msc8157, msc8157 six-core digital signal processor - data sheet

95
Freescale Semiconductor Data Sheet: Technical Data © 2010–2013 Freescale Semiconductor, Inc. All rights reserved. Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. Six StarCore SC3850 DSP subsystems, each with an SC3850 DSP core, 32 KB L1 instruction cache, 32 KB L1 data cache, unified 512 KB L2 cache configurable as M2 memory in 64 KB increments, memory management unit (MMU), extended programmable interrupt controller (EPIC), two general-purpose 32-bit timers, debug and profiling support, low-power Wait, Stop, and power-down processing modes, and ECC/EDC support. Chip-level arbitration and switching system (CLASS) that provides full fabric non-blocking arbitration between the cores and other initiators and the M2 memory, shared M3 memory, DDR SRAM controller, device configuration control and status registers, MAPLE-B, and other targets. 3072 KB 128-bit wide M3 memory, 2048 KBs of which can be turned off to save power. 96 KB boot ROM. Three input clocks (one global and two differential). Six PLLs (three global, two Serial RapidIO, one DDR PLLs). Second generation Multi-Accelerator Platform Engine for Baseband (MAPLE-B2) with a second generation programmable system interface (PSIF2); Turbo encoding and decoding; Viterbi decoding; FFT/iFFT and DFT/iDFT processing; downlink chip rate processing; CRC processing and insertion; equalization processing and matrix inversion; uplink batch and fast processing. Some MAPLE-B2 processors can be disabled when not required to reduce overall power consumption. One DDR controllers with up to a 667 MHz clock (1333 MHz data rate), 64/32 bit data bus, supporting up to a total 2 Gbyte in up to four banks (two per controller) and support for DDR3. DMA controller with 32 unidirectional channels supporting 16 memory-to-memory channels with up to 1024 buffer descriptors per channel, and programmable priority, buffer, and multiplexing configuration. It is optimized for DDR SDRAM. High-speed serial interface with a 10-lane SerDes PHY that supports two Serial RapidIO interfaces, one PCI Express interface, six CPRI lanes, and two SGMII interfaces (multiplexed). The Serial RapidIO interfaces support x1/x2/x4 operation up to 5 Gbaud with an enhanced messaging unit (eMSG) and two DMA units. The PCI Express controller supports 32- and 64-bit addressing, x1/x2/x4 link. The six CPRI controllers can support six lanes up to 6.144 Gbaud. QUICC Engine technology subsystem with dual RISC processors, 48 KB multi-master RAM, 48 KB instruction RAM, supporting two communication controllers for two Gigabit Ethernet interfaces (RGMII or SGMII), to offload scheduling tasks from the DSP cores, and an SPI. I/O Interrupt Concentrator consolidates all chip maskable interrupt and non-maskable interrupt sources and routes then to INT_OUT /CP_TX_INT , NMI_OUT /CP_RX_INT , and the cores. UART that permits full-duplex operation with a bit rate of up to 6.25 Mbps. Two general-purpose 32-bit timers for RTOS support per SC3850 core, four timer modules with four 16-bit fully programmable timers, two timer modules with four 32-bit fully programmable timers; and eight software watchdog timers (SWT). Eight programmable hardware semaphores. Up to 32 virtual interrupts and a virtual NMI asserted by simple write access. I 2 C interface. Up to 32 GPIO ports, sixteen of which can be configured as external interrupts. Boot interface options include Ethernet, Serial RapidIO interface, I 2 C, and SPI. Supports IEEE Std. 1149.6 JTAG interface Low power CMOS design, with low-power standby and power-down modes, and optimized power-management circuitry. 45 nm SOI CMOS technology. MSC8157 Six-Core Digital Signal Processor Document Number: MSC8157 Rev. 3, 12/2013 MSC8157 FC-PBGA–783 29 mm x 29 mm

Upload: dinhthu

Post on 02-Jan-2017

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Freescale SemiconductorData Sheet: Technical Data

© 2010–2013 Freescale Semiconductor, Inc. All rights reserved.

Freescale reserves the right to change the detail specifications as may be requiredto permit improvements in the design of its products.

• Six StarCore SC3850 DSP subsystems, each with an SC3850 DSP core, 32 KB L1 instruction cache, 32 KB L1 data cache, unified 512 KB L2 cache configurable as M2 memory in 64 KB increments, memory management unit (MMU), extended programmable interrupt controller (EPIC), two general-purpose 32-bit timers, debug and profiling support, low-power Wait, Stop, and power-down processing modes, and ECC/EDC support.

• Chip-level arbitration and switching system (CLASS) that provides full fabric non-blocking arbitration between the cores and other initiators and the M2 memory, shared M3 memory, DDR SRAM controller, device configuration control and status registers, MAPLE-B, and other targets.

• 3072 KB 128-bit wide M3 memory, 2048 KBs of which can be turned off to save power.

• 96 KB boot ROM.• Three input clocks (one global and two differential).• Six PLLs (three global, two Serial RapidIO, one DDR

PLLs).• Second generation Multi-Accelerator Platform Engine for

Baseband (MAPLE-B2) with a second generation programmable system interface (PSIF2); Turbo encoding and decoding; Viterbi decoding; FFT/iFFT and DFT/iDFT processing; downlink chip rate processing; CRC processing and insertion; equalization processing and matrix inversion; uplink batch and fast processing. Some MAPLE-B2 processors can be disabled when not required to reduce overall power consumption.

• One DDR controllers with up to a 667 MHz clock (1333 MHz data rate), 64/32 bit data bus, supporting up to a total 2 Gbyte in up to four banks (two per controller) and support for DDR3.

• DMA controller with 32 unidirectional channels supporting 16 memory-to-memory channels with up to 1024 buffer descriptors per channel, and programmable priority, buffer, and multiplexing configuration. It is optimized for DDR SDRAM.

• High-speed serial interface with a 10-lane SerDes PHY that supports two Serial RapidIO interfaces, one PCI Express interface, six CPRI lanes, and two SGMII interfaces (multiplexed). The Serial RapidIO interfaces support x1/x2/x4 operation up to 5 Gbaud with an enhanced messaging unit (eMSG) and two DMA units. The PCI Express controller supports 32- and 64-bit addressing, x1/x2/x4 link. The six CPRI controllers can support six lanes up to 6.144 Gbaud.

• QUICC Engine technology subsystem with dual RISC processors, 48 KB multi-master RAM, 48 KB instruction RAM, supporting two communication controllers for two Gigabit Ethernet interfaces (RGMII or SGMII), to offload scheduling tasks from the DSP cores, and an SPI.

• I/O Interrupt Concentrator consolidates all chip maskable interrupt and non-maskable interrupt sources and routes then to INT_OUT/CP_TX_INT, NMI_OUT/CP_RX_INT, and the cores.

• UART that permits full-duplex operation with a bit rate of up to 6.25 Mbps.

• Two general-purpose 32-bit timers for RTOS support per SC3850 core, four timer modules with four 16-bit fully programmable timers, two timer modules with four 32-bit fully programmable timers; and eight software watchdog timers (SWT).

• Eight programmable hardware semaphores.• Up to 32 virtual interrupts and a virtual NMI asserted by

simple write access.• I2C interface.• Up to 32 GPIO ports, sixteen of which can be configured as

external interrupts.• Boot interface options include Ethernet, Serial RapidIO

interface, I2C, and SPI.• Supports IEEE Std. 1149.6 JTAG interface • Low power CMOS design, with low-power standby and

power-down modes, and optimized power-management circuitry.

• 45 nm SOI CMOS technology.

MSC8157 Six-Core Digital Signal Processor

Document Number: MSC8157Rev. 3, 12/2013

MSC8157

FC-PBGA–78329 mm x 29 mm

Page 2: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor2

Table of Contents1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Pin Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

2.1 FC-PBGA Ball Layout Diagram. . . . . . . . . . . . . . . . . . . .42.2 Signal Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .523.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523.2 Recommended Operating Conditions. . . . . . . . . . . . . .533.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .543.4 CLKIN/MCLKIN Requirements . . . . . . . . . . . . . . . . . . .54

3.5 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . 543.6 AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . 69

4 Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . 925 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Page 3: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Block Diagram

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 3

1 Block Diagram

Figure 1. MSC8157 Block Diagram

JTAG IEEE 1149.6

Note: The arrow direction indicates master or slave.

DM

A 32 ch

I/O-InterruptConcentrator

UART

Clocks

Timers

Reset

Semaphores

Other

CLASS

Modules

Boot ROM

I2C

VirtualInterrupts

MAPLE-B2

Six DSP Cores at 1 GHz

M3 Memory3072 KB

SC3850

DSP Core

512 KB

32 KB 32 KBL1

ICacheL1

DCache

L2 Cache / M2 Memory

DDR Interface 64/32-bit

DDRController

High-SpeedQUICC

SPI

Two SGMII

Two RGMII

SubsystemEngine™ Serial

Interface

1333 MHz data rate

Two Serial RapidIO x1/x2/x4 up to 5 Gbaud

PCI-Express x1/x2/x4 up to 5 GbaudTwo SGMII

Six lanes CPRI v4.1 up to 6.144 Gbaud

CLASS1

CPRI data WR

Page 4: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor4

2 Pin AssignmentThis section includes a MSC8157 package ball grid array layout and table listing the signal allocation by ball location.

2.1 FC-PBGA Ball Layout DiagramThe top view of the FC-PBGA package is shown in Figure 2 with the ball location index numbers. Only the first multiplexed signal is shown. See Table 1 for a complete signal list by ball location.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

A VSS MDQ57 GVDD VSS MDQ63 GVDD NC NC NC NC NC CLKOUT EE0 VSSMCLKIN

(optional)VSS CLKIN VSS GPIO29 GPIO31

GE1_TX_CTL

GE1_GTX_CLK

GE1_TD0GE1_TX_

CLKGE1_TD2 GE1_TD1 GE1_TD3 A

B MDQ60 MDQ59 MDQS7 MDQS7 MDQ62 MDQ58 MDQ56 NC VSS NC VSS NC VSS TDO TMS VSS VSS VSS VSSGE2_TX_

CLKVSS VSS VSS GPIO25 VSS GE_MDC VSS GPIO18 B

C VSS GVDD MDQ61 VSS GVDD MDM7 VSS NC NC NC NC NC NC EE1 NC DFT_TEST PORESET VSS GPIO15 GE2_TD2GE2_GTX

_CLKGE2_TX_

CTLGE2_TD1 GE2_TD0 GPIO30 GPIO20 GE_MDIO GPIO21 C

D MDQ49 MDQ48 MDQS6 MDQS6 MDQ50 MDQ51 MDQ52 NC VSS NC VSS NC VSS NC NMI VSSHRESET_

INVSS VSS GPIO13 NVDD GE2_TD3 VSS GPIO5 NVDD GPIO16 VSS GPIO10 D

E MDQ53 VSS MDQ55 GVDD VSS MDQ54 GVDD VSS NC NC NC NC NC NC INT_ OUT

HRESET TCK VSS NVDD GE2_RD3 VSS VSS NVDD GPIO27 VSS GPIO0 GPIO17 GPIO1 E

F MDQ40 MDQ41 MDQS5 MDQS5 MDQ43 MDQ47 MDM6 VDD VSS VDD NC NC VSS NC NMI_ OUT

VSS TDI VSS GE2_RD2GE2_RX_

CTLGE2_RD0

GE2_RX_CLK

GE2_RD1 GPIO26 GPIO6 GPIO22 GPIO23 GPIO8 F

G VSS GVDD MDM5 VSS GVDD MDQ46 VDD VSS VDD VSS NC NC NC NC QVDD STOP_BS TRST VSS GPIO28 GE1_RD3 GE1_RD2GE1_RX_

CLKVSS

GE1_RX_CTL

NVDD GPIO19 VSS GPIO11 G

H MDQ38 MDQS4 MDQS4 MDQ44 MDQ45 MDQ42 VSS VDD VSS VDD VSS VSS NC QVDD VSS VDD VSS VDD VSS NVDD VSS GE1_RD0 NVDD GE1_RD1 VSS GPIO14 NVDD GPIO12 H

J MDQ37 VSS MDQ35 GVDD MDQ33 MDQ36 VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NVDD GPIO24 GPIO9RCW_ LSEL0

RCW_ LSEL3

RCW_ LSEL2

RC21 GPIO3 J

K MCAS MCS0 MCS1 MDQ39 MDQ32 MDQ34 VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS GPIO4 VSSRCW_ LSEL1

NVDD GPIO7 VSS GPIO2 K

L VSS GVDD NC VSS GVDD MDM4 VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NVDD NC NC VSS VSS VSS SXCVSS SXCVDD L

M MCK0 MCK0 MA13 MWE NC NC VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NCSD_A_

TXSD_A_

TXSXPVDD SXPVSS

SD_A_RX

SD_A_RX

M

N MRAS VSS NC GVDD VSS MODT1 CRPEVDD VSS CRPEVDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC SXPVDD SXPVSSSD_B_

TXSD_B_

TXSXCVSS SXCVDD N

P MCK2 MA10 NC MA4 NC MODT0 VSS CRPEVDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NCSD_IMP_CAL_RX

NC NC SXPVDD SXPVSSSD_B_

RXSD_B_

RXP

R MCK2 GVDD MA0 VSS GVDD MBA0 GVDD VSS VDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC NC NCSD_C_

TXSD_C_

TXSXCVSS SXCVDD R

T VSS VSS MCK1 MA1 MA3MAPAR_

OUTVSS GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NC NC NC SXPVDD SXPVSS

SD_C_ RX

SD_C_ RX

T

U MAVDD VSS MCK1 GVDD VSS MBA1 GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC NC NCSD_D_

TXSD_D_

TXSXCVSS SXCVDD U

V MVREF VSS MA8 MA2 MA6 MCKE1 VSS GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NC NC NC NC NCSD_D_

RXSD_D_

RXV

W VSS VSS MA5 VSS GVDD MMDIC1 GVDD VSS VDD VSS M3VDD VSS M3VDD VSS M3VDD VSS CPRIVDD VSS VDD VSS NC NC NCSD_PLL1_AVDD

SD_PLL1_AGND

NC SXCVSS SXCVDD W

Y MA11 MA9 MA12 MA7 NC MMDIC0 VSS GVDD VSS VDD VSS M3VDD VSS M3VDD VSS CPRIVDD VSS CPRIVDD VSS VDD NC NC NC NC NC NCSD_REF_

