einem Fachgebiet oder Institut eines am Studienbereich Energy Science and Engineering beteiligten Fachbereichs durchgeführt.

Der Inhalt der zu bearbeitenden Fragestellung ist in Absprache mit dem jeweiligen Lehrenden festzulegen und orientiert sich an aktuellen, energierelevanten wissenschaftlichen Fragestellungen mit Bezug zum Themenbereich „Zukünftige Kraftwerke“. Idealerweise erfordert die Aufgabenstellung eine interdisziplinäre Herangehensweise.

Der/die Studierende wird zu einer weitestgehend eigenständigen Bearbeitung der Themenstellung angeleitet.

3 Learning Outcomes

Die Studierenden

• sind kompetent in der selbständigen Einarbeitung in das Thema der Aufgabenstellung sowie in der Dokumentation und Präsentation ihrer Arbeit

• sind befähigt, die im Studium erworbenen Kenntnisse und Fähigkeiten mit Fragestellungen der aktuellen Forschung zu verbinden

• können forschungsnahe Experimente oder Projektarbeiten eigenständig strukturieren, planen und durchführen

• wählen zur Bearbeitung einer Aufgabenstellung adäquate Hilfsmittel und Methoden aus und setzen diese ein bzw. wenden diese an

• können die erhaltenen Ergebnisse unter Berücksichtigung des aktuellen Forschungsstands einschätzen und angemessen interpretieren

• sind in der Lage, die konkreten Fragestellungen, Lösungsvorschläge, unternommene Arbeitsschritte und die erhaltenen Ergebnisse in einer Präsentation sowie einem schriftlichen Bericht in wissenschaftlichem Stil vorzustellen und in der entsprechenden Fachsprache zu diskutieren

sollen nach dem absolvieren des Moduls in der Lage sein, auch umfangreichere Forschungs- und

Entwicklungsprojekte selbständig durchzuführen

4 Prerequisites for Participation

B.Sc. in einer Natur- oder Ingenieurwissenschaft

5 Type of Examination

Page 194: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

188

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

6 Requirement for receiving Credit Points

Regelmäßige Anwesenheit bei vereinbarten Präsenzterminen, Abgabe eines schriftlichen Berichts

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Wird bei der Aufgabenstellung bekanntgegeben bzw. ist durch eigene Recherche zu ermitteln

10 Comment

Page 195: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

189

Combustion Power Plants

Module Title

Electrical Machines and Drives

Module No.

18-bi-1020

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-1020-ue Electrical Machines and Drives 0 Übung 2

18-bi-1020-vl Electrical Machines and Drives 0 Vorlesung 2

2 Content of Teaching

Construction and function of induction machine, synchronous machine, direct current machine. Electromagnetic field within machines, armature windings, steady-state performance as motor/generator, application as line-fed and inverter-fed drives. Significance for electric power generation, both to the grid and in stand-alone version.

3 Learning Outcomes

With active collaboration during lectures by asking questions related to those parts, which have not

been completely understood by you, as well as by independent solving of examples ahead of the tutorial

(not as late as during preparation for examination) you should be able to:

[list=1]

understand the application of electrical machines in modern drive systems and to design simple drive

applications by yourself,

understand and explain the impact of basic electromagnetic field and force theory on the basic function

of electrical machines.

[/list]

4 Prerequisites for Participation

Mathematics I to III, Electrical Engineering I and II, Physics, Mechanical Engineering

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

Page 196: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

190

8 Associated study programme

BSc ETiT, BSc/MSc Wi-ETiT, BEd

9 Literature

Detailed textbook and collection of exercices; Complete set of PowerPoint presentations L.Matsch: Electromagnetic and electromechanical machines, Int.Textbook, 1972 A.Fitzgerald et al: Electric machinery, McGraw-Hill, 1971 S.Nasar et al: Electromechanics and electric machines, Wiley&Sons, 1995 R.Fischer: Elektrische Maschinen, C.Hanser-Verlag, 2004

10 Comment

Page 197: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

191

Module Title

Energy Systems I

Module No.

16-20-5010

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr.-Ing. Bernd Epple

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-20-5010-vl Energy Systems I 0 Vorlesung 2

2 Content of Teaching

Physical principles of thermal power plants, characteristics and development of substantial components, and set-up concepts of established thermal power plants (steam and gas turbine power plants, com­bined cycle power plants, cogeneration)

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Evaluate the possibilities to optimize plant cycles.

Describe different thermal power plant designs.

Describe the operational behaviour of different power plant concepts.

[/list]

4 Prerequisites for Participation

None

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

Written exam 90 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau) WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)

Page 198: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

192

9 Literature

Course notes will be available during the course procedure.

10 Comment

Page 199: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

193

Module Title

Energy Systems III (Innovate energy conversion procedure)

Module No.

16-20-5030

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Bernd Epple

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-20-5030-vl Energy Systems III (Innovate energy conversion procedure)

0 Vorlesung 2

2 Content of Teaching

Technologies of flue gas cleaning while using solid fuels; fundamentals, structure and application of fluidized bed technologies; technologies for carbon capture and sequestration; physical and chemical fundamentals of the gasification of solid fuels; concepts of gasifiers; ultra supercritical power plant technology, construction, erection and operation of large scale steam generators; trend towards the 700°C power plant; dynamics of power plant processes; waste to energy

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Describe the fundamental properties of fluidized bed technology.

Explain the physical and chemical processes during gasification.

Merge adequate technologies for optimal fuel usage in future power plants.

Predict the behavior water-steam-cycle during transient power plant processes.

[*]Define the different process steps of waste to energy technology.

[/list]

4 Prerequisites for Participation

Basic knowledge of thermodynamics and the functionality of thermal power plants is helpful.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 90 min, Standard)

Written exam 90 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

Page 200: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

194

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau) WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)

9 Literature

Course notes will be distribute during the course

10 Comment

Page 201: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

195

Module Title

Gas Dynamics

Module No.

16-13-6410

Credit Points

6 CP

Work load

180 h

Individual study

135 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

apl. Prof. Dr. Amsini Sadiki

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-13-6410-ue Gas Dynamics 0 Übung 1

16-13-6410-vl Gas Dynamics 0 Vorlesung 2

2 Content of Teaching

3 Learning Outcomes

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

10 Comment

Page 202: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

196

Module Title

Large Generators and High Power Drives

Module No.

18-bi-2020

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2020-ue Large Generators and High Power Drives

0 Übung 1

18-bi-2020-vl Large Generators and High Power Drives

0 Vorlesung 2

2 Content of Teaching

Design of large electric generators: Special cooling methods with air, hydrogen and water, loss evaluation, especially eddy current losses, and measures to reduce the additional losses. Design of big hydrogenerators up to 800 MVA and turbo generators up to 2000 MVA with desing examples. Application of power electronics in large variable speed drives with synchronous motors: Synchronous converter and cyclo-converter. Numerous photographs to illustrate applications, excursion with students to special firms or plants.

3 Learning Outcomes

Expert knowledge in design of generators, large drives, their cooling systems and operational

performance is acquired.

4 Prerequisites for Participation

Physics, Electrical Machines and Drives, Electrical Power Engineering

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc EPE, MSc ETiT, MSc MEC, MSc WI-ETiT

9 Literature

Detailed textbook with calculated examples; Vas, P.: Parameter estimation, condition monitoring, and

Page 203: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

197

diagnosis of electrical machines, Clarendon Press, 1993 Fitzgerald, A.; Kingsley, C.; Kusko, A.: Electric machinery, McGraw-Hill, 2003 Leonhard, W.: Control of electrical drives, Springer, 1996

10 Comment

Page 204: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

198

Module Title

High Voltage Switchgear and Substations

Module No.

18-hi-2020

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Volker Hinrichsen

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hi-2020-vl High Voltage Switchgear and Substations

0 Vorlesung 2

2 Content of Teaching

This lecture covers the basic designs of high voltage substations as well as the design and working principles of high voltage switchgear:

• Tyes of switching and stresses induced by switching

• Arc behaviour in air, SF6 and vacuum

• Types of switchgear: earthing switches, disconnectors and circuit breakers

• Design and working principles of earthing switches and disconnectors in air and SF6

• Design and working principles of circuit breakers: vacuum breakers, pressured air and SF6

breakers (thermal blast and self-blast chambers)

• Stresses of earthing switches and disconnectors by short circuit conditions

• Testing of Switchgear

• Reliability of Switchgear

• Future developments: Intelligent control of switchgear, static switches, superconducting

switchgear

3 Learning Outcomes

The student should understand the purpose and working principles of high voltage switchgear as well as

their usage in high voltage substations.

4 Prerequisites for Participation

Prior attendance of the lectures High Voltage Technology I and II is recommended

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 45 min, Standard)

Page 205: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

199

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, BSc/MSc iST, MSc Wi-ETiT, MSc EPE

9 Literature

A script of the lecture (in German) can be obtained from here: [url]http://www.hst.tu-darmstadt.de/index.php?id=30[/url]

10 Comment

Page 206: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

200

Module Title

High Voltage Technology I

Module No.