CLK1SD_REF_

CLK1Y

AA MDQS8 VSS MA14 GVDD VSS MA15 MCKE0 VSS GVDD VSS M3VDD VSS M3VDD VSS CPRIVDD VSS CPRIVDD VSS CPRIVDD NCSD_IMP_CAL_TX

NC NC NCSD_E_

TXSD_E_

TXSXCVSS SXCVDD AA

AB MDQS8 MDM8 MECC2 MECC1 NC MAPAR_

INMBA2 MDQ2 MDQ1 MDQ0 VSS M3VDD VSS M3VDD VSS CPRIVDD VSS CPRIVDD NC NC NC NC NC NC SXPVDD SXPVSS

SD_E_ RX

SD_E_ RX

AB

AC VSS GVDD MECC4 VSS GVDD MDQ25 VSS GVDD MDQ3 VSS GVDD VSS M3VDD VSS CPRIVDD VSS NC NC NC NC NC NC NC NCSD_F_

TXSD_F_

TXSXCVSS SXCVDD AC

AD MECC7 MECC6 MECC0 MECC5 MECC3 MDQ24 MDM0 MDQS0 MDQS0 MDQ4 MDQ6 VSS VSS VSS VSS VSS NCSD_PLL2_AVDD

NC NC NC NC NC NC SXPVDD SXPVSSSD_F_

RXSD_F_

RXAD

AE MDQS2 VSS MDQ18 GVDD VSS MDQ29 GVDD VSS MDQ5 GVDD VSS MDQ9 VSS VSS VSS VSS NCSD_PLL2_AGND

NC SD_J_TX SXPVDD SD_I_ TX SXPVDD NCSD_G_

TXSD_G_

TXSXCVSS SXCVDD AE

AF MDQS2 MDQ17 MDQ21 MDQ16 MDQ30 MDQ27 MDQ28 MDQ7 MDQ14 MDQ11 MDQ8 MDQ10 VSS VSS VSS VSS NC NC NC SD_J_TX SXPVSSSD_I_

TX SXPVSS NC SXPVDD SXPVSS

SD_G_ RX

SD_G_ RX

AF

AG VSS GVDD MDQ22 VSS GVDD MDQ26 VSS GVDD MDQ13 VSS GVDD MDQ12 VSS VSS VSS VSS NC SXCVSSSD_REF_

CLK2SXCVSS

SD_J_ RX

SXCVSSSD_I_

RXSXCVSS

SD_H_ TX

SD_H_ TX

SXCVSS SXCVDD AG

AH MDQ20 MDQ19 MDQ23 MDM2 MDQS3 MDQS3 MDM3 MDQ31 MDQS1 MDQS1 MDQ15 MDM1 VSSPLL0_ AVDD

PLL1_ AVDD

PLL2_ AVDD

NC SXCVDDSD_REF_

CLK2SXCVDD

SD_J_ RX

SXCVDD SD_I_RX SXCVDD SXPVDD SXPVSSSD_H_

RXSD_H_

RXAH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure 2. MSC8157 FC-PBGA Package, Top View

Page 5: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 5

NOTESee Figure 31 as a reference for correct ball grid layout.

2.2 Signal ListsTable 1 presents the signal list sorted by ball number. Table 2 presents the signal list by signal name. When designing a board, make sure that the power rail for each signal is appropriately considered. The specified power rail must be tied to the voltage level specified in this document if any of the related signal functions are used (active)

NOTEThe information in Table 1 distinguishes among three concepts. First, the power pins are the balls of the device package used to supply specific power levels for different device subsystems (as opposed to signals). Second, the power rails are the electrical lines on the board that transfer power from the voltage regulators to the device. They are indicated here as the reference power rails for signal lines; therefore, the actual power inputs are listed as N/A with regard to the power rails. Third, symbols used in these tables are the names for the voltage levels (absolute, recommended, and so on) and not the power supplies themselves.

Table 1. Signal List by Ball Number

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

A2 VSS Ground N/A

A3 MDQ57 I/O GVDD

A4 GVDD Power N/A

A5 VSS Ground N/A

A6 MDQ63 I/O GVDD

A7 GVDD Power N/A

A8 NC Non-user N/A

A9 NC Non-user N/A

A10 NC Non-user N/A

A11 NC Non-user N/A

A12 NC Non-user N/A

A13 CLKOUT O QVDD

A14 EE0 I QVDD

A15 VSS Ground N/A

A16 MCLKIN (optional) I QVDD

A17 VSS Ground N/A

A18 CLKIN I QVDD

A19 VSS Ground N/A

A20 GPIO29/UART_TXD/CP_LOS2 I/O NVDD

A21 GPIO31/I2C_SDA I/O NVDD

A22 GE1_TX_CTL O NVDD

Page 6: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor6

A23 GE1_GTX_CLK O NVDD

A24 GE1_TD0 O NVDD

A25 GE1_TX_CLK I NVDD

A26 GE1_TD2 O NVDD

A27 GE1_TD1 O NVDD

A28 GE1_TD3 O NVDD

B1 MDQ60 I/O GVDD

B2 MDQ59 I/O GVDD

B3 MDQS7 I/O GVDD

B4 MDQS7 I/O GVDD

B5 MDQ62 I/O GVDD

B6 MDQ58 I/O GVDD

B7 MDQ56 I/O GVDD

B8 NC Non-user N/A

B9 VSS Ground N/A

B10 NC Non-user N/A

B11 VSS Ground N/A

B12 NC Non-user N/A

B13 VSS Ground N/A

B14 TDO O QVDD

B15 TMS I QVDD

B16 VSS Ground N/A

B17 VSS Ground N/A

B18 VSS Ground N/A

B19 VSS Ground N/A

B20 GE2_TX_CLK I NVDD

B21 VSS Ground N/A

B22 VSS Non-user N/A

B23 VSS Ground N/A

B24 GPIO25/TMR2/RCW_SRC1 I/O NVDD

B25 VSS Ground N/A

B26 GE_MDC O NVDD

B27 VSS Ground N/A

B28 GPIO18/SPI_MOSI/CP_LOS4 I/O NVDD

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 7: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 7

C1 VSS Ground N/A

C2 GVDD Power N/A

C3 MDQ61 I/O GVDD

C4 VSS Ground N/A

C5 GVDD Power N/A

C6 MDM7 O GVDD

C7 VSS Ground N/A

C8 NC Non-user N/A

C9 NC Non-user N/A

C10 NC Non-user N/A

C11 NC Non-user N/A

C12 NC Non-user N/A

C13 NC Non-user N/A

C14 EE1 O QVDD

C15 NC Non-user N/A

C16 DFT_TEST I QVDD

C17 PORESET I QVDD

C18 VSS Ground N/A

C19 GPIO15/DDN0/IRQ15/RC15 I/O NVDD

C20 GE2_TD2/CP_LOS3 I/O NVDD

C21 GE2_GTX_CLK/CP_LOS4 I/O NVDD

C22 GE2_TX_CTL O NVDD

C23 GE2_TD1 O NVDD

C24 GE2_TD0 O NVDD

C25 GPIO30/I2C_SCL I/O NVDD

C26 GPIO20/SPI_SL/CP_LOS6 I/O NVDD

C27 GE_MDIO I/O NVDD

C28 GPIO21/TMR6 I/O NVDD

D1 MDQ49 I/O GVDD

D2 MDQ48 I/O GVDD

D3 MDQS6 I/O GVDD

D4 MDQS6 I/O GVDD

D5 MDQ50 I/O GVDD

D6 MDQ51 I/O GVDD

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 8: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor8

D7 MDQ52 I/O GVDD

D8 NC Non-user N/A

D9 VSS Ground N/A

D10 NC Non-user N/A

D11 VSS Ground N/A

D12 NC Non-user N/A

D13 VSS Ground N/A

D14 NC Non-user N/A

D15 NMI I QVDD

D16 VSS Ground N/A

D17 HRESET_IN I QVDD

D18 VSS Ground N/A

D19 VSS Non-user N/A

D20 GPIO13/IRQ13/RC13 I/O NVDD

D21 NVDD Power N/A

D22 GE2_TD3/CP_LOS5 I/O NVDD

D23 VSS Ground N/A

D24 GPIO5/IRQ5/RC5/CP_SYNC4 I/O NVDD

D25 NVDD Power N/A

D26 GPIO16/TMR5/RC16 I/O NVDD

D27 VSS‘ Ground N/A

D28 GPIO10/IRQ10/RC10 I/O NVDD

E1 MDQ53 I/O GVDD

E2 VSS Ground N/A

E3 MDQ55 I/O GVDD

E4 GVDD Power N/A

E5 VSS Ground N/A

E6 MDQ54 I/O GVDD

E7 GVDD Power N/A

E8 VSS Ground N/A

E9 NC Non-user N/A

E10 NC Non-user N/A

E11 NC Non-user N/A

E12 NC Non-user N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 9: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 9

E13 NC Non-user N/A

E14 NC Non-user N/A

E15 INT_OUT/CP_TX_INT O QVDD

E16 HRESET I/O QVDD

E17 TCK I QVDD

E18 VSS Ground N/A

E19 NVDD Power N/A

E20 GE2_RD3/CP_LOS2 I NVDD

E21 VSS Ground N/A

E22 VSS Non-user N/A

E23 NVDD Power N/A

E24 GPIO27/TMR4/RCW_SRC0 I/O NVDD

E25 VSS Ground N/A

E26 GPIO0/IRQ0/RC0/CP_SYNC1 I/O NVDD

E27 GPIO17/SPI_SCK/CP_LOS3 I/O NVDD

E28 GPIO1/IRQ1/RC1/CP_SYNC2 I/O NVDD

F1 MDQ40 I/O GVDD

F2 MDQ41 I/O GVDD

F3 MDQS5 I/O GVDD

F4 MDQS5 I/O GVDD

F5 MDQ43 I/O GVDD

F6 MDQ47 I/O GVDD

F7 MDM6 O GVDD

F8 VDD Power N/A

F9 VSS Ground N/A

F10 VDD Power N/A

F11 NC Non-user N/A

F12 NC Non-user N/A

F13 VSS Ground N/A

F14 NC Non-user N/A

F15 NMI_OUT/CP_RX_INT O QVDD

F16 VSS Ground N/A

F17 TDI I QVDD

F18 VSS Ground N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 10: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor10

F19 GE2_RD2/CP_LOS1 I NVDD

F20 GE2_RX_CTL I NVDD

F21 GE2_RD0/CP_LOS6 I NVDD

F22 GE2_RX_CLK I NVDD

F23 GE2_RD1 I NVDD

F24 GPIO26/TMR3 I/O NVDD

F25 GPIO6/IRQ6/RC6/CP_SYNC5 I/O NVDD

F26 GPIO22 I/O NVDD

F27 GPIO23/TMR0/BOOT_SPI_SL I/O NVDD

F28 GPIO8/IRQ8/RC8 I/O NVDD

G1 VSS Ground N/A

G2 GVDD Power N/A

G3 MDM5 O GVDD

G4 VSS Ground N/A

G5 GVDD Power N/A

G6 MDQ46 I/O GVDD

G7 VDD Power N/A

G8 VSS Ground N/A

G9 VDD Power N/A

G10 VSS Ground N/A

G11 NC Non-user N/A

G12 NC Non-user N/A

G13 NC Non-user N/A

G14 NC Non-user N/A

G15 QVDD Power N/A

G16 STOP_BS I QVDD

G17 TRST I QVDD

G18 VSS Ground N/A

G19 GPIO28/UART_RXD/CP_LOS1 I/O NVDD

G20 GE1_RD3 I NVDD

G21 GE1_RD2 I NVDD

G22 GE1_RX_CLK I NVDD

G23 VSS Ground N/A

G24 GE1_RX_CTL I NVDD

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 11: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 11

G25 NVDD Power N/A

G26 GPIO19/SPI_MISO/CP_LOS5 I/O NVDD

G27 VSS Ground N/A

G28 GPIO11/IRQ11/RC11 I/O NVDD

H1 MDQ38 I/O GVDD

H2 MDQS4 I/O GVDD

H3 MDQS4 I/O GVDD

H4 MDQ44 I/O GVDD

H5 MDQ45 I/O GVDD

H6 MDQ42 I/O GVDD

H7 VSS Ground N/A

H8 VDD Power N/A

H9 VSS Ground N/A

H10 VDD Power N/A

H11 VSS Ground N/A

H12 VSS Non-user N/A

H13 NC Non-user N/A

H14 QVDD Power N/A

H15 VSS Ground N/A

H16 VDD Power N/A

H17 VSS Ground N/A

H18 VDD Power N/A

H19 VSS Ground N/A

H20 NVDD Power N/A

H21 VSS Ground N/A

H22 GE1_RD0 I NVDD

H23 NVDD Power N/A

H24 GE1_RD1 I NVDD

H25 VSS Ground N/A

H26 GPIO14/DRQ0/IRQ14/RC14 I/O NVDD

H27 NVDD Power N/A

H28 GPIO12/IRQ12/RC12 I/O NVDD

J1 MDQ37 I/O GVDD

J2 VSS Ground N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 12: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor12

J3 MDQ35 I/O GVDD

J4 GVDD Power N/A

J5 MDQ33 I/O GVDD

J6 MDQ36 I/O GVDD

J7 VDD Power N/A

J8 VSS Ground N/A

J9 VDD Power N/A

J10 VSS Ground N/A

J11 VDD Power N/A

J12 VSS Ground N/A

J13 VDD Power N/A

J14 VSS Ground N/A

J15 VDD Power N/A

J16 VSS Ground N/A

J17 VDD Power N/A

J18 VSS Ground N/A

J19 VDD Power N/A

J20 VSS Ground N/A

J21 NVDD Power N/A

J22 GPIO24/TMR1/RCW_SRC2 I/O NVDD

J23 GPIO9/IRQ9/RC9 I/O NVDD

J24 RCW_LSEL0/RC17 I/O NVDD

J25 RCW_LSEL3/RC20 I/O NVDD

J26 RCW_LSEL2/RC19 I/O NVDD

J27 RC21 I NVDD

J28 GPIO3/DRQ1/IRQ3/RC3 I/O NVDD

K1 MCAS O GVDD

K2 MCS0 O GVDD

K3 MCS1 O GVDD

K4 MDQ39 I/O GVDD

K5 MDQ32 I/O GVDD

K6 MDQ34 I/O GVDD

K7 VSS Ground N/A

K8 VDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 13: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 13

K9 VSS Ground N/A

K10 VDD Power N/A

K11 VSS Ground N/A

K12 VDD Power N/A

K13 VSS Ground N/A

K14 VDD Power N/A

K15 VSS Ground N/A

K16 VDD Power N/A

K17 VSS Ground N/A

K18 VDD Power N/A

K19 VSS Ground N/A

K20 VDD Power N/A

K21 VSS Ground N/A

K22 GPIO4/DDN1/IRQ4/RC4 I/O NVDD

K23 VSS Ground N/A

K24 RCW_LSEL1/RC18 I/O NVDD

K25 NVDD Power N/A

K26 GPIO7/IRQ7/RC7/CP_SYNC6 I/O NVDD

K27 VSS Ground N/A

K28 GPIO2/IRQ2/RC2/CP_SYNC3 I/O NVDD

L1 VSS Ground N/A

L2 GVDD Power N/A

L3 NC Non-user N/A

L4 VSS Ground N/A

L5 GVDD Power N/A

L6 MDM4 O GVDD

L7 VDD Power N/A

L8 VSS Ground N/A

L9 VDD Power N/A

L10 VSS Ground N/A

L11 VDD Power N/A

L12 VSS Ground N/A

L13 VDD Power N/A

L14 VSS Ground N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 14: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor14