18-hi-1020

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Volker Hinrichsen

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hi-1020-ue High Voltage Technology I 0 Übung 2

18-hi-1020-vl High Voltage Technology I 0 Vorlesung 2

2 Content of Teaching

Choice of Voltage Level, Generation of High AC Voltage, Generation of High DC Voltage, Generation of Impulse Voltages, Measurement of High AC/DC/Impulse Voltages, Electrical Fields, Two excursions to manufacturers of high voltage products

3 Learning Outcomes

The students know why electrical energy is transported and distributed at high voltages and what is the

optimal voltage level for different purposes; they are able to identify different basic kinds of electrical

stress in the system; they know how to generate and to measure high test voltages in the laboratory;

they have understood the requirements in the test standards and why standards are so important at all;

they are able to interpret and correctly apply the standards; they know the basic test circuits for

generating alternating, direct and impulse voltages, and they can extend and adopt them for special

purposes; they are aware of the particular problems of high-voltage measuring techniques and are able

to apply high-voltage measuring systems and optimize them for particular tasks; thus, in sum they are

basically prepared to plan, erect and operate a high-voltage test laboratory; they can analytically solve

the electrical field equations for basic electrode configurations and make use of them for optimizing

configurations with regard to dielectric strength; they know about surge propagation on lines and are

aware that this is also relevant for impulse measuring techniques and how to handle related problems.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 90 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 207: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

201

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

BSc ETiT

9 Literature

• All lecture slides (ca. 600 pcs.) available for download

• Kind, Feser: High-voltage test techniques, SBA publications

• Kind, Kärner: High-voltage insulation technology, Vieweg

10 Comment

Page 208: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

202

Module Title

High Voltage Technology II

Module No.

18-hi-2010

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Volker Hinrichsen

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hi-2010-ue High Voltage Technology II 0 Übung 1

18-hi-2010-vl High Voltage Technology II 0 Vorlesung 2

2 Content of Teaching

Layered Dielectrics, Methods of Field Control and Potential Control, Breakdown in Gases (air and SF6), Breakdown in Vacuum, Surface Discharges, Lightnings and Lightning Protection, Travelling Waves on Conductors; Excursion to a substation

3 Learning Outcomes

The students are now able to optimize insulation systems also by choice of the dielectrics, by capacitive,

refractive or resistive internal grading systems or by external geometrical/capacitive grading

elements; they have understood why equipment is designed as it is and how and where it can or has to

be optimized if requirements from service are changing; they have understood the physical phenomena

behind the dielectric breakdown of gases and do know which are the main influencing parameters; they

know the effect of strongly inhomogeneous electrode configurations and of extremely large gaps; they

know the time dependencies of a dielectric breakdown and their impact on dielectric strength under

impulse voltage stress; they are able to identify critical surface discharge configurations, know about the

problems under severe external pollution of insulators and how to solve them; they are thus qualified to

predict the dielectric strength of any electrode configuration under any kind of voltage stress and to

design a particular required dielectric strength of equipment; they are particularly enabled to realize the

demands of emerging UHV systems and to manage them; they have understood the mechanism of

thunderstorms and lightning flashes and are able to derive protective measures for buildings,

substations and overhead lines; they are skilled to calculate travelling wave effects and their effect on

fast-front overvoltages and to develop adequate countermeasures.

4 Prerequisites for Participation

High Voltage Technology I

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 120 min, Standard)

6 Requirement for receiving Credit Points

Page 209: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

203

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc Wi-ETiT

9 Literature

• all lecture slides (ca. 460 pcs.) available for download

• Kind, Feser: High-voltage test techniques, SBA publications

• Kind, Kärner: High-voltage insulation technology, Vieweg

10 Comment

Page 210: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

204

Module Title

Advanced Heat Transfer

Module No.

16-14-5040

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Peter Christian Stephan

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-14-5040-ue Advanced Heat Transfer 0 Übung 1

16-14-5040-vl Advanced Heat Transfer 0 Vorlesung 2

2 Content of Teaching

Evaporation and condensation; metastable phase equilibrium, heterogeneous and homogeneous nucleation, phase equilibrium of fluid mixtures, microscopic heat transfer phenomena; calculation basics and types of evaporators and condensers; heat pipes.

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Describe mixture specific particularities.

Calculate heat tranfer coefficients for evaporators and condensers.

Design and dimension heat pipes.

[/list]

4 Prerequisites for Participation

Fundamentals of Thermodynamics and Heat Transfer

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

Oral exam 30 min or written exam 60 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau) WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)

Page 211: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

205

9 Literature

Script, slides, and further material are available through the Moodle system of TU Darmstadt.

10 Comment

Page 212: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

206

Module Title

Power Plants and Renewable Energies

Module No.

18-hs-2090

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Jutta Hanson

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hs-2090-ue Power Plants and Renewable Energies 0 Übung 1

18-hs-2090-vl Power Plants and Renewable Energies 0 Vorlesung 2

2 Content of Teaching

Forms of energy, Characteristics and figures of electricity industry, Importance of power generation – Energy Conversion in thermal processes (Carnot-Process), Categorization of power plants – Operation principle of steam power plants, gas power plants, water power plants, wind power plants, Use of solar energy (Photovoltaics, Solar thermal technology) and further regenerative energy sources (geothermal energy, biomass) – Technologies for Energy Converting and Storing (Power 2 X) – Electrical systems – Grid Connection for power plants

3 Learning Outcomes

Goals are:

• Overview of concepts of power generation by various energy sources

• Comprehension of physical processes

• Operation principle and design of conventional and renewable power plants and storage

• Comprehension of electrical devices and control concepts

4 Prerequisites for Participation

Basics in Electrical Engineering, Power Engineering

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

Page 213: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

207

8 Associated study programme

MSc ETiT, MSc WI-ET, MSc EPE, MSc MEC, MSc CE, MSc MB, MSc WI-MB

9 Literature

Script

10 Comment

Page 214: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

208

Module Title

Modeling of Technical Turbulent Flows

Module No.

16-71-3024

Credit Points

8 CP

Work load

240 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Christian Hasse

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-71-3024-ue Modeling of Technical Turbulent Flows

0 Übung 2

16-71-3024-vl Modeling of Technical Turbulent Flows

0 Vorlesung 4

2 Content of Teaching

Continuum mechanics (transport equations), basics of turbulence (properties, mathematical basics, time and length scales, spectral perspective), statistical turbulence modeling( RANS), Direct Numerical Simulation, Large Eddy Simulation (filtering, modeling, dynamic models, choice of model).

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Explain the mathematical background and flow parameters of turbulence.

Recognize and characterize the most important types of technical flows.

Describe the fundamental models within modern flow solvers, apply them correctly, and assess their

results.

Elucidate and apply the fundamentals and modeling approaches of the Large Eddy Simulation.

[/list]

4 Prerequisites for Participation

Fundamental Fluid Mechanics recommended

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

Oral exam 30 min

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

Page 215: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

209

8 Associated study programme

WPB Master MPE II (Kernlehrveranstaltungen aus dem Maschinenbau) WPB Master PST III (Wahlfächer aus Natur- und Ingenieurwissenschaft)

9 Literature

Lecture slides will be made available via Moodle. Further Literature will be outlined in the lecture.

10 Comment

Page 216: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

210

Module Title

New Technologies of Electrical Energy Converters and Actuators

Module No.

18-bi-2040

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2040-ue New Technologies of Electrical Energy Converters and Actuators

0 Übung 1

18-bi-2040-vl New Technologies of Electrical Energy Converters and Actuators

0 Vorlesung 2

2 Content of Teaching

Goal: The application of new technologies, i.e. super conduction, magnetic levitation techniques and magneto-hydrodynamic converter principles, are introduced to the students. The physical operation mode in principle, implemented prototypes and the current state of the development are described in detail. Content: Application of the superconductors for electrical energy converters:

• rotating electrical machines (motors and generators),

• solenoid coils for the fusion research,

• locomotive- and railway transformers,

• magnetic bearings.

Active magnetic bearings (“magnetic levitation”):

• basics of the magnetic levitation technique,

• magnetic bearings for high speed drives in kW to MW range,

• application for high-speed trains with linear drives.

Magneto-hydrodynamic energy conversion:

• physical principle,

• state of the art and perspectives.

Fusion research:

• magnetic field arrangements for contactless plasma inclusion,

• state of the current research.

Page 217: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

211

3 Learning Outcomes

Basic knowledge in application of superconductivity in energy systems is understood as well as magnetic

levitation, magnetohydrodynamics and fusion technology.

4 Prerequisites for Participation

Physics, Electrical Machines and Drives, Electrical Power Engineering

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc EPE, MSc ETiT, MSc MEC, MSc WI-ETiT

9 Literature

Detailed textbook; Komarek, P.: Hochstromanwendungen der Supraleitung, Teubner, Stuttgart, 1995 Buckel, W.: Supraleitung, VHS-Wiley, Weinheim, 1994 Schweitzer, G.; Traxler, A.; Bleuler, H.: Magnetlager, Springer, Berlin, 1993 Schmidt, E.: Unkonventionelle Energiewandler, Elitera, 1975

10 Comment

Page 218: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

212

Module Title

Design, building, commissioning and operation of power plants

Module No.

16-20-5120

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-20-5120-vl Design, building, commissioning and operation of power plants

0 Vorlesung 0

2 Content of Teaching

Energy economics, energy, and environment policy (market and surrounding conditions) Law (permission law, contract law) Project management (project handling and organization, time scheduling and control, cost, and quality control) Business economics (capital budgeting, operation management)

3 Learning Outcomes

On successful completion of this module, students should be able to:

[list=1]

Present the challenging questions of the fields’ energy economics, energy and environmental policy, law,

project management, and business administration and explain the peculiarity of these fields.

[*]Explain dynamic investment calculations for the economic analyses of a project and develop a capital

budgeting for power plant construction projects.

[/list]

4 Prerequisites for Participation

Energy Systems I recommended

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

Written exam (90 min)

6 Requirement for receiving Credit Points

Passing the examination

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

Page 219: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

213

8 Associated study programme

WPB Master MPE III (Wahlfächer aus Natur- und Ingenieurwissenschaft) WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)

9 Literature

Lecture slides

10 Comment

Page 220: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

214

Module Title

Technical Combustion I

Module No.