L15 VDD Power N/A

L16 VSS Ground N/A

L17 VDD Power N/A

L18 VSS Ground N/A

L19 VDD Power N/A

L20 VSS Ground N/A

L21 NVDD Power N/A

L22 NC NC N/A

L23 NC NC N/A

L24 VSS Non-user N/A

L25 VSS Non-user N/A

L26 VSS Non-user N/A

L27 SXCVSS Ground N/A

L28 SXCVDD Power N/A

M1 MCK0 O GVDD

M2 MCK0 O GVDD

M3 MA13 O GVDD

M4 MWE O GVDD

M5 NC Non-user N/A

M6 NC Non-user N/A

M7 VSS Ground N/A

M8 VDD Power N/A

M9 VSS Ground N/A

M10 VDD Power N/A

M11 VSS Ground N/A

M12 VDD Power N/A

M13 VSS Ground N/A

M14 VDD Power N/A

M15 VSS Ground N/A

M16 VDD Power N/A

M17 VSS Ground N/A

M18 VDD Power N/A

M19 VSS Ground N/A

M20 VDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 15: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 15

M21 NC NC N/A

M22 NC NC N/A

M23 SD_A_TX O SXPVDD

M24 SD_A_TX O SXPVDD

M25 SXPVDD Power N/A

M26 SXPVSS Ground N/A

M27 SD_A_RX I SXCVDD

M28 SD_A_RX I SXCVDD

N1 MRAS O GVDD

N2 VSS Ground N/A

N3 NC Non-user N/A

N4 GVDD Power N/A

N5 VSS Ground N/A

N6 MODT1 O GVDD

N7 CRPEVDD Power N/A

N8 VSS Ground N/A

N9 CRPEVDD Power N/A

N10 VSS Ground N/A

N11 CRPEVDD Power N/A

N12 VSS Ground N/A

N13 VDD Power N/A

N14 VSS Ground N/A

N15 VDD Power N/A

N16 VSS Ground N/A

N17 VDD Power N/A

N18 VSS Ground N/A

N19 VDD Power N/A

N20 VSS Ground N/A

N21 NC NC N/A

N22 NC NC N/A

N23 SXPVDD Power N/A

N24 SXPVSS Ground N/A

N25 SD_B_TX O SXPVDD

N26 SD_B_TX O SXPVDD

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 16: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor16

N27 SXCVSS Ground N/A

N28 SXCVDD Power N/A

P1 MCK2 O GVDD

P2 MA10 O GVDD

P3 NC Non-user N/A

P4 MA4 O GVDD

P5 NC Non-user N/A

P6 MODT0 O GVDD

P7 VSS Ground N/A

P8 CRPEVDD Power N/A

P9 VSS Ground N/A

P10 CRPEVDD Power N/A

P11 VSS Ground N/A

P12 VDD Power N/A

P13 VSS Ground N/A

P14 VDD Power N/A

P15 VSS Ground N/A

P16 VDD Power N/A

P17 VSS Ground N/A

P18 VDD Power N/A

P19 VSS Ground N/A

P20 VDD Power N/A

P21 NC NC N/A

P22 SD_IMP_CAL_RX I SXCVDD

P23 NC NC N/A

P24 NC NC N/A

P25 SXPVDD Power N/A

P26 SXPVSS Ground N/A

P27 SD_B_RX I SXCVDD

P28 SD_B_RX I SXCVDD

R1 MCK2 O GVDD

R2 GVDD Power N/A

R3 MA0 O GVDD

R4 VSS Ground N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 17: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 17

R5 GVDD Power N/A

R6 MBA0 O GVDD

R7 GVDD Power N/A

R8 VSS Ground N/A

R9 VDD Power N/A

R10 VSS Ground N/A

R11 CRPEVDD Power N/A

R12 VSS Ground N/A

R13 VDD Power N/A

R14 VSS Ground N/A

R15 VDD Power N/A

R16 VSS Ground N/A

R17 VDD Power N/A

R18 VSS Ground N/A

R19 VDD Power N/A

R20 VSS Ground N/A

R21 NC NC N/A

R22 NC NC N/A

R23 NC NC N/A

R24 NC NC N/A

R25 SD_C_TX O SXPVDD

R26 SD_C_TX O SXPVDD

R27 SXCVSS Ground N/A

R28 SXCVDD Power N/A

T1 VSS Ground N/A

T2 VSS Ground N/A

T3 MCK1 O GVDD

T4 MA1 O GVDD

T5 MA3 O GVDD

T6 MAPAR_OUT O GVDD

T7 VSS Ground N/A

T8 GVDD Power N/A

T9 VSS Ground N/A

T10 VDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 18: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor18

T11 VSS Ground N/A

T12 VDD Power N/A

T13 VSS Ground N/A

T14 VDD Power N/A

T15 VSS Ground N/A

T16 VDD Power N/A

T17 VSS Ground N/A

T18 VDD Power N/A

T19 VSS Ground N/A

T20 VDD Power N/A

T21 NC NC N/A

T22 NC Non-user N/A

T23 NC Non-user N/A

T24 NC NC N/A

T25 SXPVDD Power N/A

T26 SXPVSS Ground N/A

T27 SD_C_RX I SXCVDD

T28 SD_C_RX I SXCVDD

U1 MAVDD Power N/A

U2 VSS Ground N/A

U3 MCK1 O GVDD

U4 GVDD Power N/A

U5 VSS Ground N/A

U6 MBA1 O GVDD

U7 GVDD Power N/A

U8 VSS Ground N/A

U9 VDD Power N/A

U10 VSS Ground N/A

U11 VDD Power N/A

U12 VSS Ground N/A

U13 VDD Power N/A

U14 VSS Ground N/A

U15 VDD Power N/A

U16 VSS Ground N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 19: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 19

U17 VDD Power N/A

U18 VSS Ground N/A

U19 VDD Power N/A

U20 VSS Ground N/A

U21 NC NC N/A

U22 NC NC N/A

U23 NC NC N/A

U24 NC NC N/A

U25 SD_D_TX O SXPVDD

U26 SD_D_TX O SXPVDD

U27 SXCVSS Ground N/A

U28 SXCVDD Power N/A

V1 MVREF Power N/A

V2 VSS Ground N/A

V3 MA8 O GVDD

V4 MA2 O GVDD

V5 MA6 O GVDD

V6 MCKE1 O GVDD

V7 VSS Ground N/A

V8 GVDD Power N/A

V9 VSS Ground N/A

V10 VDD Power N/A

V11 VSS Ground N/A

V12 VDD Power N/A

V13 VSS Ground N/A

V14 VDD Power N/A

V15 VSS Ground N/A

V16 VDD Power N/A

V17 VSS Ground N/A

V18 VDD Power N/A

V19 VSS Ground N/A

V20 VDD Power N/A

V21 NC NC N/A

V22 NC NC N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 20: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor20

V23 NC NC N/A

V24 NC NC N/A

V25 NC NC N/A

V26 NC NC N/A

V27 SD_D_RX I SXCVDD

V28 SD_D_RX I SXCVDD

W1 VSS Ground N/A

W2 VSS Ground N/A

W3 MA5 O GVDD

W4 VSS Ground N/A

W5 GVDD Power N/A

W6 MMDIC1 I/O GVDD

W7 GVDD Power N/A

W8 VSS Ground N/A

W9 VDD Power N/A

W10 VSS Ground N/A

W11 M3VDD Power N/A

W12 VSS Ground N/A

W13 M3VDD Power N/A

W14 VSS Ground N/A

W15 M3VDD Power N/A

W16 VSS Ground N/A

W17 CPRIVDD Power N/A

W18 VSS Ground N/A

W19 VDD Power N/A

W20 VSS Ground N/A

W21 NC NC N/A

W22 NC NC N/A

W23 NC NC N/A

W24 SD_PLL1_AVDD Power N/A

W25 SD_PLL1_AGND Ground N/A

W26 NC NC N/A

W27 SXCVSS Ground N/A

W28 SXCVDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 21: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 21

Y1 MA11 O GVDD

Y2 MA9 O GVDD

Y3 MA12 O GVDD

Y4 MA7 O GVDD

Y5 NC Non-user N/A

Y6 MMDIC0 I/O GVDD

Y7 VSS Ground N/A

Y8 GVDD Power N/A

Y9 VSS Ground N/A

Y10 VDD Power N/A

Y11 VSS Ground N/A

Y12 M3VDD Power N/A

Y13 VSS Ground N/A

Y14 M3VDD Power N/A

Y15 VSS Ground N/A

Y16 CPRIVDD Power N/A

Y17 VSS Ground N/A

Y18 CPRIVDD Power N/A

Y19 VSS Ground N/A

Y20 VDD Power N/A

Y21 NC NC N/A

Y22 NC NC N/A

Y23 NC NC N/A

Y24 NC NC N/A

Y25 NC NC N/A

Y26 NC NC N/A

Y27 SD_REF_CLK1 I SXCVDD

Y28 SD_REF_CLK1 I SXCVDD

AA1 MDQS8 I/O GVDD

AA2 VSS Ground N/A

AA3 MA14 O GVDD

AA4 GVDD Power N/A

AA5 VSS Ground N/A

AA6 MA15 O GVDD

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 22: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor22

AA7 MCKE0 O GVDD

AA8 VSS Ground N/A

AA9 GVDD Power N/A

AA10 VSS Ground N/A

AA11 M3VDD Power N/A

AA12 VSS Ground N/A

AA13 M3VDD Power N/A

AA14 VSS Ground N/A

AA15 CPRIVDD Power N/A

AA16 VSS Ground N/A

AA17 CPRIVDD Power N/A

AA18 VSS Ground N/A

AA19 CPRIVDD Power N/A

AA20 NC NC N/A

AA21 SD_IMP_CAL_TX I SXPVDD

AA22 NC NC N/A

AA23 NC NC N/A

AA24 NC NC N/A

AA25 SD_E_TX O SXPVDD

AA26 SD_E_TX O SXPVDD

AA27 SXCVSS Ground N/A

AA28 SXCVDD Power N/A

AB1 MDQS8 I/O GVDD

AB2 MDM8 O GVDD

AB3 MECC2 I/O GVDD

AB4 MECC1 I/O GVDD

AB5 NC Non-user N/A

AB6 MAPAR_IN I GVDD

AB7 MBA2 O GVDD

AB8 MDQ2 I/O GVDD

AB9 MDQ1 I/O GVDD

AB10 MDQ0 I/O GVDD

AB11 VSS Ground N/A

AB12 M3VDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 23: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 23

AB13 VSS Ground N/A

AB14 M3VDD Power N/A

AB15 VSS Ground N/A

AB16 CPRIVDD Power N/A

AB17 VSS Ground N/A

AB18 CPRIVDD Power N/A

AB19 NC NC N/A

AB20 NC Non-user N/A

AB21 NC NC N/A

AB22 NC NC N/A

AB23 NC NC N/A

AB24 NC NC N/A

AB25 SXPVDD Power N/A

AB26 SXPVSS Ground N/A

AB27 SD_E_RX I SXCVDD

AB28 SD_E_RX I SXCVDD

AC1 VSS Ground N/A

AC2 GVDD Power N/A

AC3 MECC4 I/O GVDD

AC4 VSS Ground N/A

AC5 GVDD Power N/A

AC6 MDQ25 I/O GVDD

AC7 VSS Ground N/A

AC8 GVDD Power N/A

AC9 MDQ3 I/O GVDD

AC10 VSS Ground N/A

AC11 GVDD Power N/A

AC12 VSS Ground N/A

AC13 M3VDD Power N/A

AC14 VSS Ground N/A

AC15 CPRIVDD Power N/A

AC16 VSS Ground N/A

AC17 NC NC N/A

AC18 NC NC N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 24: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor24

AC19 NC NC N/A

AC20 NC Non-user N/A

AC21 NC NC N/A

AC22 NC NC N/A

AC23 NC NC N/A

AC24 NC NC N/A

AC25 SD_F_TX O SXPVDD

AC26 SD_F_TX O SXPVDD

AC27 SXCVSS Ground N/A

AC28 SXCVDD Power N/A

AD1 MECC7 I/O GVDD

AD2 MECC6 I/O GVDD

AD3 MECC0 I/O GVDD

AD4 MECC5 I/O GVDD

AD5 MECC3 I/O GVDD

AD6 MDQ24 I/O GVDD

AD7 MDM0 O GVDD

AD8 MDQS0 I/O GVDD

AD9 MDQS0 I/O GVDD

AD10 MDQ4 I/O GVDD

AD11 MDQ6 I/O GVDD

AD12 VSS Non-user N/A

AD13 VSS Non-user N/A

AD14 VSS Non-user N/A

AD15 VSS Ground N/A

AD16 VSS Ground N/A

AD17 NC NC N/A

AD18 SD_PLL2_AVDD Power N/A

AD19 NC NC N/A

AD20 NC NC N/A

AD21 NC NC N/A

AD22 NC NC N/A

AD23 NC NC N/A

AD24 NC NC N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 25: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 25

AD25 SXPVDD Power N/A

AD26 SXPVSS Ground N/A

AD27 SD_F_RX I SXCVDD

AD28 SD_F_RX I SXCVDD

AE1 MDQS2 I/O GVDD

AE2 VSS Ground N/A

AE3 MDQ18 I/O GVDD

AE4 GVDD Power N/A

AE5 VSS Ground N/A

AE6 MDQ29 I/O GVDD

AE7 GVDD Power N/A

AE8 VSS Ground N/A

AE9 MDQ5 I/O GVDD

AE10 GVDD Power N/A

AE11 VSS Ground N/A

AE12 MDQ9 I/O GVDD

AE13 VSS Non-user N/A

AE14 VSS Ground N/A

AE15 VSS Ground N/A

AE16 VSS Ground N/A

AE17 NC NC N/A

AE18 SD_PLL2_AGND Ground N/A

AE19 NC NC N/A

AE20 SD_J_TX O SXPVDD

AE21 SXPVDD Power N/A

AE22 SD_I_TX O SXPVDD

AE23 SXPVDD Power N/A

AE24 NC NC N/A

AE25 SD_G_TX O SXPVDD

AE26 SD_G_TX O SXPVDD

AE27 SXCVSS Ground N/A

AE28 SXCVDD Power N/A

AF1 MDQS2 I/O GVDD

AF2 MDQ17 I/O GVDD

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 26: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor26