16-71-3033

Credit Points

8 CP

Work load

240 h

Individual study

165 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Christian Hasse

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-71-3033-ue Technical Combustion I 0 Übung 1

16-71-3033-vl Technical Combustion I 0 Vorlesung 4

2 Content of Teaching

Fuels (examples and characteristics); Pollutants (formation and impact); Physical basics (thermodynamics and conservation equations); Chemical basics (chemical equilibrium and reaction kinetics); Current research topics (experimental and numerical); Flame types (non-premixed, premixed and partially premixed flames); Turbulence (basics and models)

3 Learning Outcomes

On successful completion of this module, students should be able to:

1.Name examples and properties of different fuels.

2.Name relevant pollutants, associate them with technical applications and describe the effect on

humans and the environment.

3.Recall the fundamental thermodynamic equations of ideal gases and ideal gas mixtures

4.Reproduce the definition of the state variable enthalpy and set up the Gibbs equation

5.Calculate the adiabatic flame temperature for constant heat capacity.

6.Distinguish between different types of reactions and explain the reaction velocity (forward, and

backward reaction).

7.Describe the conservation equations mathematically and explain the properties of each term of those

equations.

8.Explain properties and characteristics of different flame types, calculate characteristic flame properties

of laminar and turbulent flames and name associated experimental measurement techniques.

9.Recall common models for turbulent combustion and characterize turbulent flows with respect to

length- and timescales.

4 Prerequisites for Participation

Technical Thermodynamics 1, Technical Thermodynamics 2, Fluid Mechanics recommended

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

6 Requirement for receiving Credit Points

Page 221: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

215

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

Lecture materials can be downloaded from Moodle.

10 Comment

Page 222: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

216

Module Title

Tutorial Thermal Power Plants

Module No.

16-20-5060

Credit Points

4 CP

Work load

120 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Bernd Epple

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

16-20-5060-tt Tutorial Thermal Power Plants 0 Tutorium 4

2 Content of Teaching

Investigations on fluidized bed combustion of solid fuels. The experiments are twofold. Determination of the characteristics of fluidised beds by testing a cold flow model, as well as laboratory analysis of solid fuels (e.g. ultimate and proximate analysis, determination of gross calorific value and net calorific value, ash melting temperature and particle size distribution).

3 Learning Outcomes

On successful completion of this module, students should be able to:

1.Evaluate different particle properties regarding their influence on circulation fluidised beds.

2.Identify flow stabilty in stationary and circulating fluidised beds in cold flow models.

3.Evaluate different solid fuels regarding their combustion properties.

4.Exercise experiments in the laboratory independently with the necessary accuracy.

5.Analyse constructive and process parameters regarding their influence on the flow stability.

6.Explain the fundamental measuring and analysis methods of thermal power plants.

7.Operate the measuring instruments and to estimate their measurement uncertainty.

8.Present the results of the attempts in appropriate form.

4 Prerequisites for Participation

Energy and Climate Change or Energy Systems I

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Sonderform, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Sonderform, Gewichtung: 100%)

8 Associated study programme

Page 223: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

217

9 Literature

Course notes will be available at the beginning of the course

10 Comment

Page 224: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

218

Nuclear Power

Module Title

Introduction to Accelerator Physics

Module No.

05-21-2657

Credit Points

5 CP

Work load

150 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Joachim Enders

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

05-24-2014-vp Experimentelle Grundlagen der Physik und Technik von Beschleunigern

0 Kurs 0

18-bf-2010-vl Accelerator Physics 0 Vorlesung 2

2 Content of Teaching

Experimentelle Grundlagen der Physik und Technik von Beschleunigern: Beschleunigertypen, Strahlführung und transversaler Phasenraum, Beschleunigung und longitudinaler Phasenraum, Strahldiagnose, Hochfrequenztechnik, Emittanzmessung, Strahldynamik Einführung in die Beschleunigerphysik: Synchrotron- und Betatronschwingungen, Resonanzen und nichtlineare Dynamik, Intensitätseffekte, Impedanzen

3 Learning Outcomes

Die Studierenden

• wissen um Begriffe, Konzepte und Methoden der Beschleunigerphysik auf vertieftem Niveau und

haben technische Aspekte der Beschleunigerphysik kennen gelernt,

• besitzen Fertigkeiten in wichtigen Messmethoden und theoretischen Konzepten auf diesen Gebieten

können diese auf Aufgaben in den genannten Bereichen anwenden und kommunizieren und

• sind kompetent in der Arbeit im Labor und sind in der Lage, messtechnische Probleme der

Beschleunigerphysik anzugehen und ihre Messungen kritisch einzuschätzen sowie Strahlparameter

abzuschätzen.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Page 225: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

219

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

9 Literature

wird vom Dozenten angegeben, z.B. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen Wiedemann, Accelerator Physics (1 + 2)

10 Comment

Page 226: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

220

Module Title

Intense Laser Beams

Module No.

05-21-2670

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

05-21-1481-vl Intense Laser Beams 0 Vorlesung 3

05-23-1481-ue Intense Laser Beams 0 Übung 1

2 Content of Teaching

Laser media, special aspects of high energy lasers, non-linear refraction index, B-integral, modern laser concepts, architecture, pulse shaping, short pulse and CPA laser, laser plasma interaction diagnostics of relativistic plasmas, generation of high harmonics, particle generation, radiation safety requirements

3 Learning Outcomes

The students know the basic problems of high-energy and high-power laser systems. Working

individually and using standard Literature they can identify the requirements for high energy laser

systems and their optimization. The students can recall the state of the art of modern laser

technology. The students can compare different laser systems and calculate their performance in

general. They can describe the basic laser plasma interaction phenomena and their dependence on the

beam parameters. The students will be able to work on and extend high power laser systems.

4 Prerequisites for Participation

Basic knowledge of laser and plasma physics

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Studienleistung, Bestanden/Nicht

bestanden)

Mündliche Prüfung

6 Requirement for receiving Credit Points

Bestandene Studienleistung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Studienleistung, Gewichtung:

100%)

8 Associated study programme

MSc. Physik: Mögliche Spezialvorlesung in den Studienschwerpunkten „O: Moderne Optik“ oder K:

Page 227: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

221

Kernphysik und nukleare Astrophysik “ oder „ H: Materie bei hoher Energiedichte “oder „ F: Physik der Kondensierten Materie “ oder „ B: Physik und Technik von Beschleunigern. Und Physikalisches Wahlfach für Studierende, die nicht Studienschwerpunkt „O: Moderne Optik“ gewählt haben.

9 Literature

Will be accounced at the beginning of the lecture

10 Comment

Page 228: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

222

Module Title

Ions and Atoms in Plasmas

Module No.

05-21-1460

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. phil. nat. Thorsten Kröll

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

05-21-3212-vl Ions and Atoms in Plasmas - Introduction to Plasma Physics with Heavy-Ions

0 Vorlesung 3

05-23-3212-ue Ions and Atoms in Plasmas - Introduction to Plasma Physics with Heavy-Ions

0 Übung 1

2 Content of Teaching

Erzeugung und Charakterisierung von Plasmen und Plasmaparameter Stoßionisation, Coulombstöße, Leitfähigkeit Wellen in Plasmen Kinetische Plasmatheorie Landaudämpfung Saha Gleichung / Beam Target Interaction Plasmadiagnostik

3 Learning Outcomes

Die Studierenden

• kennen die grundlegenden Konzepte der Plasmaphysik, der Erzeugung von Plasmen und die Methoden

zur Messung der Plasmaparameter. Sie können unterscheiden zwischen den Konzepten idealer Plasmen

und Plasmen mit starkem Kopplungsparameter. Sie sind vertraut mit den wichtigsten Anwendungen der

Plasmaphysik in der Magnetfusion und Trägheitsfusion,

• besitzen Fertigkeiten, verschiedene Methoden der Plasmadiagnostik einzusetzen, sie können den

Ionisationsgrad von Plasmen abschätzen und die Bewegung von Plasmen unter dem Einfluss von

Magnetfeldern berechnen und Aussagen über die Stabilität bzw. Instabilität von 

Plasmaeinschlüssen machen.

Die Studierenden

• können Teilaspekte der Hydrodynamik, Atomphysik in Plasmen und starken Feldern, sowie

Wechselwirkung von intensiven Teilchenstrahlen und Lasern mit Materie im Hinblick auf die

Anwendungen in der Erzeugung dichter Plasmen analysieren , quantitative Abschätzungen zu wichtigen

Kenngrößen machen und auf experimentelle Aufgabenstellungen anwenden sowie die erworbenen

Kenntnisse kommunizieren

• sind kompetent in der selbständigen Bearbeitung von Problemstellungen in den genannten

Themengebieten und sind in der Lage, Einsatzmöglichkeiten der erarbeiteten Methoden der

Page 229: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

223

Plasmaphysik und hier speziell der Plasmaphysik mit schweren Ionen einschätzen zu können.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Bestandene Studienleistung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc Physik: Mögliche Spezialvorlesung in den Studienschwerpunkten "H: Materie bei hoher Energiedichte" oder „O: Moderne Optik“ oder K: Kernphysik und nukleare Astrophysik “ oder „ F: Physik der Kondensierten Materie “ oder „ B: Physik und Technik von Beschleunigern. Und Physikalisches Wahlfach für Studierende, die nicht Studienschwerpunkt "O: Moderne Optik" gewählt haben.

9 Literature

wird von Dozent(in) angegeben Beispiele: J.A. Bittencourt: Fundamentals of Plasma Physics R.O. Dendy, Plasma Physics

10 Comment

Page 230: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

224

Module Title

Measurement Techniques in Nuclear Physics

Module No.