AF3 MDQ21 I/O GVDD

AF4 MDQ16 I/O GVDD

AF5 MDQ30 I/O GVDD

AF6 MDQ27 I/O GVDD

AF7 MDQ28 I/O GVDD

AF8 MDQ7 I/O GVDD

AF9 MDQ14 I/O GVDD

AF10 MDQ11 I/O GVDD

AF11 MDQ8 I/O GVDD

AF12 MDQ10 I/O GVDD

AF13 VSS Non-user N/A

AF14 VSS Ground N/A

AF15 VSS Ground N/A

AF16 VSS Ground N/A

AF17 NC NC N/A

AF18 NC NC N/A

AF19 NC NC N/A

AF20 SD_J_TX O SXPVDD

AF21 SXPVSS Ground N/A

AF22 SD_I_TX O SXPVDD

AF23 SXPVSS Ground N/A

AF24 NC NC N/A

AF25 SXPVDD Power N/A

AF26 SXPVSS Ground N/A

AF27 SD_G_RX I SXCVDD

AF28 SD_G_RX I SXCVDD

AG1 VSS Ground N/A

AG2 GVDD Power N/A

AG3 MDQ22 I/O GVDD

AG4 VSS Ground N/A

AG5 GVDD Power N/A

AG6 MDQ26 I/O GVDD

AG7 VSS Ground N/A

AG8 GVDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 27: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 27

AG9 MDQ13 I/O GVDD

AG10 VSS Ground N/A

AG11 GVDD Power N/A

AG12 MDQ12 I/O GVDD

AG13 VSS Ground N/A

AG14 VSS Ground N/A

AG15 VSS Ground N/A

AG16 VSS Ground N/A

AG17 NC NC N/A

AG18 SXCVSS Ground N/A

AG19 SD_REF_CLK2 I SXCVDD

AG20 SXCVSS Ground N/A

AG21 SD_J_RX I SXCVDD

AG22 SXCVSS Ground N/A

AG23 SD_I_RX I SXCVDD

AG24 SXCVSS Ground N/A

AG25 SD_H_TX O SXPVDD

AG26 SD_H_TX O SXPVDD

AG27 SXCVSS Ground N/A

AG28 SXCVDD Power N/A

AH1 MDQ20 I/O GVDD

AH2 MDQ19 I/O GVDD

AH3 MDQ23 I/O GVDD

AH4 MDM2 O GVDD

AH5 MDQS3 I/O GVDD

AH6 MDQS3 I/O GVDD

AH7 MDM3 O GVDD

AH8 MDQ31 I/O GVDD

AH9 MDQS1 I/O GVDD

AH10 MDQS1 I/O GVDD

AH11 MDQ15 I/O GVDD

AH12 MDM1 O GVDD

AH13 VSS Ground N/A

AH14 PLL0_AVDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 28: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor28

AH15 PLL1_AVDD Power N/A

AH16 PLL2_AVDD Power N/A

AH17 NC NC N/A

AH18 SXCVDD Power N/A

AH19 SD_REF_CLK2 I SXCVDD

AH20 SXCVDD Power N/A

AH21 SD_J_RX I SXCVDD

AH22 SXCVDD Power N/A

AH23 SD_I_RX I SXCVDD

AH24 SXCVDD Power N/A

AH25 SXPVDD Power N/A

AH26 SXPVSS Ground N/A

AH27 SD_H_RX I SXCVDD

AH28 SD_H_RX I SXCVDD

Notes: 1. Signal function during power-on reset is determined by the RCW source type. Selection of RapidIO, SGMII, CPRI, and PCI Express functionality during normal operation is configured by the RCW bit values. Selection of the GPIO function and other functions is done by GPIO register setup. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. For configuration details, see the GPIO chapter in the MSC8157 Reference Manual.

2. NC signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS or SXCVSS), or pulled up (VDD).

3. Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected; non-user = connect as specified under Signal Name.

4. Connect power inputs to the power supplies via external filters. See the MSC8157 Design Checklist (AN4110) for details.

Table 2. Signal List by Primary Signal Name

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

A18 CLKIN I QVDD

A13 CLKOUT O QVDD

AA15 CPRIVDD Power N/A

AA17 CPRIVDD Power N/A

AA19 CPRIVDD Power N/A

AB16 CPRIVDD Power N/A

AB18 CPRIVDD Power N/A

AC15 CPRIVDD Power N/A

W17 CPRIVDD Power N/A

Y16 CPRIVDD Power N/A

Table 1. Signal List by Ball Number (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 29: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 29

Y18 CPRIVDD Power N/A

N11 CRPEVDD Power N/A

N7 CRPEVDD Power N/A

N9 CRPEVDD Power N/A

P10 CRPEVDD Power N/A

P8 CRPEVDD Power N/A

R11 CRPEVDD Power N/A

C16 DFT_TEST I QVDD

A14 EE0 I QVDD

C14 EE1 O QVDD

B26 GE_MDC O NVDD

C27 GE_MDIO I/O NVDD

A23 GE1_GTX_CLK O NVDD

H22 GE1_RD0 I NVDD

H24 GE1_RD1 I NVDD

G21 GE1_RD2 I NVDD

G20 GE1_RD3 I NVDD

G22 GE1_RX_CLK I NVDD

G24 GE1_RX_CTL I NVDD

A24 GE1_TD0 O NVDD

A27 GE1_TD1 O NVDD

A26 GE1_TD2 O NVDD

A28 GE1_TD3 O NVDD

A25 GE1_TX_CLK I NVDD

A22 GE1_TX_CTL O NVDD

C21 GE2_GTX_CLK/CP_LOS4 I/O NVDD

F21 GE2_RD0/CP_LOS6 I NVDD

F23 GE2_RD1 I NVDD

F19 GE2_RD2/CP_LOS1 I NVDD

E20 GE2_RD3/CP_LOS2 I NVDD

F22 GE2_RX_CLK I NVDD

F20 GE2_RX_CTL I NVDD

C24 GE2_TD0 O NVDD

C23 GE2_TD1 O NVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 30: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor30

C20 GE2_TD2/CP_LOS3 I/O NVDD

D22 GE2_TD3/CP_LOS5 I/O NVDD

B20 GE2_TX_CLK I NVDD

C22 GE2_TX_CTL O NVDD

E26 GPIO0/IRQ0/RC0/CP_SYNC1 I/O NVDD

E28 GPIO1/IRQ1/RC1/CP_SYNC2 I/O NVDD

D28 GPIO10/IRQ10/RC10 I/O NVDD

G28 GPIO11/IRQ11/RC11 I/O NVDD

H28 GPIO12/IRQ12/RC12 I/O NVDD

D20 GPIO13/IRQ13/RC13 I/O NVDD

H26 GPIO14/DRQ0/IRQ14/RC14 I/O NVDD

C19 GPIO15/DDN0/IRQ15/RC15 I/O NVDD

D26 GPIO16/TMR5/RC16 I/O NVDD

E27 GPIO17/SPI_SCK/CP_LOS3 I/O NVDD

B28 GPIO18/SPI_MOSI/CP_LOS4 I/O NVDD

G26 GPIO19/SPI_MISO/CP_LOS5 I/O NVDD

K28 GPIO2/IRQ2/RC2/CP_SYNC3 I/O NVDD

C26 GPIO20/SPI_SL/CP_LOS6 I/O NVDD

C28 GPIO21/TMR6 I/O NVDD

F26 GPIO22 I/O NVDD

F27 GPIO23/TMR0/BOOT_SPI_SL I/O NVDD

J22 GPIO24/TMR1/RCW_SRC2 I/O NVDD

B24 GPIO25/TMR2/RCW_SRC1 I/O NVDD

F24 GPIO26/TMR3 I/O NVDD

E24 GPIO27/TMR4/RCW_SRC0 I/O NVDD

G19 GPIO28/UART_RXD/CP_LOS1 I/O NVDD

A20 GPIO29/UART_TXD/CP_LOS2 I/O NVDD

J28 GPIO3/DRQ1/IRQ3/RC3 I/O NVDD

C25 GPIO30/I2C_SCL I/O NVDD

A21 GPIO31/I2C_SDA I/O NVDD

K22 GPIO4/DDN1/IRQ4/RC4 I/O NVDD

D24 GPIO5/IRQ5/RC5/CP_SYNC4 I/O NVDD

F25 GPIO6/IRQ6/RC6/CP_SYNC5 I/O NVDD

K26 GPIO7/IRQ7/RC7/CP_SYNC6 I/O NVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 31: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 31

F28 GPIO8/IRQ8/RC8 I/O NVDD

J23 GPIO9/IRQ9/RC9 I/O NVDD

A4 GVDD Power N/A

A7 GVDD Power N/A

AA4 GVDD Power N/A

AA9 GVDD Power N/A

AC11 GVDD Power N/A

AC2 GVDD Power N/A

AC5 GVDD Power N/A

AC8 GVDD Power N/A

AE10 GVDD Power N/A

AE4 GVDD Power N/A

AE7 GVDD Power N/A

AG11 GVDD Power N/A

AG2 GVDD Power N/A

AG5 GVDD Power N/A

AG8 GVDD Power N/A

C2 GVDD Power N/A

C5 GVDD Power N/A

E4 GVDD Power N/A

E7 GVDD Power N/A

G2 GVDD Power N/A

G5 GVDD Power N/A

J4 GVDD Power N/A

L2 GVDD Power N/A

L5 GVDD Power N/A

N4 GVDD Power N/A

R2 GVDD Power N/A

R5 GVDD Power N/A

R7 GVDD Power N/A

T8 GVDD Power N/A

U4 GVDD Power N/A

U7 GVDD Power N/A

V8 GVDD Power N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 32: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor32

W5 GVDD Power N/A

W7 GVDD Power N/A

Y8 GVDD Power N/A

E16 HRESET I/O QVDD

D17 HRESET_IN I QVDD

E15 INT_OUT/CP_TX_INT O QVDD

AA11 M3VDD Power N/A

AA13 M3VDD Power N/A

AB12 M3VDD Power N/A

AB14 M3VDD Power N/A

AC13 M3VDD Power N/A

W11 M3VDD Power N/A

W13 M3VDD Power N/A

W15 M3VDD Power N/A

Y12 M3VDD Power N/A

Y14 M3VDD Power N/A

R3 MA0 O GVDD

T4 MA1 O GVDD

P2 MA10 O GVDD

Y1 MA11 O GVDD

Y3 MA12 O GVDD

M3 MA13 O GVDD

AA3 MA14 O GVDD

AA6 MA15 O GVDD

V4 MA2 O GVDD

T5 MA3 O GVDD

P4 MA4 O GVDD

W3 MA5 O GVDD

V5 MA6 O GVDD

Y4 MA7 O GVDD

V3 MA8 O GVDD

Y2 MA9 O GVDD

AB6 MAPAR_IN I GVDD

T6 MAPAR_OUT O GVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 33: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 33

U1 MAVDD Power N/A

R6 MBA0 O GVDD

U6 MBA1 O GVDD

AB7 MBA2 O GVDD

K1 MCAS O GVDD

M1 MCK0 O GVDD

M2 MCK0 O GVDD

T3 MCK1 O GVDD

U3 MCK1 O GVDD

P1 MCK2 O GVDD

R1 MCK2 O GVDD

AA7 MCKE0 O GVDD

V6 MCKE1 O GVDD

A16 MCLKIN (optional) I QVDD

K2 MCS0 O GVDD

K3 MCS1 O GVDD

AD7 MDM0 O GVDD

AH12 MDM1 O GVDD

AH4 MDM2 O GVDD

AH7 MDM3 O GVDD

L6 MDM4 O GVDD

G3 MDM5 O GVDD

F7 MDM6 O GVDD

C6 MDM7 O GVDD

AB2 MDM8 O GVDD

AB10 MDQ0 I/O GVDD

AB9 MDQ1 I/O GVDD

AF12 MDQ10 I/O GVDD

AF10 MDQ11 I/O GVDD

AG12 MDQ12 I/O GVDD

AG9 MDQ13 I/O GVDD

AF9 MDQ14 I/O GVDD

AH11 MDQ15 I/O GVDD

AF4 MDQ16 I/O GVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 34: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor34

AF2 MDQ17 I/O GVDD

AE3 MDQ18 I/O GVDD

AH2 MDQ19 I/O GVDD

AB8 MDQ2 I/O GVDD

AH1 MDQ20 I/O GVDD

AF3 MDQ21 I/O GVDD

AG3 MDQ22 I/O GVDD

AH3 MDQ23 I/O GVDD

AD6 MDQ24 I/O GVDD

AC6 MDQ25 I/O GVDD

AG6 MDQ26 I/O GVDD

AF6 MDQ27 I/O GVDD

AF7 MDQ28 I/O GVDD

AE6 MDQ29 I/O GVDD

AC9 MDQ3 I/O GVDD

AF5 MDQ30 I/O GVDD

AH8 MDQ31 I/O GVDD

K5 MDQ32 I/O GVDD

J5 MDQ33 I/O GVDD

K6 MDQ34 I/O GVDD

J3 MDQ35 I/O GVDD

J6 MDQ36 I/O GVDD

J1 MDQ37 I/O GVDD

H1 MDQ38 I/O GVDD

K4 MDQ39 I/O GVDD

AD10 MDQ4 I/O GVDD

F1 MDQ40 I/O GVDD

F2 MDQ41 I/O GVDD

H6 MDQ42 I/O GVDD

F5 MDQ43 I/O GVDD

H4 MDQ44 I/O GVDD

H5 MDQ45 I/O GVDD

G6 MDQ46 I/O GVDD

F6 MDQ47 I/O GVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 35: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 35

D2 MDQ48 I/O GVDD

D1 MDQ49 I/O GVDD

AE9 MDQ5 I/O GVDD

D5 MDQ50 I/O GVDD

D6 MDQ51 I/O GVDD

D7 MDQ52 I/O GVDD

E1 MDQ53 I/O GVDD

E6 MDQ54 I/O GVDD

E3 MDQ55 I/O GVDD

B7 MDQ56 I/O GVDD

A3 MDQ57 I/O GVDD

B6 MDQ58 I/O GVDD

B2 MDQ59 I/O GVDD

AD11 MDQ6 I/O GVDD

B1 MDQ60 I/O GVDD

C3 MDQ61 I/O GVDD

B5 MDQ62 I/O GVDD

A6 MDQ63 I/O GVDD

AF8 MDQ7 I/O GVDD

AF11 MDQ8 I/O GVDD

AE12 MDQ9 I/O GVDD

AD8 MDQS0 I/O GVDD

AD9 MDQS0 I/O GVDD

AH10 MDQS1 I/O GVDD

AH9 MDQS1 I/O GVDD

AE1 MDQS2 I/O GVDD

AF1 MDQS2 I/O GVDD

AH5 MDQS3 I/O GVDD

AH6 MDQS3 I/O GVDD

H2 MDQS4 I/O GVDD

H3 MDQS4 I/O GVDD

F3 MDQS5 I/O GVDD

F4 MDQS5 I/O GVDD

D3 MDQS6 I/O GVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 36: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor36