05-21-1434

Credit Points

5 CP

Work load

150 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. phil. nat. Thorsten Kröll

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

05-21-2111-vl Measurement Techniques in Nuclear Physics

0 Vorlesung 3

05-23-2111-ue Measurement Techniques in Nuclear Physics

0 Übung 1

2 Content of Teaching

Datenanalyse, Strahlung und ihre Wechselwirkung mit Materie, Detektoren, Signalverarbeitung, Beschleuniger und Strahltransport, Anwendungen in Energieerzeugung, Festkörperphysik, Medizin

3 Learning Outcomes

 Die Studierenden

• kennen wichtige Methoden zum Nachweis ionisierender Strahlung, ausgehend von den zugrunde

liegenden physikalischen Prozessen bis hin zur Erzeugung elektronisch verarbeitbarer Signale, kennen

gängige Typen von Detektoren, und wissen über wichtige Anwendungen der Methoden in der

Kernphysik und anderen Bereichen wie Medizin, Energietechnik,Festkörperphysik und

Materialforschung Bescheid,

• besitzen Fertigkeiten, Nachweissysteme für ionisierende Strahlung z.B. im Hinblick auf Anwendungen

zu analysieren, quantitative Abschätzungen zu wichtigen Kenngrößen zu machen und auf

Aufgabenstellungen anzuwenden sowie die erworbenen Kenntnisse zu kommunizieren und

• sind kompetent in der selbständigen Bearbeitung von Problemstellungen in den genannten

Themengebieten und sind in der Lage, Einsatzmöglichkeiten von kernphysikalischen Methoden und

Messapparaten einschätzen zu können.

4 Prerequisites for Participation

Empfoheln: BSc. in Physics mit Fachkurs Kernphysik

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Bestandene Studienleistung

Page 231: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

225

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc Physik: Mögliche Spezialvorlesung in den Studienschwerpunkten "K: Kernphysik und nukleare Astrophysik“ oder „O: Moderne Optik“ oder „ H: Materie bei hoher Energiedichte “oder „ F: Physik der Kondensierten Materie “ oder „ B: Physik und Technik von Beschleunigern. Und Physikalisches Wahlfach für Studierende, die nicht Studienschwerpunkt  "K: Kernphysik und nukleare Astrophysik“ gewählt haben.

9 Literature

wird von Dozent(in) angegeben Beispiele: Knoll, Radiation Detection and Measurement Leo, Techniques for Nuclear and Particle Physics Experiments

10 Comment

Page 232: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

226

Module Title

Radiation Biophysics

Module No.

05-27-2980

Credit Points

5 CP

Work load

150 h

Individual study

105 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. phil. nat. Thorsten Kröll

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

05-21-1662-vl Radiation Biophysics 0 Vorlesung 3

05-23-1662-ue Strahlenbiophysik 0 Übung 0

2 Content of Teaching

Physikalische und biologische Grundlagen der Strahlenbiophysik, Einführung in die modernen Experimentiertechniken der Strahlenbiologie. Es wird speziell auf die Wechselwirkung von Ionenstrahlen mit biologischen Systemen eingegangen. Es werden alle Schritte vorgestellt, die zur Durchführung einer Ionenstrahltherapie erforderlich sind. Es kommen folgende Gebiete zur Sprache: Elektromagnetische Strahlung, Teilchen-Materie- Wechselwirkung. Biologische Aspekte: Strahleneffekte schwach ionisierender Strahlung (z.B. Röntgenstrahlen) auf DNA, Chromosomen, Spurenstruktur schwerer Ionen. (LET: Linear Energy Transfer) Low-LET Strahlenbiologie: Effekte in der Zelle, High-LET (z.B. Ionen) Strahlenbiologie, Physikalische und biologische Dosimetrie, Effekte bei niedriger Dosis, Ionenstrahltherapie, Therapiemodelle, Behandlung beweglicher Ziele.

3 Learning Outcomes

Die Studierenden kennen die Physik der Wechselwirkung ionisierender Strahlung mit Materie, deren

biochemische Konsequenzen wie Strahlenschäden in der Zelle, in Organen und Gewebe. Die

Studierenden sind vertraut mit den wichtigen Anwendungen der Strahlenbiologie, z.B. Strahlentherapie

und Strahlenschutz. Sie sind auch vertraut mit den Einflüssen von Strahlung in der Umwelt und im

Weltraum.

4 Prerequisites for Participation

Empfohlene Voraussetzung: BSc. Physik

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

Bestandene Studienleistung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

Page 233: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

227

8 Associated study programme

MSc Physik: Mögliche Spezialvorlesung in den Studienschwerpunkten „ F: Physik der Kondensierten Materie “ oder „O: Moderne Optik“ oder K: Kernphysik und nukleare Astrophysik “ oder „ H: Materie bei hoher Energiedichte “ oder „ B: Physik und Technik von Beschleunigern. Und Physikalisches Wahlfach für Studierende, die nicht Studienschwerpunkt „ F: Physik der Kondensierten Materie “ gewählt haben

9 Literature

wird vom Dozenten bekannt gegeben; z.B. Eric Hall , Radiobiology for the Radiologist, Lippincott Company

10 Comment

Page 234: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

228

Cross-sectional Topics of Energy Science and Engineering

Module Title

Mini-Research-Project „ Cross-sectional Topics of Energy Science and Engineering“

Module No.

11-01-4416

Credit Points

4 CP

Work load

120 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und/oder Englisch

Responsible person

Dipl.-Ing. Eva Kettel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

2 Content of Teaching

Das Mini-Forschungsprojekt wird in einem Fachgebiet oder Institut eines am Studienbereich Energy Science and Engineering beteiligten Fachbereichs durchgeführt.

Der Inhalt der zu bearbeitenden Fragestellung ist in Absprache mit dem jeweiligen Lehrenden festzulegen und orientiert sich an aktuellen, energierelevanten wissenschaftlichen Fragestellungen. Idealerweise erfordert die Aufgabenstellung eine interdisziplinäre Herangehensweise.

Der/die Studierende wird zu einer weitestgehend eigenständigen Bearbeitung der Themenstellung angeleitet.

3 Learning Outcomes

Die Studierenden

• sind kompetent in der selbständigen Einarbeitung in das Thema der Aufgabenstellung sowie in der Dokumentation und Präsentation ihrer Arbeit

• sind befähigt, die im Studium erworbenen Kenntnisse und Fähigkeiten mit Fragestellungen der aktuellen Forschung zu verbinden

• können forschungsnahe Experimente oder Projektarbeiten eigenständig strukturieren, planen und durchführen

• wählen zur Bearbeitung einer Aufgabenstellung adäquate Hilfsmittel und Methoden aus und setzen diese ein bzw. wenden diese an

• können die erhaltenen Ergebnisse unter Berücksichtigung des aktuellen Forschungsstands einschätzen und angemessen interpretieren

• sind in der Lage, die konkreten Fragestellungen, Lösungsvorschläge, unternommene Arbeitsschritte und die erhaltenen Ergebnisse in einer Präsentation sowie einem schriftlichen Bericht in wissenschaftlichem Stil vorzustellen und in der entsprechenden Fachsprache zu diskutieren

sollen nach dem absolvieren des Moduls in der Lage sein, auch umfangreichere Forschungs- und

Entwicklungsprojekte selbständig durchzuführen

4 Prerequisites for Participation

B.Sc. in einer Natur- oder Ingenieurwissenschaft

5 Type of Examination

Modulabschlussprüfung:

Page 235: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

229

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

6 Requirement for receiving Credit Points

Regelmäßige Anwesenheit bei vereinbarten Präsenzterminen, Abgabe eines schriftlichen Berichts

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 1)

8 Associated study programme

M.Sc. Energy Science and Engineering

9 Literature

Wird bei der Aufgabenstellung bekanntgegeben bzw. ist durch eigene Recherche zu ermitteln

10 Comment

Page 236: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

230

Module Title

Introduction to Scientific Computing with Python

Module No.

18-st-2070

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Florian Steinke

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-2070-pr Introduction to Scientific Computing with Python

0 Praktikum 2

2 Content of Teaching

Scientific computing is introduced via six case studies. Exemplary engineering problems that are know from basic engineering courses are solved on a computer using fundamental methods from numerical mathematics. Opportunities and limitations of this approach are highlighted. The required material on numerical mathematics is taught via preparatory scripts for each case study. During the practical exercises the methods are implemented in the current computing environment Python under the guidance of suitable teaching personnel. The case studies cover the following numerical topics:

• Formulation and solution of systems of linear equations, sparse methods

• Integration of ordinary differential equations (ODE) and their analysis based on eigenvalues

• Mathematical optimization and automated differentiation

• Linear regression and approximation, first Machine Learning algorithms

• Discretization of simple partial differential equations (PDE)

3 Learning Outcomes

Students have a first experience of solving engineering problems on a computer. They know how to

apply fundamental technologies of numerical mathematics and are familiar with an algorithmic

approach to problem solving. They know opportunities and limitations of computer-aided solution

methods.

4 Prerequisites for Participation

Etit 1 & 2, Mathe for etit 1-3

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, mündliche / schriftliche Prüfung, Standard)

The type of examination will be announced in the first lecture. Possible types could be: Creating reports

Page 237: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

231

and descriptions of experiments as well as presentations of experiments and results.

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

Etit B.A./M.Sc. with all options, as well as CE, ICE, IST

9 Literature

10 Comment

Page 238: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

232

Module Title

Future Electrical Power Supply

Module No.

18-hs-2020

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr.-Ing. Jutta Hanson

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hs-2020-se Future Electrical Power Supply 0 Seminar 2

2 Content of Teaching

The goal of this seminar is to acquire a comprehensive knowledge of a promising topic for the power system of the future. Two topics from the field of electrical power supply will be offered. These topics are assigned to groups. The groups consist of four participants. Each group is supervised by an academic staff from the department E5 who has knowledge of the specified topic. During the seminar, dates for appointments will be regularly offered by the tutor for the participants. During these meetings technical issues will be discussed. At the end of the seminar each group is required to write a final report and do a presentation (duration 20 min. plus questions) about its topic. Both the final report and presentation can be done in English or in German.

3 Learning Outcomes

The education goals are:

[list=1]

Individual working on technical subjects

Logical presentation of the results in a presentation

[/list]

4 Prerequisites for Participation

Successful participation in “Elektrische Energieversorung I” or lectures with similar contents at other universities. Good German language skills are desirable, but not required.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 239: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

233

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc Wi-ETiT, MSc EPE

9 Literature

10 Comment

Page 240: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

234

Module Title

Electrical Power Engineering

Module No.

18-bi-1010

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-1010-ue Electrical Power Engineering 0 Übung 1

18-bi-1010-vl Electrical Power Engineering 0 Vorlesung 3

2 Content of Teaching

The lecture gives an introduction to the technical processes for the use of energy for the human civilization in general and to the basic tasks and challenges of the electrical energy in particular. Biochemical energy processes such as the human metabolism are therefore not subject of the course. First, the physical basics of the term "energy" are repeated and the different forms of energy (mechanical, thermal, electromagnetic, chemical and nuclear) are explained in terms of the technical use of energy as heat, mechanical movement and electricity. Then, an overview of the energy resources is given, starting from the solar radiation and its direct and indirect impact, such as the solar heat and the motion of air mass, surface water and sea waves. Next, the energy source of biomass due to solar radiation and the fossil energy sources oil, natural gas and coal will be discussed. The energy sources of nuclear fission (uranium deposits) and nuclear fusion (heavy water), and geothermal energy due to nuclear effects in the Earth's interior are explained as well as the tidal effects caused by planetary motion. The increasing energy demand of the rapidly growing world population and the geographic distribution of energy sources (deposits, acreage, solar radiation, wind maps, tidal currents, ...) are described. The resulting energy flows on transport routes such as pipelines, waterways, ..., are briefly presented. In another section, energy conversion processes (direct and indirect methods) are illustrated. Large-scale processes such as thermal cycles or hydraulic processes in power plants are discussed mainly, but also marginal processes such as thermionic converters are addressed.Afterwards, a specialization takes place on the subject of electric power supply with respect to the increasing proportion of the electric power applications. The chain from the electric generator to the consumer with an overview of the required resources, the hiring electrical load flow and its stability is addressed. The storage of energy and in particular of electrical energy by converting into other forms of energy will be discussed. Finally, questions for the contemporary use of energy resources in regard to sustainability are mentioned.

3 Learning Outcomes

Students know the physically based energy basics and have an overview of the energy resources of our

planet Earth.

They understand the fundamental energy conversion processes on the technical use of energy in the

form of heat as well as mechanical and electrical work.

They have acquired basic knowledge of electrical engineering in the chain of effects from electric power

producer to the consumer and are able to educate themselves about current issues of energy use and its

future development.

They are able to perform basic calculations for energy content, energy conversion, efficiencies, storage,

Page 241: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

235

and for conversion and transportation losses.They are prepared for advanced lectures on energy

components and systems, energy industry, and on future forms of energy supply.

4 Prerequisites for Participation

Basic knowledge of physics (mechanics, thermodynamics, electrical engineering, structure of matter) and chemistry (binding energy) are desirable and facilitate understanding of the energetic processes.

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 120 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

BSc ETiT, BSc WI-ETiT, BSc MEC, BSc iST, BSc CE, MSc ESE

9 Literature

Lecture notes (slides) Practice documents (examples, solutions) Additional and more detailed Literature: Grothe/Feldhusen: Dubbel-Taschenbuch für den Maschinenbau, Springer, Berlin, 2007, 22. Aufl.; besonders: Kapitel „Energietechnik und Wirtschaft“; Sterner/Stadler: Energiespeicher – Bedarf, Technologien, Integration, Springer-Vieweg, Berlin, 2011; Rummich: Energiespeicher, expert-verlag, Renningen, 2015, 2. Aufl.; Strauß: Kraftwerkstechnik zur Nutzung fossiler, nuklearer und regenerativer Energiequellen, Springer, Berlin, 2006, 5. Aufl.; Hau: Windkraftanlagen –Grundlagen, Technik, Einsatz, Wirtschaftlichkeit, Springer-Vieweg, Berlin, 2014, 5. Aufl.; Heuck/Dettmann/Schulz: Elektrische Energieversorgung, Springer-Vieweg, Berlin, 2014, 9. Aufl.;Quaschning: Regenerative Energiesystem, Hanser, München, 2001, 7. Aufl.

10 Comment

Page 242: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

236

Module Title

Power Laboratory I

Module No.

18-bi-2091

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2090-tt Laboratory Briefing 0 Tutorium 0

18-bi-2091-pr Power Laboratory I 0 Praktikum 3

2 Content of Teaching

Safety instructions for laboratory; Topic of experiments:

• Electrical energy conversion

• Power electronics

• High voltage technology

• Electrical energy supply

• Renewable energies

3 Learning Outcomes

Practical knowledge is gained in measuring and operating electrical devices and apparatus of electrical

power engineering in small groups of students.

4 Prerequisites for Participation

Power Engineering or similar

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Klausur, Dauer 120 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Klausur, Gewichtung: 100%)

8 Associated study programme

Page 243: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

237

MSc ETiT, MSc MEC, MSc WI-ETiT

9 Literature

Binder, A. et al.: Textbook with detailed description of experiments; Hindmarsh, J.: Electrical Machines and their Application, Pergamon Press, 1991 Nasar, S.A.: Electric Power systems. Schaum's Outlines Mohan, N. et al: Power Electronics, Converters, Applications and Design, John Wiley & Sons, 1995 Kind, D., Körner, H.: High-Voltage Insualtion Technology, Friedr. Vieweg & Sohn, Braunschweig Wiesbaden, 1985, ISBN 3-528-08599-1

10 Comment

Page 244: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

238

Module Title

Power Laboratory II

Module No.

18-bi-2092

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-bi-2090-tt Laboratory Briefing 0 Tutorium 0

18-bi-2092-pr Power Laboratory II 0 Praktikum 3

2 Content of Teaching

Practical course on power engineering - Distribution and Application. About 50% of the units are devoted to power distribution and high voltage engineering; About 50% are dealing with application in drive systems, concerning "field-oriented control" of variable speed drives, encoder sytems, linear permanent magnet and switched reluctance machines.

3 Learning Outcomes

Practical knowledge is gained in measuring and operating electrical devices and apparatus of electrical

power engineering in small groups of students.

4 Prerequisites for Participation

Master program: Power Lab 1

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Klausur, Dauer 120 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, Klausur, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc MEC, MSc WI-ETiT

9 Literature

Text book with detailed laboratory instructions

10 Comment

Page 245: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

239

Module Title

Machine Learning & Energy

Module No.

18-st-2020

Credit Points

6 CP

Work load

180 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Florian Steinke

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-2020-pr Machine Learning & Energy Lab 0 Praktikum 1

18-st-2020-ue Machine Learning & Energy 0 Übung 1

18-st-2020-vl Machine Learning & Energy 0 Vorlesung 2

2 Content of Teaching

The analysis and interpretation of data becomes ever more important, also for engineers. Digitalization and Smart Grids are terms to describe a host of novel data-based services in the field of generation, distribution, consumption and marketing of (renewable) energy. The lecture presents the recent developments and their underlying principles of machine learning technology. For a start we will describe the different problem settings of machine learning in a structured way (classification, regression, clustering, dimensionality reductions, time series models, …) and present for each setting relevant applications from the energy sector (prediction of renewable energy or consumption in multimodal energy systems, fault detection and prediction, data visualization, robust investments decisions, customer analysis, probabilistic load flow, …). Thereafter we will briefly review necessary tools from optimization and probability theory, as well as introduce probabilistic graphical models. With these tools we will then study for each problem setting one or more machine learning algorithms in detail, together with use cases from the energy domain. Classic algorithms will be developed (e.g. linear regression, k-means, principal component analysis, …) as well as modern ones (e.g. SVMs, Deep Learning, Collaborative filtering, …). Practical exercise with Matlab will deepen the understanding and support student’s active knowledge.

3 Learning Outcomes

Students understand important machine learning problem settings and some key algorithms for each

task. They know common applications thereof in the energy domain. Moreover, the students are able to

apply and adapt those methods independently to new applications (not only from the energy domain).

4 Prerequisites for Participation

• Good knowledge of linear algebra and the foundations of numerical optimization (e.g. from the

course 18-st-2010 Energieanagement & Optimierung)

• Using Matlab for programming the practical examples should pose no difficulty. A block tutorial

on the use of Matlab is offered as 18-st-2030 Matlab Grundkurs.

5 Type of Examination

Modulabschlussprüfung:

Page 246: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

240

• Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc etit, MSc iST, MSc Wi-etit, MSc CE

9 Literature

• A Géron: Hands on Machine Learning with scikit-learn and Tensorflow, 2017

• Friedman, Hastie, Tibshirani: The elements of statistical learning, 2001

• Koller, Friedmann: Graphical Models, 2009

10 Comment

Page 247: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

241

Module Title

Policy-Analyse in the context of Energy Science and Engineering

Module No.