D4 MDQS6 I/O GVDD

B3 MDQS7 I/O GVDD

B4 MDQS7 I/O GVDD

AA1 MDQS8 I/O GVDD

AB1 MDQS8 I/O GVDD

AD3 MECC0 I/O GVDD

AB4 MECC1 I/O GVDD

AB3 MECC2 I/O GVDD

AD5 MECC3 I/O GVDD

AC3 MECC4 I/O GVDD

AD4 MECC5 I/O GVDD

AD2 MECC6 I/O GVDD

AD1 MECC7 I/O GVDD

Y6 MMDIC0 I/O GVDD

W6 MMDIC1 I/O GVDD

P6 MODT0 O GVDD

N6 MODT1 O GVDD

N1 MRAS O GVDD

V1 MVREF Power N/A

M4 MWE O GVDD

A10 NC Non-user N/A

A11 NC Non-user N/A

A12 NC Non-user N/A

A8 NC Non-user N/A

A9 NC Non-user N/A

AA20 NC NC N/A

AA22 NC NC N/A

AA23 NC NC N/A

AA24 NC NC N/A

AB19 NC NC N/A

AB20 NC Non-user N/A

AB21 NC NC N/A

AB22 NC NC N/A

AB23 NC NC N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 37: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 37

AB24 NC NC N/A

AB5 NC Non-user N/A

AC17 NC NC N/A

AC18 NC NC N/A

AC19 NC NC N/A

AC20 NC Non-user N/A

AC21 NC NC N/A

AC22 NC NC N/A

AC23 NC NC N/A

AC24 NC NC N/A

AD17 NC NC N/A

AD19 NC NC N/A

AD20 NC NC N/A

AD21 NC NC N/A

AD22 NC NC N/A

AD23 NC NC N/A

AD24 NC NC N/A

AE17 NC NC N/A

AE19 NC NC N/A

AE24 NC NC N/A

AF17 NC NC N/A

AF18 NC NC N/A

AF19 NC NC N/A

AF24 NC NC N/A

AG17 NC NC N/A

AH17 NC NC N/A

B10 NC Non-user N/A

B12 NC Non-user N/A

B8 NC Non-user N/A

C10 NC Non-user N/A

C11 NC Non-user N/A

C12 NC Non-user N/A

C13 NC Non-user N/A

C15 NC Non-user N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 38: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor38

C8 NC Non-user N/A

C9 NC Non-user N/A

D10 NC Non-user N/A

D12 NC Non-user N/A

D14 NC Non-user N/A

D8 NC Non-user N/A

E10 NC Non-user N/A

E11 NC Non-user N/A

E12 NC Non-user N/A

E13 NC Non-user N/A

E14 NC Non-user N/A

E9 NC Non-user N/A

F11 NC Non-user N/A

F12 NC Non-user N/A

F14 NC Non-user N/A

G11 NC Non-user N/A

G12 NC Non-user N/A

G13 NC Non-user N/A

G14 NC Non-user N/A

H13 NC Non-user N/A

L22 NC NC N/A

L23 NC NC N/A

L3 NC Non-user N/A

M21 NC NC N/A

M22 NC NC N/A

M5 NC Non-user N/A

M6 NC Non-user N/A

N21 NC NC N/A

N22 NC NC N/A

N3 NC Non-user N/A

P21 NC NC N/A

P23 NC NC N/A

P24 NC NC N/A

P3 NC Non-user N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 39: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 39

P5 NC Non-user N/A

R21 NC NC N/A

R22 NC NC N/A

R23 NC NC N/A

R24 NC NC N/A

T21 NC NC N/A

T22 NC Non-user N/A

T23 NC Non-user N/A

T24 NC NC N/A

U21 NC NC N/A

U22 NC NC N/A

U23 NC NC N/A

U24 NC NC N/A

V21 NC NC N/A

V22 NC NC N/A

V23 NC NC N/A

V24 NC NC N/A

V25 NC NC N/A

V26 NC NC N/A

W21 NC NC N/A

W22 NC NC N/A

W23 NC NC N/A

W26 NC NC N/A

Y21 NC NC N/A

Y22 NC NC N/A

Y23 NC NC N/A

Y24 NC NC N/A

Y25 NC NC N/A

Y26 NC NC N/A

Y5 NC Non-user N/A

D15 NMI I QVDD

F15 NMI_OUT/CP_RX_INT O QVDD

D21 NVDD Power N/A

D25 NVDD Power N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 40: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor40

E19 NVDD Power N/A

E23 NVDD Power N/A

G25 NVDD Power N/A

H20 NVDD Power N/A

H23 NVDD Power N/A

H27 NVDD Power N/A

J21 NVDD Power N/A

K25 NVDD Power N/A

L21 NVDD Power N/A

AH14 PLL0_AVDD Power N/A

AH15 PLL1_AVDD Power N/A

AH16 PLL2_AVDD Power N/A

C17 PORESET I QVDD

G15 QVDD Power N/A

H14 QVDD Power N/A

J27 RC21 I NVDD

J24 RCW_LSEL0/RC17 I/O NVDD

K24 RCW_LSEL1/RC18 I/O NVDD

J26 RCW_LSEL2/RC19 I/O NVDD

J25 RCW_LSEL3/RC20 I/O NVDD

M27 SD_A_RX I SXCVDD

M28 SD_A_RX I SXCVDD

M23 SD_A_TX O SXPVDD

M24 SD_A_TX O SXPVDD

P27 SD_B_RX I SXCVDD

P28 SD_B_RX I SXCVDD

N25 SD_B_TX O SXPVDD

N26 SD_B_TX O SXPVDD

T27 SD_C_RX I SXCVDD

T28 SD_C_RX I SXCVDD

R25 SD_C_TX O SXPVDD

R26 SD_C_TX O SXPVDD

V27 SD_D_RX I SXCVDD

V28 SD_D_RX I SXCVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 41: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 41

U25 SD_D_TX O SXPVDD

U26 SD_D_TX O SXPVDD

AB27 SD_E_RX I SXCVDD

AB28 SD_E_RX I SXCVDD

AA25 SD_E_TX O SXPVDD

AA26 SD_E_TX O SXPVDD

AD27 SD_F_RX I SXCVDD

AD28 SD_F_RX I SXCVDD

AC25 SD_F_TX O SXPVDD

AC26 SD_F_TX O SXPVDD

AF27 SD_G_RX I SXCVDD

AF28 SD_G_RX I SXCVDD

AE25 SD_G_TX O SXPVDD

AE26 SD_G_TX O SXPVDD

AH27 SD_H_RX I SXCVDD

AH28 SD_H_RX I SXCVDD

AG25 SD_H_TX O SXPVDD

AG26 SD_H_TX O SXPVDD

AG23 SD_I_RX I SXCVDD

AH23 SD_I_RX I SXCVDD

AE22 SD_I_TX O SXPVDD

AF22 SD_I_TX O SXPVDD

P22 SD_IMP_CAL_RX I SXCVDD

AA21 SD_IMP_CAL_TX I SXPVDD

AG21 SD_J_RX I SXCVDD

AH21 SD_J_RX I SXCVDD

AE20 SD_J_TX O SXPVDD

AF20 SD_J_TX O SXPVDD

W25 SD_PLL1_AGND Ground N/A

W24 SD_PLL1_AVDD Power N/A

AE18 SD_PLL2_AGND Ground N/A

AD18 SD_PLL2_AVDD Power N/A

Y27 SD_REF_CLK1 I SXCVDD

Y28 SD_REF_CLK1 I SXCVDD

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 42: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor42

AG19 SD_REF_CLK2 I SXCVDD

AH19 SD_REF_CLK2 I SXCVDD

G16 STOP_BS I QVDD

AA28 SXCVDD Power N/A

AC28 SXCVDD Power N/A

AE28 SXCVDD Power N/A

AG28 SXCVDD Power N/A

AH18 SXCVDD Power N/A

AH20 SXCVDD Power N/A

AH22 SXCVDD Power N/A

AH24 SXCVDD Power N/A

L28 SXCVDD Power N/A

N28 SXCVDD Power N/A

R28 SXCVDD Power N/A

U28 SXCVDD Power N/A

W28 SXCVDD Power N/A

AA27 SXCVSS Ground N/A

AC27 SXCVSS Ground N/A

AE27 SXCVSS Ground N/A

AG18 SXCVSS Ground N/A

AG20 SXCVSS Ground N/A

AG22 SXCVSS Ground N/A

AG24 SXCVSS Ground N/A

AG27 SXCVSS Ground N/A

L27 SXCVSS Ground N/A

N27 SXCVSS Ground N/A

R27 SXCVSS Ground N/A

U27 SXCVSS Ground N/A

W27 SXCVSS Ground N/A

AB25 SXPVDD Power N/A

AD25 SXPVDD Power N/A

AE21 SXPVDD Power N/A

AE23 SXPVDD Power N/A

AF25 SXPVDD Power N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 43: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 43

AH25 SXPVDD Power N/A

M25 SXPVDD Power N/A

N23 SXPVDD Power N/A

P25 SXPVDD Power N/A

T25 SXPVDD Power N/A

AB26 SXPVSS Ground N/A

AD26 SXPVSS Ground N/A

AF21 SXPVSS Ground N/A

AF23 SXPVSS Ground N/A

AF26 SXPVSS Ground N/A

AH26 SXPVSS Ground N/A

M26 SXPVSS Ground N/A

N24 SXPVSS Ground N/A

P26 SXPVSS Ground N/A

T26 SXPVSS Ground N/A

E17 TCK I QVDD

F17 TDI I QVDD

B14 TDO O QVDD

B15 TMS I QVDD

G17 TRST I QVDD

F10 VDD Power N/A

F8 VDD Power N/A

G7 VDD Power N/A

G9 VDD Power N/A

H10 VDD Power N/A

H16 VDD Power N/A

H18 VDD Power N/A

H8 VDD Power N/A

J11 VDD Power N/A

J13 VDD Power N/A

J15 VDD Power N/A

J17 VDD Power N/A

J19 VDD Power N/A

J7 VDD Power N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 44: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor44

J9 VDD Power N/A

K10 VDD Power N/A

K12 VDD Power N/A

K14 VDD Power N/A

K16 VDD Power N/A

K18 VDD Power N/A

K20 VDD Power N/A

K8 VDD Power N/A

L11 VDD Power N/A

L13 VDD Power N/A

L15 VDD Power N/A

L17 VDD Power N/A

L19 VDD Power N/A

L7 VDD Power N/A

L9 VDD Power N/A

M10 VDD Power N/A

M12 VDD Power N/A

M14 VDD Power N/A

M16 VDD Power N/A

M18 VDD Power N/A

M20 VDD Power N/A

M8 VDD Power N/A

N13 VDD Power N/A

N15 VDD Power N/A

N17 VDD Power N/A

N19 VDD Power N/A

P12 VDD Power N/A

P14 VDD Power N/A

P16 VDD Power N/A

P18 VDD Power N/A

P20 VDD Power N/A

R13 VDD Power N/A

R15 VDD Power N/A

R17 VDD Power N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 45: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 45

R19 VDD Power N/A

R9 VDD Power N/A

T10 VDD Power N/A

T12 VDD Power N/A

T14 VDD Power N/A

T16 VDD Power N/A

T18 VDD Power N/A

T20 VDD Power N/A

U11 VDD Power N/A

U13 VDD Power N/A

U15 VDD Power N/A

U17 VDD Power N/A

U19 VDD Power N/A

U9 VDD Power N/A

V10 VDD Power N/A

V12 VDD Power N/A

V14 VDD Power N/A

V16 VDD Power N/A

V18 VDD Power N/A

V20 VDD Power N/A

W19 VDD Power N/A

W9 VDD Power N/A

Y10 VDD Power N/A

Y20 VDD Power N/A

A15 VSS Ground N/A

A17 VSS Ground N/A

A19 VSS Ground N/A

A2 VSS Ground N/A

A5 VSS Ground N/A

AA10 VSS Ground N/A

AA12 VSS Ground N/A

AA14 VSS Ground N/A

AA16 VSS Ground N/A

AA18 VSS Ground N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 46: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor46

AA2 VSS Ground N/A

AA5 VSS Ground N/A

AA8 VSS Ground N/A

AB11 VSS Ground N/A

AB13 VSS Ground N/A

AB15 VSS Ground N/A

AB17 VSS Ground N/A

AC1 VSS Ground N/A

AC10 VSS Ground N/A

AC12 VSS Ground N/A

AC14 VSS Ground N/A

AC16 VSS Ground N/A

AC4 VSS Ground N/A

AC7 VSS Ground N/A

AD12 VSS Non-user N/A

AD13 VSS Non-user N/A

AD14 VSS Non-user N/A

AD15 VSS Ground N/A

AD16 VSS Ground N/A

AE11 VSS Ground N/A

AE13 VSS Non-user N/A

AE14 VSS Ground N/A

AE15 VSS Ground N/A

AE16 VSS Ground N/A

AE2 VSS Ground N/A

AE5 VSS Ground N/A

AE8 VSS Ground N/A

AF13 VSS Non-user N/A

AF14 VSS Ground N/A

AF15 VSS Ground N/A

AF16 VSS Ground N/A

AG1 VSS Ground N/A

AG10 VSS Ground N/A

AG13 VSS Ground N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 47: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 47

AG14 VSS Ground N/A

AG15 VSS Ground N/A

AG16 VSS Ground N/A

AG4 VSS Ground N/A

AG7 VSS Ground N/A

AH13 VSS Ground N/A

B11 VSS Ground N/A

B13 VSS Ground N/A

B16 VSS Ground N/A

B17 VSS Ground N/A

B18 VSS Ground N/A

B19 VSS Ground N/A

B21 VSS Ground N/A

B22 VSS Non-user N/A

B23 VSS Ground N/A

B25 VSS Ground N/A

B27 VSS Ground N/A

B9 VSS Ground N/A

C1 VSS Ground N/A

C18 VSS Ground N/A

C4 VSS Ground N/A

C7 VSS Ground N/A

D11 VSS Ground N/A

D13 VSS Ground N/A

D16 VSS Ground N/A

D18 VSS Ground N/A

D19 VSS Non-user N/A

D23 VSS Ground N/A

D9 VSS Ground N/A

E18 VSS Ground N/A

E2 VSS Ground N/A

E21 VSS Ground N/A

E22 VSS Non-user N/A

E25 VSS Ground N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 48: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor48

E5 VSS Ground N/A

E8 VSS Ground N/A

F13 VSS Ground N/A

F16 VSS Ground N/A

F18 VSS Ground N/A

F9 VSS Ground N/A

G1 VSS Ground N/A

G10 VSS Ground N/A

G18 VSS Ground N/A

G23 VSS Ground N/A

G27 VSS Ground N/A

G4 VSS Ground N/A

G8 VSS Ground N/A

H11 VSS Ground N/A

H12 VSS Non-user N/A

H15 VSS Ground N/A

H17 VSS Ground N/A

H19 VSS Ground N/A

H21 VSS Ground N/A

H25 VSS Ground N/A

H7 VSS Ground N/A

H9 VSS Ground N/A

J10 VSS Ground N/A

J12 VSS Ground N/A

J14 VSS Ground N/A

J16 VSS Ground N/A

J18 VSS Ground N/A

J2 VSS Ground N/A

J20 VSS Ground N/A

J8 VSS Ground N/A

K11 VSS Ground N/A

K13 VSS Ground N/A

K15 VSS Ground N/A

K17 VSS Ground N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 49: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 49