02-23-3001

Credit Points

5 CP

Work load

150 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

PD Dr. phil. Björn Egner

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

02-23-3001-ku Policy-Analyse in the context of Energy Science and Engineering

0 Kurs 2

2 Content of Teaching

• exemplarische Anwendung von Analysekonzepten zur Staatstätigkeit (Policy-Analyse) im Bereich der Umwelt-, Energie- und Klimapolitik • Analyse zur Staatstätigkeit (Policy-Analyse) in Mehrebenensystemen im Bereich der Umwelt-, Energie- und Klimapolitik • wissenschaftliche Konzepte zur Binnenstruktur und Funktionsweise von Staat und Verwaltung in Mehrebenensystemen im Bereich der Umwelt-, Energie- und Klimapolitik • Formen politischer Entscheidungen und ihre administrativen Umsetzung in Mehrebenensystemen im Bereich der Umwelt-, Energie- und Klimapolitik

3 Learning Outcomes

Studierende

• können die Analysekonzepte zur Staatstätigkeit auf die Umwelt-, Energie- und Klimapolitik

anwenden,

• kennen wissenschaftliche Konzepte zur Binnenstruktur und Funktionsweise von Verwaltung sowie

von Formen politischer Entscheidungen und ihrer administrativen Umsetzung in der Umwelt-, Energie-

und Klimapolitik,

• können Steuerungsformen auf dem Politikfeld der Umwelt-, Energie- und Klimapolitik vergleichend

diskutieren.

4 Prerequisites for Participation

keine

5 Type of Examination

Bausteinbegleitende Prüfung:

• [02-23-3001-ku] (Studienleistung, Hausarbeit, Standard)

6 Requirement for receiving Credit Points

Bestehen der definierten Studienleistung.

7 Grading System

Bausteinbegleitende Prüfung:

Page 248: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

242

• [02-23-3001-ku] (Studienleistung, Hausarbeit, Gewichtung: 100%)

8 Associated study programme

MSc Energy Science and Engineering

9 Literature

wird vom Dozierenden bekanntgegeben

10 Comment

Page 249: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

243

Module Title

Project Seminar Energy Information Systems

Module No.

18-st-2040

Credit Points

6 CP

Work load

180 h

Individual study

135 h

Duration

1 Semester

Module Offered

Every semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Florian Steinke

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-st-2040-pj Project Seminar Energy Information Systems

0 Projektseminar 3

2 Content of Teaching

Students elaborate on a research-oriented subject in the area of computer-systems in a self-responsible manner. They present a written documentation and/or a presentation of the acquired advanced knowledge. They provide a set of alternative solutions to a given problem.

3 Learning Outcomes

Students are able to systematically develop design alternatives to a given problem. They learn to acquire

the necessary fundamental knowledge in terms of references and terminology. The found solutions are

reflected critically and the students decide for a suitable solution which they are able to argue for and

accomplish.

4 Prerequisites for Participation

no

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

Module finale exam:

• Module exam (Study achievements, Optional, weighting: 100)

6 Requirement for receiving Credit Points

• Pass module final exam

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT

Page 250: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

244

9 Literature

10 Comment

Page 251: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

245

Module Title

Environmental Information Systems

Module No.

13-F0-M012

Credit Points

6 CP

Work load

180 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

13-F0-0018-vl Umweltinformationssysteme 0 Vorlesung 1

13-F0-0019-ue Umweltinformationssysteme - Übung 0 Übung 1

2 Content of Teaching

Communal GIS; (Mobile) data acquisition; Data storage, interpretation and management; GIS for groundwater management and monitoring; Methods of engineering informatics for modeling and simulation of energy relevant aspects in civil and environmental engineering.

3 Learning Outcomes

The students have the ability to implement and visualize model based environmental engineering tasks

and to work on them with scientific methods. The have the competence to compute and evaluate big

graphical and numerical data with system identification.

4 Prerequisites for Participation

Grundkenntnisse in der Ingenieurinformatik

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 90 min, Standard)

• Modulprüfung (Studienleistung, fakultativ, Bestanden/Nicht bestanden)

6 Requirement for receiving Credit Points

erfolgreiche Erbringung der Studienleistungen

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 0)

8 Associated study programme

9 Literature

Bill: Grundlagen der Geoinformationssystem, Wichmann; Warcup: Von der Landkarte zum GIS: Eine

Page 252: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

246

Einführung in Geografische Informationssysteme, Points; Fürst: GIS in Hydrologie und Wasserwirtschaft, Wichmann; Fischer-Stabel: Umweltinformationssysteme -Grund

10 Comment

Page 253: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

247

Power Grids

Module Title

Calculation of Transients in electrical Power Systems

Module No.

18-hs-2060

Credit Points

6 CP

Work load

180 h

Individual study

150 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Jutta Hanson

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hs-2060-se Calculation of Transients in electrical Power Systems

0 Seminar 2

2 Content of Teaching

In two introductory lectures, basics of the modelling and simulation of electric power systems for transient studies are presented. Then, the respective simulation software is introduced and used by the participants in exercises. The participants then work on a given task in the field of modelling and simulation of transients in electric power systems.

3 Learning Outcomes

The goals of education are

• Working on a given technical question out of the area of network planning and network

calculation

• Supervised und individual Elaboration of a simulation software

• Individual elaboration of the given technical task

• Logical presentation of results in a report

• Presentation of the final report (10 mins)

4 Prerequisites for Participation

Contents of lectures "Energieversorgung“ I and II

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Page 254: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

248

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc EPE, MSc Wi-ETiT

9 Literature

Lecture Notes, software manual, exercise task, definition of project task

10 Comment

Page 255: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

249

Module Title

Power Cable Systems

Module No.

18-hi-2040

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch und Englisch

Responsible person

Prof. Dr.-Ing. Volker Hinrichsen

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hi-2040-vl Power Cable Systems 0 Vorlesung 2

2 Content of Teaching

In the lecture, in addition to theoretical knowledge, also the practical side of high voltage cable technology will be treated. These are technical issues, e.g. water sensitivity of plastic cables, cable inspection, testing of already installed cables and the latest developments as in the field of superconductivity etc.. The contents of the lecture are:

• Cable construction: materials / requirements / design

• Cable Manufacturing: conductors / extrusion / shield / sheath (oil-paper

insulation) / reinforcement

• Quality requirements and routine-/selection-/type- long term test / ISO 9001,

standards, aging, endurance

• Cable junction technique: sockets / terminations / materials / field grading

systems / cable connection

• Cable Systems: load / mech. requirements / ind. voltage / short circuit

requirements / transient requirements / installation techniques

• Design and operation: route planning / laying / commissioning / monitoring

/ maintenance

• Trends: High-temperature superconductivity, Submarine cable, DC cable, forced cooling, GIL

3 Learning Outcomes

Students learn the basic structure of a cable. They know the technical requirements both for the

material and the design of a high voltage cable. The basics of manufacturing technology and the

necessary tests are learned. The students are also able to evaluate new trends in cable technology.

4 Prerequisites for Participation

BSc. ETiT Electrical Power Systems

5 Type of Examination

Modulabschlussprüfung:

Page 256: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

250

• Modulprüfung (Fachprüfung, mündliche Prüfung, Dauer 30 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, mündliche Prüfung, Gewichtung: 100%)

8 Associated study programme

MSc ETiT

9 Literature

Slides, litrature sources

10 Comment

Page 257: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

251

Module Title

Statistical Physics of Networks

Module No.

05-27-2930

Credit Points

5 CP

Work load

150 h

Individual study

120 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr. rer. nat. Barbara Drossel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

05-27-1010-se Theorie von Netzwerken 0 Seminar 2

2 Content of Teaching

- Strukturelle Kenngrößen von Netzwerken - Kleine-Welt-Netzwerke - Skalenfreie Netzwerke - Dynamik auf Booleschen Zufallsnetzen - Wachstum von Netzwerken

3 Learning Outcomes

Die Studierenden

• bekommen einen Überblick über die Physik von Netzwerken; dabei wird auf die Struktur, die Dynamik

und die Evolution von Netzwerken eingegangen, sie kennen Präsentationstechniken und wissen um

Grundlagen der wissenschaftlichen Diskussion,

• besitzen Fertigkeiten, sich in ein abgegrenztes Themengebiet unter RückSprache mit einem Betreuer

selbständig einzuarbeiten, die physikalischen Sachverhalte zu durchdringen und sie für ein studentisches

Publikum anschaulich darzustellen und

• sind kompetent in der eigenständigen Bearbeitung, Präsentation und Diskussion auf

wissenschaftlichem Niveau.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, mündliche / schriftliche Prüfung, Standard)

6 Requirement for receiving Credit Points

Benotete Studienleistung

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Studienleistung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Associated study programme

MSc. Physics, 1. oder 2. Semester

Page 258: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

252

Theorie-Seminar

9 Literature

wird von Dozent(in) zu den konkreten Themen angegeben

10 Comment

Page 259: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

253

Module Title

Overvoltage Protection and Insulation Coordination in Power System

Module No.

18-hi-2030

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr.-Ing. Volker Hinrichsen

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hi-2030-ue Overvoltage Protection and Insulation Coordination in Power System

0 Übung 1

18-hi-2030-vl Overvoltage Protection and Insulation Coordination in Power System

0 Vorlesung 2

2 Content of Teaching

[list] Determination of representative overvoltages [list] Normal distribution of overvoltage probability and derivated variables Slow front overvoltages Characteristics of overvoltage protective devices Travelling wave effect and protective distance of surge arresters Determination of coordination withstand voltage [list] Performance criterion Determination of required withstand voltage

• General remarks

• Atmospheric correction

• Safety factor for internal and external insulations

[/list]

• Standard withstand voltage and testing procedures

o General remarks

o Test conversion factors

o Determination and verification of insulation withstand by type tests

o Table of test voltages and required clearances

3 Learning Outcomes

The student have understood the main procedures of insulation coordination based on the relevant IEC

standard (and the main difference with related IEEE standard procedure) which leads to selection of the

electric strength of equipment in relation to the voltages which can appear on the system. In addition,

Page 260: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

254

they have learned the origin of different type of overvoltages as well as the protection of equipment

against them. The operation and design of surge arresters as an important instrument of insulation

coordination in power systems have been understood. The theoretical knowledge about the procedure

of insulation coordination has been confirmed and expanded by practical case studies. The students are

finally be able to carry out the insulation coordination independetly in any application.

4 Prerequisites for Participation

High Voltage Technology I and II

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 120 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

MSc ETiT, MSc EPE, MSc Wi-ETiT

9 Literature

The related IEC standard can be borrowed during the lecture time. Lecture notes (in English) and other helpful materials can be downloaded from HST homepage: www.hst.tu-darmstadt.de.

10 Comment

Page 261: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

255

Physical and Chemical Fundamentals

Module Title

Chemical Kinetics (M.PC8)

Module No.

07-04-0009

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-04-0009-ue Exercises Chemical Kinetics (M.PC8) 0 Übung 1

07-04-0009-vl Chemical Kinetics (M.PC8) 0 Vorlesung 2

2 Content of Teaching

Formale Reaktionskinetik, Zeitgesetze einfacher und zusammengesetzter Reaktionen, Experimentelle Methoden der Reaktionskinetik, Reaktionsgeschwindigkeit in Gleichgewichtsnähe und Relaxation, Übergang von der makroskopischen zur mikroskopischen Kinetik, Potentialflächen, Reaktionen in Molekularstrahlen und Laserspektroskopie, Stoßtheorie bimolekularer Gasphasenreaktionen, Theorie und Spektroskopie des Übergangszustandes, Temperaturabhängigkeit von Geschwindigkeitskonstanten, uni-molekulare Reaktionsdynamik, Reaktionen in kondensierten Phasen, heterogene Reaktionen, photochemische Kinetik, Kettenreaktionen, nicht-lineare Dynamik und oszillierende chemische Reaktionen

3 Learning Outcomes

Studierende erwerben eine Überblick über die wichtigsten kinetischen Methoden zum Studium von

einfachen und zusammengesetzten Reaktionen und verfügen über vertiefte Kenntnisse vor allem in der

mikroskopischen Interpretation von kinetischen Daten.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

Page 262: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

256

9 Literature

vgl. Verweise im Internetangebot des Instituts

10 Comment

Page 263: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

257

Module Title

Chemical Processes (M.TC7)

Module No.

07-06-0008

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-06-0008-vl Chemical Processes (M.TC7) 0 Vorlesung 2

2 Content of Teaching

Struktur der chemischen Industrie; Historie; Produktstammbäume; wichtige petrochemische Verfahren zur Herstellung von Grundchemikalien, Zwischenprodukten, Fein- und Spezialchemikalien sowie Wirkstoffen; Verfahrensentwicklung, -bewertung und -auswahl; wichtige chemische Reaktionsklassen mit technischen Beispielen; Alternativen zur Petrochemie: C1-Chemie und Nachwachsende Rohstoffe; Konzept der Bioraffinerie mit realisierten Verfahren und der Stand der aktuellen Forschung.

3 Learning Outcomes

Studierende erwerben einen Überblick über die Struktur der chemischen Industrie im Laufe der

Geschichte. Es werden die stofflichen Aspekte der Technischen Chemie und die Grundlagen der

Entwicklung neuer Prozesse vermittelt. Wesentlich ist dabei die Behandlung chemischer

Produktionsverfahren an ausgewählten Beispielen unter übergeordneten Gesichtspunkten wie

Rohstoffversorgung, Verwertung von Nebenprodukten, Anlagensicherheit und Wirtschaftlichkeit des

Gesamtprozesses. Die Darstellung wichtiger Prozesse aus den verschiedenen Produktionszweigen der

chemischen Industrie geht besonders auf neuere Entwicklungen wie nachwachsende Rohstoffe und C1-

Chemie ein.

Die Studierenden sollen in der Lage sein, in den alten (Kohle, Erdöl) und neuen (Erdgas, Nachwachsende

Rohstoffe) Produktionsstammbäumen zu denken und diese weiterzuentwickeln.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

Page 264: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

258

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

10 Comment

Page 265: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

259

Module Title

Chemical Reaction Engineering (M.TC6)

Module No.

07-06-0007

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-06-0007-vl Chemical Reaction Engineering (M.TC6)

0 Vorlesung 2

2 Content of Teaching

Masse-, Energie- und Impulsbilanz als Grundlage der Reaktorberechnung, Lösung von gekoppelten DGL-Systemen, Chemische Thermodynamik von Simultangleichgewichten, Kinetik homogener und heterogener Reaktionen, Messung und Auswertung kinetischer Daten, Reaktionsnetzwerke, Transport von Stoff, Wärme und Impuls, Zusammenwirkung von chemischer Reaktion- und Stofftransport, Verweilzeitverhalten, Typen chemischer Reaktionsapparate und deren Modellierung. Scale up Probleme.

3 Learning Outcomes

Studierende sollen in der Lage sein, chemische Reaktionsapparate sinnvoll für eine gegebene chemische

Aufgabenstellung auszuwählen und diese Reaktoren für eine vorgegebene Kinetik mathematisch zu

Modellierung.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

10 Comment

Page 266: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

260

Module Title

Electrochemistry (M.PC5)

Module No.

07-04-0006

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-04-0006-ue Exercises Electrochemistry (M.PC5) 0 Übung 1

07-04-0006-vl Electrochemisty (M.PC5) 0 Vorlesung 2

2 Content of Teaching

Elektrolyte (Solvatation von Ionen, elektrolytische Leitfähigkeit, Zusammenhang von Migration und Diffusion, Hittorfsche Überführungszahlen, Interionische Wechselwirkungen und Debye-Hückel-Theorie), elektrochemische Zellen (Elektromotorische Kraft, Nernst-Gleichung, Diffusionspotential, Spannungsreihe), Elektrodenkinetik (Modelle der elektrochemischen Doppelschicht, Elektrokapillarität, elektrochemische Reaktionen, Butler-Volmer-Gleichung, Elektronentransfer, Marcus-Theorie, Passivität von Metallen, Mischpotentiale), Anwendungen (Metallabscheidung, Brennstoffzellen, Nervenleitung)

3 Learning Outcomes

Studierende erwerben einen Überblick über Eigenschaften ionischer Lösungen und chemischer

Reaktionen an Elektroden. Neben meist im Rahmen der klassischen Thermodynamik formulierten

Grundlagen sollen auch moderne mikroskopische Vorstellungen über Elektrodenprozesse

wiedergegeben werden können.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

Page 267: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

261

10 Comment

Page 268: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

262

Module Title

Electromagnetic Compatibility

Module No.

18-hi-2060

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Deutsch

Responsible person

Prof. Dr.-Ing. Volker Hinrichsen

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

18-hi-2060-ue Electromagnetic Compatibility 0 Übung 1

18-hi-2060-vl Electromagnetic Compatibility 0 Vorlesung 2

2 Content of Teaching

Fundamentals of Electromagnetic Compatibility, sources of emission, coupling mechanisms and counter measures, components for noise suppression, electromagnetic shields, EMC measuring and test techniques, excursion to VDE Offenbach

3 Learning Outcomes

The students know that from every electromagnetic system a interaction is possible and that every

electromagnetic (and also biological) system can be effected; they can differ between typical

interference sources and sinks; they know the typical coupling paths und can identify and describe them

mathematically; they know the basic methods to avoid interference at the source side and can derive

their own actions against interference from this basic understanding; they know the basic actions to

avoid interference at the sink side and can also derive actions to avoid interference; they have the ability

to recognize coupling paths and can systematically influence or interrupt them completely; they know

the situation of the EMC standardization and know basically which requirements have to be fulfilled

and  how to do this (also i.e. how to give a device a CE-label); they have learned the most

important EMC testing and measurement techniques theoretically and practically know on the field trip.

4 Prerequisites for Participation

BSc

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Dauer 120 min, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100%)

8 Associated study programme

Page 269: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

263

MSc ETiT, MSc MEC, MSc Wi-ETiT

9 Literature

• All lecture slides (ca. 500 pcs.) available for download

• Adolf J. Schwab: Elektromagnetische Verträglichkeit, Springer-Verlag

• Clayton R. Paul: Introduction to Electromagnetic Compatibility, Wiley & Sons

10 Comment

Page 270: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

264

Module Title

Homogeneous Catalysis (M.AC4)

Module No.

07-03-0023

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-03-0005-vl Homogeneous Catalysis (M.AC4) 0 Vorlesung 2

2 Content of Teaching

Liganden und Metalle für Katalysatorkomplexe, Elementarschritte der Katalyse, katalysierte Umwandlungen: Hydrogenierung, Isomerisierung, Carbonylierung, Hydroformylierung, Alkene: Oligomerisierung und Polymerisation, HX-Additionen (Hydrosilylierung, Hydrocyanierung, Hydroaminierung), Carbonylierung, Kreuzkupplungsreaktionen, Epoxidierung, Oxidationsreaktionen, Alken- und Alkin-Metathese, CH-Aktivierung, C-C-Aktivierung, Mechanismen und Kinetik der Katalyse, homogene Katalyse in großtechnischen Verfahren und für die Feinchemikalienherstellung, neue Entwicklungen

3 Learning Outcomes

Ziel der Veranstaltung ist es, den Studierenden einen umfassenden Überblick über das Gebiet der

homogenen Katalyse zu bieten. Dieses Basiswissen soll in den Kontext der industriellen Produktion von

Chemikalien eingebettet werden und dabei auch aktuelle Probleme und Entwicklungen der

Katalyseforschung vertiefen.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

Page 271: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

265

10 Comment

Page 272: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

266

Module Title

Materials Chemistry

Module No.