K19 VSS Ground N/A

K21 VSS Ground N/A

K23 VSS Ground N/A

K27 VSS Ground N/A

K7 VSS Ground N/A

K9 VSS Ground N/A

L1 VSS Ground N/A

L10 VSS Ground N/A

L12 VSS Ground N/A

L14 VSS Ground N/A

L16 VSS Ground N/A

L18 VSS Ground N/A

L20 VSS Ground N/A

L24 VSS Non-user N/A

L25 VSS Non-user N/A

L26 VSS Non-user N/A

L4 VSS Ground N/A

L8 VSS Ground N/A

M11 VSS Ground N/A

M13 VSS Ground N/A

M15 VSS Ground N/A

M17 VSS Ground N/A

M19 VSS Ground N/A

M7 VSS Ground N/A

M9 VSS Ground N/A

N10 VSS Ground N/A

N12 VSS Ground N/A

N14 VSS Ground N/A

N16 VSS Ground N/A

N18 VSS Ground N/A

N2 VSS Ground N/A

N20 VSS Ground N/A

N5 VSS Ground N/A

N8 VSS Ground N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 50: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Pin Assignment

Freescale Semiconductor50

P11 VSS Ground N/A

P13 VSS Ground N/A

P15 VSS Ground N/A

P17 VSS Ground N/A

P19 VSS Ground N/A

P7 VSS Ground N/A

P9 VSS Ground N/A

R10 VSS Ground N/A

R12 VSS Ground N/A

R14 VSS Ground N/A

R16 VSS Ground N/A

R18 VSS Ground N/A

R20 VSS Ground N/A

R4 VSS Ground N/A

R8 VSS Ground N/A

T1 VSS Ground N/A

T11 VSS Ground N/A

T13 VSS Ground N/A

T15 VSS Ground N/A

T17 VSS Ground N/A

T19 VSS Ground N/A

T2 VSS Ground N/A

T7 VSS Ground N/A

T9 VSS Ground N/A

U10 VSS Ground N/A

U12 VSS Ground N/A

U14 VSS Ground N/A

U16 VSS Ground N/A

U18 VSS Ground N/A

U2 VSS Ground N/A

U20 VSS Ground N/A

U5 VSS Ground N/A

U8 VSS Ground N/A

V11 VSS Ground N/A

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 51: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Pin Assignment

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 51

V13 VSS Ground N/A

V15 VSS Ground N/A

V17 VSS Ground N/A

V19 VSS Ground N/A

V2 VSS Ground N/A

V7 VSS Ground N/A

V9 VSS Ground N/A

W1 VSS Ground N/A

W10 VSS Ground N/A

W12 VSS Ground N/A

W14 VSS Ground N/A

W16 VSS Ground N/A

W18 VSS Ground N/A

W2 VSS Ground N/A

W20 VSS Ground N/A

W4 VSS Ground N/A

W8 VSS Ground N/A

Y11 VSS Ground N/A

Y13 VSS Ground N/A

Y15 VSS Ground N/A

Y17 VSS Ground N/A

Y19 VSS Ground N/A

Y7 VSS Ground N/A

Y9 VSS Ground N/A

D27 VSS‘ Ground N/A

Signal function during power-on reset is determined by the RCW source type. Selection of RapidIO, SGMII, CPRI, and PCI Express functionality during normal operation is configured by the RCW bit values. Selection of the GPIO function and other

functions is done by GPIO register setup. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. For configuration details, see the GPIO chapter in the MSC8157 Reference

Manual.NC signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for

manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS or SXCVSS), or pulled up (VDD).

Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected; non-user = connect as specified under Signal Name.

Connect power inputs to the power supplies via external filters. See the MSC8157 Design Checklist (AN4110) for details.

Table 2. Signal List by Primary Signal Name (continued)

Ball Number Signal Name1,2 Pin Type3 Power Rail Name

Page 52: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor52

3 Electrical CharacteristicsThis document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the MSC8157 Reference Manual.

3.1 Maximum RatingsIn calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 3 describes the maximum electrical ratings for the MSC8157.

Table 3. Absolute Maximum Ratings

Rating Power Rail Name Symbol Value Unit

Core supply voltage • Cores 0–5

PLL supply voltage3

CRPE supply voltageCPRI supply voltage

VDD

PLL0_AVDDPLL1_AVDDPLL2_AVDD

MAVDDSD_PLL1_AVDDSD_PLL2_AVDD

CRPEVDDCPRIVDD

VDD

VDDPLL0VDDPLL1VDDPLL2VDDPLLMVDDPLLVDDPLL

VDDCRPEVDDCPRI

–0.3 to 1.1

–0.3 to 1.1–0.3 to 1.1–0.3 to 1.1–0.3 to 1.1–0.3 to 1.1–0.3 to 1.1

–0.3 to 1.1–0.3 to 1.1

V

VVVVVV

VV

M3 memory supply voltage M3VDD VDDM3 –0.3 to 1.1 V

DDR memory supply voltage

DDR reference voltage

Input DDR voltage

GVDD

MVREF

VDDDDR

MVREF

VINDDR

–0.3 to 1.65

–0.3 to 0.51 × VDDDDR

–0.3 to VDDDDR + 0.3

V

V

V

I/O voltage excluding DDR and RapidIO lines

Input I/O voltage

NVDD, QVDD VDDIO

VINIO

–0.3 to 2.625

–0.3 to VDDIO + 0.3

V

V

SerDes pad voltage SXPVDD VDDSXP –0.3 to 1.65 V

SerDes core voltage

SerDes PLL voltage3

Input SerDes I/O voltage

SXCVDD VDDSXC

VDDRIOPLL

VINRIO

–0.3 to 1.21

–0.3 to 1.21

–0.3 to VDDSXC + 0.3

V

V

V

Operating temperature TJ –40 to 105 °C

Storage temperature range TSTG –55 to +150 °C

Notes: 1. Functional operating conditions are given in Table 4.2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond

the listed limits may affect device reliability or cause permanent damage.3. PLL supply voltage is specified at input of the filter and not at pin of the MSC8157 (see the MSC8157 Design Checklist

(AN4110))

Page 53: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 53

3.2 Recommended Operating ConditionsTable 4 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 4. Recommended Operating Conditions

Rating Supply Min Nominal Max Unit

Core supply voltage1 VDD 0.97 1.0 1.05 V

PLL supply voltage1,3 PLL0_AVDDPLL1_AVDDPLL2_AVDD

MAVDDSD_PLL1_AVDDSD_PLL2_AVDD

0.97 1.0 1.05 V

CRPE supply voltage1 CRPEVDD 0.97 1.0 1.05 V

CPRI supply voltage1 CPRIVDD 0.97 1.0 1.05 V

Switchable M3 memory supply voltage1

M3VDD 0.97 1.0 1.05 V

DDR memory supply voltage

DDR reference voltage

GVDD

MVREF

1.425

0.49 × GVDD (nom)

1.5

0.5 × GVDD (nom)

1.575

0.51 × GVDD (nom)

V

V

RGMII Ethernet and GPIO supply voltage2

NVDD 2.375 2.5 2.625 V

Input/output clocks, reset signal, and JTAG supply voltage2

QVDD 2.375 2.5 2.625 V

SerDes pad supply voltage

SXPVDD 1.425 1.5 1.575 V

SerDes core supply voltage1

SXCVDD 0.97 1.0 1.05 V

Operating temperature range: • Standard • Extended

TJTATJ

0–40—

105—

105

°C°C°C

Notes: 1. Designates supplies that use the same 1.0 V nominal voltage level.2. Designates supplies that use the same 2.5 V nominal voltage level.3. PLL supply voltage is specified at the input of the filter and not at the MSC8157 pin for the supply.

Page 54: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor54

3.3 Thermal CharacteristicsTable 5 describes thermal characteristics of the MSC8157 for the FC-PBGA packages.

3.4 CLKIN/MCLKIN RequirementsTable 6 summarizes the required characteristics for the CLKIN/MCLKIN signal.

3.5 DC Electrical CharacteristicsThis section describes the DC electrical characteristics for the MSC8157.

Table 5. Thermal Characteristics for the MSC8157

Characteristic Symbol

FC-PBGA 29 × 29 mm2

UnitNatural

Convection200 ft/min

(1 m/s) airflow

Junction-to-ambient1, 2 RθJA 18 12 °C/W

Junction-to-ambient, four-layer board1, 2 RθJA 13 9 °C/W

Junction-to-board (bottom)3 RθJB 4 °C/W

Junction-to-case4 RθJC 0.4 °C/W

Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESDC51-6. Thermal test board meets JEDEC specification for the specified package.

3. Junction-to-board thermal resistance determined per JEDEC JESD 51-8. Thermal test board meets JEDEC specification for the specified package.

4. Junction-to-case at the top of the package determined using MIL- STD-883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer

Table 6. CLKIN/MCLKIN Requirements

Parameter/Condition1 Symbol Min Typ Max Unit Notes

CLKIN/MCLKIN duty cycle — 40 — 60 % 2

CLKIN/MCLKIN slew rate — 1 — 4 V/ns 3

CLKIN/MCLKIN peak period jitter — — — ±150 ps —

CLKIN/MCLKIN jitter phase noise at –56 dBc — — — 500 KHz 4

AC input swing limits ΔVAC 1.5 — — V —

Input capacitance CIN — — 15 pf 5

Notes: 1. For clock frequencies, see the Clock chapter in the MSC8157 Reference Manual.2. Measured at the rising edge and/or the falling edge at VDDIO/2. 3. Slew rate as measured from ±20% to 80% of voltage swing at clock input.4. Phase noise is calculated as FFT of TIE jitter.5. The specified capacitance is not an external requirement. It represents the internal capacitance specification.

Page 55: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 55

3.5.1 DDR SDRAM Electrical CharacteristicsThis section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8157. Table 7 provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3 SDRAM.

.

Table 8 provides the DDR controller interface capacitance for DDR3 memory.

Table 9 lists the current draw characteristics for MVREF.

3.5.2 High-Speed Serial Interface (HSSI) DC Electrical CharacteristicsThe MSC8157 features an HSSI that includes one 10-channel SerDes port (lanes A through J) used for high-speed serial interface applications (PCI Express, Serial RapidIO interfaces, CPRI, and SGMII). This section and its subsections describe the common portion of the SerDes DC, including the DC requirements for the SerDes reference clocks and the SerDes data lane

Table 7. DDR3 SDRAM Interface DC Electrical CharacteristicsAt recommended operating conditions (see Table 4) with GVDD = 1.5 V.

Parameter/Condition Symbol Min Max Unit Notes

I/O reference voltage MVREF 0.49 × VDDDDR 0.51 × VDDDDR V 2,3,4

Input high voltage VIH MVREF + 0.100 VDDDDR V 5

Input low voltage VIL GND MVREF – 0.100 V 5

Output high current (VOUT = 0.7125 V) IOH — –25.9 mA 6, 7

Output low current (VOUT = 0.7125 V) IOL 25.9 — mA 6, 7

I/O leakage current IOZ –50 50 μA 8

Notes: 1. VDDDDR is expected to be within 50 mV of the DRAM VDD at all times. The DRAM and memory controller can use the same or different sources.

2. MVREF is expected to be equal to 0.5 × VDDDDR and to track VDDDDR DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed 1% of the VDDDDR DC value (that is, 15 mV).

3. VTT is not applied directly to the device. It is the supply to which the far end signal termination is made and is expected to be equal to MVREF with a minimum value of MVREF – 0.04 and a maximum value of MVREF + 0.04 V. VTT should track variations in the DC-level of MVREF.

4. The voltage regulator for MVREF must meet the specifications stated in Table 9. 5. Input capacitance load for DQ, DQS, and DQS signals are available in the IBIS models.6. IOH and IOL are measured at VDDDDR = 1.425 V.7. Refer to the IBIS model for the complete output IV curve characteristics.8. Output leakage is measured with all outputs are disabled, 0 V ≤ VOUT ≤ VDDDDR.

Table 8. DDR3 SDRAM CapacitanceAt recommended operating conditions (see Table 4) with VDDDDR = 1.5 V.

Parameter Symbol Min Max Unit

I/O capacitance: DQ, DQS, DQS CIO 6 8 pF

Delta I/O capacitance: DQ, DQS, DQS CDIO — 0.5 pF

Note: Guaranteed by FAB process and micro-construction.

Table 9. Current Draw Characteristics for MVREF

At recommended operating conditions (see Table 4).

Parameter / Condition Symbol Min Max Unit

Current draw for MVREF IMVREFn — 1250 μA

Page 56: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor56

transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the Reset Configuration Word High Register (RCWHR) SerDes Protocol selection fields (S1P and S2P). Specific AC electrical characteristics are defined in Section 3.6.2, “HSSI AC Timing Specifications.”

3.5.2.1 Signal Term DefinitionsThe SerDes interface uses differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals. Figure 2 shows how the signals are defined in addition to the waveform for either a transmitter output (SD_[A–J]_TX and SD_[A–J]_TX) or a receiver input (SD_[A–J]_RX and SD_[A–J]_RX). Each signal swings between X volts and Y volts where X > Y.

Figure 2. Differential Voltage Definitions for Transmitter/Receiver

Using this waveform, the definitions are listed in Table 10. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

Table 10. Differential Signal Definitions

Term Definition

Single-Ended Swing The transmitter output signals and the receiver input signals SD[A–J]_TX, SD_[A–J]_TX, SD_[A–J]_RX and SD_[A–J]_RX each have a peak-to-peak swing of X – Y volts. This is also referred to as each signal wire’s single-ended swing.

Differential Output Voltage, VOD (or Differential Output Swing)

The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of the two complimentary output voltages: VSD_[A–J]_TX – VSD[A–J]_TX. The VOD value can be either positive or negative.

Differential Input Voltage, VID (or Differential Input Swing)

The differential input voltage (or swing) of the receiver, VID, is defined as the difference of the two complimentary input voltages: VSD_[A–J]_RX – VSD_[A–J]_RX. The VID value can be either positive or negative.

Differential Swing, VID or VOD = X – Y

X Volts

Y Volts

Differential Peak Voltage, VDIFFp = |X – Y|

Differential Peak-Peak Voltage, VDIFFpp = 2 × VDIFFp (not shown)

SD_[A–J]_TX or SD_[A–J]_RX

SD_[A–J]_TX or SD_[A–J]_RX

Vcm = (X + Y)/2

Page 57: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 57

To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output differential swing (VOD) has the same amplitude as each signal single-ended swing. The differential output signal ranges between 500 mV and –500 mV. In other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p.