11-01-7292

Credit Points

4 CP

Work load

120 h

Individual study

90 h

Duration

1 Semester

Module Offered

Every 2. semester

Language

Englisch

Responsible person

Prof. Dr. Ralf Riedel

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

11-01-7292-vl Materials Chemistry 0 Vorlesung 2

2 Content of Teaching

• Introduction • Silicon: Methods for the Preparation of High Purity Silicon • Reaction in the Gas Phase: Mond-Process, van-Arkel-de-Boer Process, CVD (Thermodynamics of CVD Examples), Spray Pyrolysis • Solvothermal Syntheses • Silicones and Silazanes: Synthesis from Organo Chloro Silanes, • Silicon-Containing Polymers: Polysiloxanes, Polysilazanes, Polysilylcarbodiimides, Polysilanes, Polycarbosilanes • Boron-Containing Polymers • Polymer-Derived Ceramics and Their Applications (Fibers, Ceramic Brake Disc) • High Pressure Syntheses, Diamond Anvil Cell • Sol-Gel Processing I (Alkoxides, Transalkoholyse, Base- und Acid-Induced Catalysis of Si(OR)4/H2O) • Sol-Gel Processing II (Polycondensation, Cross-Condensation), • Organic Light Emitting Diodes • Biomineralisation

3 Learning Outcomes

The student has gained an overview on and remembers different synthesis techniques for inorganic

materials. Furthermore, he/she has gained the competence to evaluate the relationship between the

synthesis method and the properties of the inorganic materials materials. The student has the

competence to evaluate experimental and theoretical methods for goal-oriented research in the area of

inorganic materials. The student has a first insight in modern preparative techniques for inorganic

materials and a beginner’s competence to follow advanced textbooks and scientific Literature.

4 Prerequisites for Participation

none

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirement for receiving Credit Points

passing of exam

Page 273: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

267

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Associated study programme

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. U. Schubert, N. Hüsing: „Synthesis of Inorganic Materials“, Wiley-VCH, Weinheim, 2000 2. David Segal: „Chemical Synthesis of Advanced Ceramic Materials“, Cambridge University Press, 1991 3. Bill, Wakai, Aldinger, „Precursor-Derived Ceramics“, Wiley-VCH, 1996

10 Comment

Cycle: each winter semester

Page 274: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

268

Module Title

Mesoscopic Chemistry (M.AC5)

Module No.

07-03-0024

Credit Points

3 CP

Work load

90 h

Individual study

60 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-03-0006-vl Mesoscopic Chemistry (M.AC5) 0 Vorlesung 2

2 Content of Teaching

Begriffsbestimmung, Einordnung. Experimentelle Techniken: Gasphasensynthese, Solvothermalsynthese; Synthesen in überkritischen Medien und ionischen Flüssigkeiten. Sol-Gel Chemie (wässrig, nicht-wässrig); Chemie mit Hochtemperaturspezies, arrestierte Bildungsprozesse von Mesomaterialien. Materialklassen: Oxide, Halbleiter, Metallpartikel, Nanoröhren, Nanostäbe; Nanodrähte; Nanoporöse Materialien. Anorganisch/Organische Hybridmaterialien. Methoden zur Anordnung und Strukturierung von Materie, Selbstorganisation und Templatmethoden; Katalyse mit nanoskaligen Partikeln, Photonische Kristalle.

3 Learning Outcomes

Ziel der Veranstaltung ist es, den Studierenden einen Überblick über Materialien und Methoden der

mesoskopischen Chemie zu geben. Anhand ausgewählter aktueller technischer Aspekte soll die

Bedeutung größenabhängiger Eigenschaften von Materialien in anwendungsrelevanten Prozessen

verdeutlicht werden.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

Page 275: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

269

10 Comment

Page 276: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

270

Module Title

Physical Chemistry of Solids - Condensed Matter A (M.PC9)

Module No.

07-04-0010

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-04-0010-ue Exercise Physical Chemistry of Solids - Condensed Matter A (M.PC9)

0 Übung 1

07-04-0010-vl Physical Chemistry of Solids - Condensed Matter A (M.PC9)

0 Vorlesung 2

2 Content of Teaching

Klassifikation von Festkörpern, Struktur und Strukturbestimmung des Festkörpers (Translations- und Punktsymmetrie, Beugungsmethoden), Gitterdynamik des Festkörpers (Gitterschwingungen, Dispersionsrelationen, Zustandsgleichung), Elektronenstruktur des Festkörpers (Bandstruktur der Metalle, Halbleiter und Isolatoren, Donor- und Akzeptorniveaus), spektroskopische, magnetische und optische/dielektrische Eigenschaften, Defekte (Punktdefekte, Versetzungen, Struktur von Ober- und Grenzflächen, Nanokristalle, Thermodynamik), Transport im Festkörper (Diffusion, Leitfähigkeit), Festkörperreaktionen und Festkörperkinetik (Kröger-Vink-Notation, fest-fest, fest-gasförmig), Anwendungen (Sensoren, Brennstoffzelle, Displays, Wasserstoffspeicher)

3 Learning Outcomes

Die Studierenden haben erlernt, welche Parameter des Festkörpers (Struktur, Elektronenstruktur,

Schwingungsstruktur, Zusammensetzung, Defektstruktur, Morphologie) mit welchen Material-

eigenschaften zusammenhängen. Sie können beurteilen, welche Möglichkeiten man zur Verfügung hat,

um die Materialeigenschaften aufzuklären und gegebenenfalls zu verändern und welche Probleme dabei

auftreten.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

Page 277: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

271

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

10 Comment

Page 278: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

272

Module Title

Physical Chemistry of Soft Materials - Condensed Matter B (M.PC10/M.TH8/M.MC4)

Module No.

07-04-0011

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-04-0011-ue Exercises Physical Chemistry of Soft Materials - Condensed Matter B (M.PC10/M.TH8/M.MC4)

0 Übung 1

07-04-0011-vl Physical Chemistry of Soft Materials - Condensed Matter B (M.PC10/M.TH8/M.MC4)

0 Vorlesung 2

2 Content of Teaching

Polymere: Klassen und Eigenschaften von Polymeren, technische Verwendung, Polymere in Lösung, Eigenschaften von Polymerschmelzen, statistische Mechanik von Polymeren. Kolloide: Stabilisierung von Kolloiden sowie deren Lösungseigenschaften, Phasenübergänge, Dynamik. Tenside: Eigenschaften von Tensiden, Phasenübergänge, Morphologie. Weiche Grenzflächen: Adsorption an Grenzflächen, Benetzung von Grenzflächen. Methodik: Streumethoden, Rheologie, Computersimulation.

3 Learning Outcomes

Studierende verfügen über einen Überblick über die wichtigsten Vertreter der weichen kondensierten

Materie, ihre Eigenschaften und ihre Einsatzmöglichkeiten. Sie können an Hand von Beispielen die

Beziehung zwischen mikroskopischer oder molekularer Struktur der Bausteine und dem beobachteten

makroskopischen Verhalten der Materialien erläutern. Sie sollen den Umgang mit quantitativen

Methoden zur Beschreibung von weichen Materialien beherrschen, vor allem solchen aus dem Bereich

der statistischen Mechanik. Sie sind orientiert über die wichtigsten experimentellen und

computersimulations-basierten Strategien zur Charakterisierung weicher Materialien.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

Page 279: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

273

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

vgl. Verweise im Internetangebot des Instituts

10 Comment

Page 280: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

274

Module Title

Spectroscopy (M.PC4)

Module No.

07-04-0005

Credit Points

4 CP

Work load

120 h

Individual study

75 h

Duration

1 Semester

Module Offered

Every 3. semester

Language

Deutsch

Responsible person

1 Courses

Course No. Course Title Work load (CP) Form of Teaching

SWS

07-04-0005-ue Exercises Chemical Spectroscopy (M.PC4)

0 Übung 1

07-04-0005-vl Chemical Spectroscopy (M.PC4) 0 Vorlesung 2

2 Content of Teaching

Strahlungsinduzierte Übergänge (elektromagnetisches Spektrum, zeitabhängige Störungstheorie, spektrale Auswahlregeln, Linienform), apparative Grundlagen, Rotationsspektroskopie (2- und mehr-atomige Moleküle), Schwingungspektroskopie (harmonischer/anharmonischer Oszillator, Isotopeneffekt), Ramanspektroskopie (Rotations/Vibrations-Feinstruktur, Kernspineffekte), elektronische Übergänge (Franck-Condon Analyse, metastabile Zustände, Einzelmolekülspektroskopie), Magnetische Resonanz (Grundlagen der NMR und EPR, Fourierspektroskopie, Spindynamik, Grundlagen mehrdimensionaler Verfahren)

3 Learning Outcomes

Studierende erwerben eine vertiefte Kenntnis der Prinzipien und Anwendungsmöglichkeiten moderner

spektroskopischer Verfahren. Sie sind in der Lage, den Aufbau kommerzieller Spektrometer zu

diskutieren und können Grenzen der analytischen Verfahren aufzeigen.

4 Prerequisites for Participation

5 Type of Examination

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Standard)

6 Requirement for receiving Credit Points

7 Grading System

Modulabschlussprüfung:

• Modulprüfung (Standardkategorie (nicht mehr verwenden), Fachprüfung, Gewichtung: 100%)

8 Associated study programme

9 Literature

Page 281: M.Sc. Energy Science and Engineering...2020/02/07  · Eulers formula, plane of complex numbers, variables of electrical engineering, vector and rotating fields, Coulombs law, Maxwell

275

vgl. Verweise im Internetangebot des Instituts

10 Comment