3.5.2.2 SerDes Reference Clock Receiver CharacteristicsThe SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clock inputs are SD_REF_CLK1/SD_REF_CLK1 or SD_REF_CLK2/SD_REF_CLK2. Figure 3 shows a receiver reference diagram of the SerDes reference clocks.

Figure 3. Receiver of SerDes Reference Clocks

Differential Peak Voltage, VDIFFp The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, VDIFFp = |X– Y| volts.

Differential Peak-to-Peak, VDIFFp-p Since the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, VDIFFp-p = 2 × VDIFFp = 2 × |(A – B)| volts, which is twice the differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as VTX-DIFFp-p = 2 × |VOD|.

Differential Waveform The differential waveform is constructed by subtracting the inverting signal (SD_[A–J]_TX, for example) from the non-inverting signal (SD_[A–J]_TX, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 2 as an example for differential waveform.

Common Mode Voltage, Vcm The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = (VSD_[A–J]_TX + VSD_[A–J]_TX) ÷ 2 = (A + B) ÷ 2, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component’s output to the other’s input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions.

Table 10. Differential Signal Definitions (continued)

Term Definition

InputAmp

50 Ω

50 Ω

SD_REF_CLK[1–2]

SD_REF_CLK[1–2]

Page 58: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor58

The characteristics of the clock signals are as follows:• The supply voltage requirements for VDDSXC are as specified in Table 4. • The SerDes reference clock receiver reference circuit structure is as follows:

— The SD_REF_CLK[1–2] and SD_REF_CLK[1–2] are internally AC-coupled differential inputs as shown in Figure 3. Each differential clock input (SD_REF_CLK[1–2] or SD_REF_CLK[1–2] has on-chip 50-Ω termination to SXCVSS followed by on-chip AC-coupling.

— The external reference clock driver must be able to drive this termination.— The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and

single-ended mode descriptions below for detailed requirements.• The maximum average current requirement also determines the common mode voltage range.

— When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip.

— This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V / 50 = 8 mA) while the minimum common mode input level is 0.1 V above GNDSXC. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.

— If the device driving the SD_REF_CLK[1–2] and SD_REF_CLK[1–2] inputs cannot drive 50 Ω to GNDSXC DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled externally.

• The input amplitude requirement is described in detail in the following sections.

3.5.2.3 SerDes Transmitter and Receiver Reference CircuitsFigure 4 shows the reference circuits for SerDes data lane transmitter and receiver.

Figure 4. SerDes Transmitter and Receiver Reference Circuits

3.5.2.4 EqualizationWith the use of high-speed serial links, the interconnect media causes degradation of the signal at the receiver and produces effects such as inter-symbol interference (ISI) or data-dependent jitter. This loss can be large enough to degrade the eye opening at the receiver beyond that allowed by the specification. To offset a portion of these effects, equalization can be used. The following is a list of the most commonly used equalization techniques:

• Pre-emphasis on the transmitter

50 Ω

50 Ω

50 Ω

50 Ω

Transmitter Receiver

SD_[A–J]_TX SD_[A–J]_RX

SD_[A–J]_TX SD_[A–J]_RX

Note: The [A–J] indicates the specific SerDes lane. Each lane can be assigned to a specific

for details). External AC coupling capacitors are required for all protocols for all lanes.protocol by the RCW assignments at reset (see the MSC8157 Reference Manual

Page 59: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 59

• A passive high-pass filter network placed at the receiver, often referred to as passive equalization• The use of active circuits in the receiver, often referred to as adaptive equalization

3.5.3 DC-Level Requirements for SerDes InterfacesThe following subsections define the DC-level requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, the CPRI data lines, and the SGMII data lines.

3.5.3.1 DC-Level Requirements for SerDes Reference ClocksThe DC-level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below:

• Differential Mode— The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or

between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.

— For an external DC-coupled connection, the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 5 shows the SerDes reference clock input requirement for DC-coupled connection scheme.

Figure 5. Differential Reference Clock Input DC Requirements (External DC-Coupled)

— For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC-level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to GNDSXC. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage GNDSXC. Figure 6 shows the SerDes reference clock input requirement for AC-coupled connection scheme.

SD_REF_CLK[1–2]

SD_REF_CLK[1–2]

Vmax < 800 mV

Vmin > 0 V

100 mV < Vcm < 400 mV

200 mV < Input Amplitude or Differential Peak < 800 mV

Page 60: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor60

Figure 6. Differential Reference Clock Input DC Requirements (External AC-Coupled)

• Single-Ended Mode— The reference clock can also be single-ended. The SD_REF_CLK[1–2] input amplitude (single-ended swing)

must be between 400 mV and 800 mV peak-peak (from VMIN to VMAX) with SD_REF_CLK[1–2] either left unconnected or tied to ground.

— The SD_REF_CLK[1–2] input average voltage must be between 200 and 400 mV. Figure 7 shows the SerDes reference clock input requirement for single-ended signaling mode.

— To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD_REF_CLK[1–2]) through the same source impedance as the clock input (SD_REF_CLK[1–2]) in use.

Figure 7. Single-Ended Reference Clock Input DC Requirements

3.5.3.2 DC-Level Requirements for PCI Express ConfigurationsThe DC-level requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The MSC8157 supports a 2.5 Gbps and a 5 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision

SD_REF_CLK[1–2]

SD_REF_CLK[1–2]

Vcm

200 mV < Input Amplitude or Differential Peak < 800 mV

Vmax < Vcm + 400 mV

Vmin > Vcm – 400 mV

SD_REF_CLK[1–2]

SD_REF_CLK[1–2]

400 mV < SD_REF_CLK[1–2] Input Amplitude < 800 mV

0 V

Page 61: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 61

2.0. The transmitter specifications for 2.5 Gbps are defined in Table 11 and the receiver specifications are defined in Table 12. For 5 Gbps, the transmitter specifications are defined in Table 13 and the receiver specifications are defined in Table 14.

Table 11. PCI Express (2.5 Gbps) Differential Transmitter (Tx) Output DC SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Differential peak-to-peak output voltage swing

VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|,Measured at the package pins with a test load of 50 Ω to GND on each pin.

De-emphasized differential output voltage (ratio)

VTX-DE-RATI

O

3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin.

DC differential Tx impedance ZTX-DIFF-DC 80 100 120 Ω Tx DC differential mode low Impedance

DC single-ended TX impedance ZTX-DC 40 50 60 Ω Required Tx D+ as well as D– DC Impedance during all states

Table 12. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Notes

Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1

DC differential Input Impedance ZRX-DIFF-DC 80 100 120 Ω 2

DC input impedance ZRX-DC 40 50 60 Ω 3

Powered down DC input impedance ZRX-HIGH-IMP-DC 50 — — ΚΩ 4

Electrical idle detect threshold VRX-IDLE-DET-DIFFp-p 65 — 175 mV 5

Notes: 1. VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D-| Measured at the package pins with a test load of 50 Ω to GND on each pin.2. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to

detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.

3. Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.

4. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.

5. VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. Measured at the package pins of the receiver

Page 62: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor62

Table 13. PCI Express (5 Gbps) Differential Transmitter (Tx) Output DC SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Differential peak-to-peak output voltage swing

VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|,Measured at the package pins with a test load of 50 Ω to GND on each pin.

Low power differential peak-to-peak output voltage swing

VTX-DIFFp-p_low 400 500 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|,Measured at the package pins with a test load of 50 Ω to GND on each pin.

De-emphasized differential output voltage (ratio)

VTX-DE-RATIO-3.5dB 3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin.

De-emphasized differential output voltage (ratio)

VTX-DE-RATIO-6.0dB 5.5 6.0 6.5 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin.

DC differential Tx impedance ZTX-DIFF-DC 80 100 120 Ω Tx DC differential mode low impedance

Transmitter DC impedance ZTX-DC 40 50 60 Ω Required Tx D+ as well as D– DC impedance during all states

Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications

Parameter Symbol Min Nom Max Units Notes

Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1

DC differential Input Impedance ZRX-DIFF-DC 80 100 120 Ω 2

Page 63: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 63

3.5.3.3 DC Level Requirements for Serial RapidIO Configurations

DC input impedance ZRX-DC 40 50 60 Ω 3

Powered down DC input impedance ZRX-HIGH-IMP-DC 50 — — ΚΩ 4

Electrical idle detect threshold VRX-IDLE-DET-DIFFp-p 65 — 175 mV 5

Notes: 1. VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D-| Measured at the package pins with a test load of 50 Ω to GND on each pin.2. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to

detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.

3. Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.

4. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.

5. VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. Measured at the package pins of the receiver

Table 15. Serial RapidIO Transmitter DC Specifications for Transfer Rates ≤ 3.125 GbaudAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Output voltage VO –0.40 — 2.30 V —

Long run differential output voltage VDIFFPP 800 — 1600 mVp-p L[A–J]TECR0[AMP_RED] = 0b000000

Short run differential output voltage VDIFFPP 500 — 1000 mVp-p L[A–J]TECR0[AMP_RED] = 0b001000

DC differential TX impedance ZTX-DIFF-DC 80 100 120 Ω —

Note: Voltage relative to COMMON of either signal comprising a differential pair.

Table 16. Serial RapidIO Receiver DC Specifications for Transfer Rates ≤ 3.125 GbaudAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units

Differential input voltage VIN 200 — 1600 mVp-p

DC differential RX impedance ZRX-DIFF-DC 80 100 120 Ω

Notes: 1. Voltage relative to COMMON of either signal comprising a differential pair.2. Specifications are for Long and Short Run.

Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued)

Parameter Symbol Min Nom Max Units Notes

Page 64: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor64

Table 17. Serial RapidIO Transmitter DC Specifications for Short Run at 5 GbaudAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Output differential voltage(into floating load Rload = 100 Ω)

T_Vdiff 400 — 750 mV Amplitude setting L[A–J]TECR0[AMP_RED] = 0b001101

Differential resistance T_Rd 80 100 120 Ω —

Table 18. Serial RapidIO Receiver DC Specifications for Short Run at 5 GbaudAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units

Input differential voltage R_Vdiff 125 — 1200 mV

Differential resistance R_Rdin 80 — 120 Ω

Table 19. Serial RapidIO Transmitter DC Specifications for Long Run at 5 GbaudAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Conditions

Output differential voltage(into floating load Rload = 100 Ω)

T_Vdiff 800 — 1200 mV Amplitude setting L[A–J]TECR0[AMP_RED] = 0b000000 (with de-emphasis disabled)

De-emphasized differential output voltage

T_VTX-DE-RATIO-3.5dB 3 3.5 4 dB • p(n)_(y)_tx_eq_type[1:0] = 01• p(n)_(y)_tx_ratio_post1q[3:0] = 1110

Tx De-emphasized level T_VTX-DE-RATIO-6.0dB 5.5 6 6.5 dB • p(n)_(y)_tx_eq_type[1:0] = 01• p(n)_(y)_tx_ratio_post1q[3:0] = 1100

Differential resistance T_Rd 80 100 120 Ω —

Table 20. Serial RapidIO Receiver DC Specifications for Long Run at 5 GbaudAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Input differential voltage

R_Vdiff N/A — 1200 mV It is assumed that for the R_Vdiff min specification, that the eye can be closed at the receiver after passing the signal through a CEI/SRIO Level II LR compliant channel.

Differential resistance R_Rdin 80 — 120 Ω —

Page 65: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 65

3.5.3.4 DC-Level Requirements for CPRI ConfigurationsThis section provide various DC-level requirements for CPRI configurations.

Table 21. CPRI Transmitter DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps)At recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Output voltage VO –0.40 — 2.30 V Voltage relative to COMMON of either signal comprising a differential pair.

Differential output voltage VDIFFPP 800 — 1600 mVp-p L[A–J]TECR0[AMP_RED] = 0b000000.

Differential resistance T_Rd 80 100 120 Ω —

Note: LV is XAUI-based.

Table 22. CPRI Transmitter DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps)At recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Output differential voltage (into floating load Rload = 100 Ω)

T_Vdiff 800 — 1200 mV L[A–J]TECR0[AMP_RED] = 0x000000

Differential resistance T_Rd 80 100 120 Ω —

Note: LV-II is CEI-6G-LR-based.

Table 23. CPRI Receiver DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps)At recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Differential input voltage VIN 200 — 1600 mVp-p Measured at receiver.

Difference resistance R_Rdin 80 — 120 Ω —

Note: LV is XAUI-based.

Table 24. CPRI Receiver DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps)At recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Condition

Input differential voltage R_Vdiff N/A — 1200 mV It is assumed that for the R_Vdiff min specification, that the eye can be closed at the receiver after passing the signal through a CEI/CPRI Level II LR compliant channel.

Differential resistance R_Rdin 80 — 120 Ω —

Note: LV-II is CEI-6G-LR-based.

Page 66: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor66

3.5.3.5 DC-Level Requirements for SGMII ConfigurationsTable 25 describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics.

Table 25. SGMII DC Transmitter Electrical CharacteristicsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Unit Conditions

Output differential voltage

|VOD| 0.64 × Nom 500 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0 V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn.

2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b000000

Output differential voltage

|VOD| 0.64 × Nom 459 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn.

2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b000010

Output differential voltage

|VOD| 0.64 × Nom 417 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn.

2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b000101

Output differential voltage

|VOD| 0.64 × Nom 376 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn.

2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b001000

Output differential voltage

|VOD| 0.64 × Nom 333 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn.

2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b001100

Page 67: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 67

Output differential voltage

|VOD| 0.64 × Nom 292 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn.

2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b001111

Output differential voltage

|VOD| 0.64 × Nom 250 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn.

2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b010011

Output impedance (single-ended)

RO 40 50 60 Ω —

Output high voltage

VOH — — 1.5 × |VOD, max| mV —

Output low voltage

VOL |VOD|, min/2 — — mV —

Table 25. SGMII DC Transmitter Electrical Characteristics (continued)At recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Unit Conditions

Page 68: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor68

Table 26 describes the SGMII SerDes receiver AC-coupled DC electrical characteristics.

3.5.4 RGMII and Other Interface DC Electrical CharacteristicsTable 27 describes the DC electrical characteristics for the following interfaces:

• RGMII Ethernet• SPI• GPIO• UART• TIMER• EE• I2C• Interrupts (IRQn, NMI_OUT/CP_RX_INT, INT_OUT/CP_TX_INT)• Clock and resets (CLKIN/MCLKIN, PORESET, HRESET, HRESET_IN)• DMA External Request• JTAG signals

Table 26. SGMII DC Receiver Electrical Characteristics1,2

At recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Unit Condition

Input differential voltage3 VRX_DIFFp-p 100 — 1200 mV L[A–J]GCR1[RECTL_SIGD] = 0b001

175 — 1200 mV L[A–J]GCR1[RECTL_SIGD] = 0b100

Loss of signal threshold4 VLOS 30 — 100 mV L[A–J]GCR1[RECTL_SIGD] = 0b001

65 — 175 mV L[A–J]GCR1[RECTL_SIGD] = 0b100

Receiver differential input impedance

ZRX_DIFF 80 — 120 Ω —

Notes: 1. The supply voltage is 1.0 V.2. Input must be externally AC-coupled.3. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage.4. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in the PCI Express interface.

Refer to the PCI Express Differential Receiver (RX) Input Specifications section of the PCI Express Specification document. for details.

Table 27. 2.5 V I/O DC Electrical Characteristics

Characteristic Symbol Min Max Unit Notes

Input high voltage VIH 1.7 — V 1

Input low voltage VIL — 0.7 V 1

Input high current (VIN = VDDIO) IINH — 30 μA 2

Input low current (VIN = GND) IINL –30 — μA 2

Output high voltage (VDDIO = min, IOH = –1.0 mA) VOH 2.0 VDDIO + 0.3 V 1

Output low voltage (VDDIO = min, IOL= 1.0 mA) VOL GND – 0.3 0.40 V 1

Notes: 1. The min VIL and max VIH values are based on the respective min and max VIN values listed in Table 4.2. The symbol VIN represents the input voltage of the supply. It is referenced in Table 4.

Page 69: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 69

3.6 AC Timing CharacteristicsThis section describes the AC timing characteristics for the MSC8157.

3.6.1 DDR SDRAM AC Timing SpecificationsThis section describes the AC electrical characteristics for the DDR SDRAM interface.

3.6.1.1 DDR SDRAM Input AC Timing SpecificationsTable 28 provides the input AC timing specifications for the DDR SDRAM when VDDDDR (typ) = 1.5 V.

Table 29 provides the input AC timing specifications for the DDR SDRAM interface.

Table 28. DDR3 SDRAM Input AC Timing Specifications for 1.5 V Interface

Parameter Symbol Min Max Unit

AC input low voltage> 1200 MHz data rate≤ 1200 MHz data rate

VILAC —MVREF – 0.150MVREF – 0.175

V

AC input high voltage> 1200 MHz data rate≤ 1200 MHz data rate

VIHACMVREF + 0.150MVREF + 0.175

— V

Note: At recommended operating conditions with VDDDDR of 1.5 ± 5%.

Table 29. DDR SDRAM Input AC Timing Specifications

Parameter Symbol Min Max Unit Notes

Controller Skew for MDQS—MDQ/MECC• 1333 MHz data rate• 1200 MHz data rate• 1066 MHz data rate• 800 MHz data rate• 667 MHz data rate

tCISKEW–125–142–170–200–240

125142170200240

pspspspsps

1, 2, 4

Tolerated Skew for MDQS—MDQ/MECC• 1333 MHz data rate• 1200 MHz data rate• 1066 MHz data rate• 800 MHz data rate• 667 MHz data rate

tDISKEW–250–275–300–425–510

250275300425510

pspspspsps

2, 3

Notes: 1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. Subtract this value from the total timing budget.

2. At recommended operating conditions with VDDDDR (1.5 V) ± 5%3. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW.This can be determined

by the following equation: tDISKEW = ±(T ÷ 4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the absolute value of tCISKEW.

4. The tCISKEW test coverage is derived from the tDISKEW parameters.

Page 70: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor70

Figure 8 shows the DDR3 SDRAM interface input timing diagram.

Figure 8. DDR3 SDRAM Interface Input Timing Diagram

3.6.1.2 DDR SDRAM Output AC Timing SpecificationsTable 30 provides the output AC timing specifications for the DDR SDRAM interface.

Table 30. DDR SDRAM Output AC Timing Specifications

Parameter Symbol 1 Min Max Unit Notes

MCK[n] cycle time tMCK 1.5 3 ns 2

ADDR/CMD output setup with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate

tDDKHAS0.6060.6750.7440.9171.10

—————

nsnsnsnsns

3

ADDR/CMD output hold with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate

tDDKHAX0.6060.6750.7440.9171.10

—————

nsnsnsnsns

3

MCSn output setup with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate

tDDKHCS0.6060.6750.7440.9171.10

—————

nsnsnsnsns

3

MCK[n]

MCK[n]tMCK

MDQ[n]

MDQS[n]

tDISKEW

D1D0

tDISKEW

tDISKEW

Page 71: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 71

NOTEFor the ADDR/CMD setup and hold specifications in Table 30, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle.

MCSn output hold with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate

tDDKHCX0.6060.6750.7440.9171.10

—————

nsnsnsnsns

3

MCK to MDQS Skew • > 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate

tDDKHMH–0.245–0.375

–0.6

0.2450.375

0.6

nsnsns

4

MDQ/MECC/MDM output setup with respect to MDQS • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate

tDDKHDS,tDDKLDS 250

275300375450

—————

pspspspsps

5, 6

MDQ/MECC/MDM output hold with respect to MDQS • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate

tDDKHDX,tDDKLDX 250

275300375450

—————

pspspspsps

5

MDQS preamble tDDKHMP 0.9 × tMCK — ns —

MDQS postamble tDDKHME 0.4 × tMCK 0.6 × tMCK ns —

Notes: 1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2. All MCK/MCK referenced measurements are made from the crossing of the two signals.3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. 4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD)

from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the MSC8157 Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.

5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MSC8157.

6. At recommended operating conditions with VDDDDR (1.5 V) ± 5%.

Table 30. DDR SDRAM Output AC Timing Specifications (continued)

Parameter Symbol 1 Min Max Unit Notes

Page 72: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor72

Figure 9 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (tDDKHMH).

Figure 9. MCK to MDQS Timing

Figure 10 shows the DDR SDRAM output timing diagram.

Figure 10. DDR SDRAM Output Timing

MDQS

MCK[n]

MCK[n]tMCK

tDDKHMHmax) = 0.6 ns or 0.375 ns

tDDKHMH(min) = –0.6 ns or –0.375 ns

MDQS

ADDR/CMD

tDDKHAS, tDDKHCS

tDDKHMH

tDDKLDS

tDDKHDS

MDQ[x]

MDQS[n]

MCK[n]

MCK[n]tMCK

tDDKLDX

tDDKHDX

D1D0

tDDKHAX, tDDKHCX

Write A0 NOOP

tDDKHME

tDDKHMP

Page 73: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 73

Figure 11 provides the AC test load for the DDR3 controller bus.

Figure 11. DDR3 Controller Bus AC Test Load

3.6.1.3 DDR3 SDRAM Differential Timing SpecificationsThis section describes the DC and AC differential timing specifications for the DDR3 SDRAM controller interface. Figure 12 shows the differential timing specification.

Figure 12. DDR3 SDRAM Differential Timing Specifications

NOTEVTR specifies the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as MCK or MDQS).

Table 31 provides the DDR3 differential specifications for the differential signals MDQS/MDQS and MCK/MCK.

3.6.2 HSSI AC Timing SpecificationsThe following subsections define the AC timing requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, and the SGMII data lines.

Table 31. DDR3 SDRAM Differential Electrical Characteristics

Parameter Symbol Min Max Unit

Input AC differential cross-point voltage VIXAC 0.5 × VDDDDR – 0.150

0.5 × VDDDDR + 0.150

V

Output AC differential cross-point voltage VOXAC 0.5 × VDDDDR – 0.115

0.5 × VDDDDR + 0.115

V

Note: I/O drivers are calibrated before making measurements.

Output Z0 = 50 ΩRL = 50 Ω

VDDDDR/2

VTR

VCP

GND

GVDD

VOX or VIX

GVDD/2

Page 74: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor74

3.6.2.1 AC Requirements for SerDes Reference ClockTable 32 lists AC requirements for the SerDes reference clocks.

Table 32. SD_REF_CLK[1–2] and SD_REF_CLK[1–2] Input Clock RequirementsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Notes

SD_REF_CLK[1–2]/SD_REF_CLK[1–2] frequency range

tCLK_REF — 100/125CPRI: 122.88

— MHz 1

SD_REF_CLK[1–2]/SD_REF_CLK[1–2] clock frequency tolerance • Serial RapidIO, CPRI, SGMII • PCI Express interface

tCLK_TOL

–100–300

——

100300

ppmppm

SD_REF_CLK[1–2]/SD_REF_CLK[1–2] reference clock duty cycle

tCLK_DUTY 40 50 60 % 4

SD_REF_CLK[1–2]/SD_REF_CLK[1–2]max deterministic peak-peak jitter at 10-6 BER

tCLK_DJ — — 42 ps —

SD_REF_CLK[1–2]/SD_REF_CLK[1–2] total reference clock jitter at 10-6 BER (peak-to-peak jitter at ref_clk input)

tCLK_TJ — — 86 ps 2

SD_REF_CLK/SD_REF_CLK rising/falling edge rate

tCLKRR/tCLKFR 1 — 4 V/ns 3

Differential input high voltage VIH 200 — — mV 4

Differential input low voltage VIL — — –200 mV 4

Rising edge rate (SD_REF_CLKn to falling edge rate)

Rise-Fall — — 20 % 5, 6

Notes: 1. Only 100, 122.88, and 125 MHz have been tested. CPRI uses 122.88 MHz. The other interfaces use 100 or 125 MHz. Other values do not work correctly with the rest of the system.

2. Limits are from PCI Express CEM Rev 2.0. 3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD_REF_CLKn minus SD_REF_CLKn). The

signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 13.

4. Measurement taken from differential waveform.5. Measurement taken from single-ended waveform.6. Matching applies to rising edge for SD_REF_CLKn and falling edge rate for SD_REF_CLKn. It is measured using a 200 mV

window centered on the median cross point where SD_REF_CLKn rising meets SD_REF_CLKn falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rising edge rate of SD_RF_CLKn should be compared to the falling edge rate of SD_REF_CLKn; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 14.

7. REF_CLK jitter must be less than 0.05 UI when measured against a Golden PLL reference. The Golden PLL must have a maximum baud rate bandwidth greater than 1667, with a maximum 20 dB/dec rolloff down to a baud rate of 16.67 with no peaking around the corner frequency.

Page 75: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 75

Figure 13. Differential Measurement Points for Rise and Fall Time

Figure 14. Single-Ended Measurement Points for Rise and Fall Time Matching

3.6.2.2 Spread Spectrum ClockSD_REF_CLK[1–2] and SD_REF_CLK[1–2] were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33 KHz rate is allowed), assuming both ends have the same reference clock and the industry protocol supports it. For better results, use a source without significant unintended modulation.

3.6.2.3 PCI Express AC Physical Layer SpecificationsThe AC requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The MSC8157 supports a 2.5 Gbps or a 5.0 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision 2.0. The 2.5 Gbps transmitter specifications are defined in Table 33 and the receiver specifications are defined in Table 34. The 5.0 Gbps

VIH = +200 mV

VIL = –200 mV

0.0 V

SD_REF_CLKn – SD_REF_CLKn

Fall Edge RateRise Edge Rate

Page 76: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor76

transmitter specifications are defined in Table 35 and the receiver specifications are defined in Table 36. The parameters are specified at the component pins. the AC timing specifications do not include REF_CLK jitter.

Table 33. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Comments

Unit interval UI 399.88 400.00 400.12 ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1.

Tx eye width TTX-EYE 0.75 — — UI The maximum transmitter jitter can be derived as TTX-MAX-JITTER = 1 – TTX-EYE = 0.25 UI. This does not include spread spectrum or REF_CLK jitter. It includes device random jitter at 10–12. See notes 2 and 3.

Time between the jitter median and maximum deviation from the median.

TTX-EYE-MEDIAN-

to-MAX-JITTER

— — 0.125 UI Jitter is defined as the measurement variation of the crossing points (VTX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2 and 3.

AC coupling capacitor CTX 75 — 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4.

Notes: 1. No test load is necessarily associated with this value. 2. Specified at the measurement point into a timing and voltage test load as shown in Figure 15 and measured over any 250

consecutive Tx UIs.3. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-NAX-JITTER = 0.25 UI for the

transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.

4. The DSP device SerDes transmitter does not have a built-in CTX. An external AC coupling capacitor is required.

Page 77: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 77

Table 34. PCI Express 2.0 (2.5 Gbps) Differential Receiver (Rx) Input AC SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Comments

Unit Interval UI 399.88 400.00 400.12 ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1.

Minimum receiver eye width

TRX-EYE 0.4 — — UI The maximum interconnect media and Transmitter jitter that can be tolerated by the Receiver can be derived as TRX-MAX-JITTER = 1 – TRX-EYE= 0.6 UI. See notes 2 and 3.

Maximum time between the jitter median and maximum deviation from the median.

TRX-EYE-MEDIAN-t

o-MAX-JITTER

— — 0.3 UI Jitter is defined as the measurement variation of the crossing points (VRX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2, 3, and 4.

Notes: 1. No test load is necessarily associated with this value.2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 15 should be used as

the Rx device when taking measurements. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.

3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.

4. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

Page 78: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor78

The AC timing and voltage parameters must be verified at the measurement point. The package pins of the device must be connected to the test/measurement load within 0.2 inches of that load, as shown in Figure 15.

Table 35. PCI Express 2.0 (5.0 Gbps) Differential Transmitter (Tx) Output AC SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Comments

Unit Interval UI 199.94 200.00 200.06 ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1.

Minimum Tx eye width TTX-EYE 0.75 — — UI The maximum Transmitter jitter can be derived as: TTX-MAX-JITTER = 1 – TTX-EYE = 0.25 UI.See notes 2 and 3.

Tx RMS deterministic jitter > 1.5 MHz

TTX-HF-DJ-DD — — 0.15 ps —

Tx RMS deterministic jitter < 1.5 MHz

TTX-LF-RMS — 3.0 — ps Reference input clock RMS jitter (< 1.5 MHz) at pin < 1 ps

AC coupling capacitor CTX 75 — 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.See note 4.

Notes: 1. No test load is necessarily associated with this value.2. Specified at the measurement point into a timing and voltage test load as shown in Figure 15 and measured over any 250

consecutive Tx UIs. 3. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-MAX-JITTER = 0.25 UI for the

Transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.

4. The DSP device SerDes transmitter does not have a built-in CTX. An external AC coupling capacitor is required.

Table 36. PCI Express 2.0 (5.0 Gbps) Differential Receiver (Rx) Input AC SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Units Conditions

Unit Interval UI 199.40 200.00 200.06 ps Each UI is 400 ps ±300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1.

Max Rx inherent timing error

TRX-TJ-CC — — 0.4 UI The maximum inherent total timing error for common REF_CLK Rx architecture

Maximum time between the jitter median and maximum deviation from the median

TRX-TJ-DC — — 0.34 UI Max Rx inherent total timing error

Max Rx inherent deterministic timing error

TRX-DJ-DD-CC — — 0.30 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture

Max Rx inherent deterministic timing error

TRX-DJ-DD-DC — — 0.24 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture

Note: No test load is necessarily accosted with this value.

Page 79: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 79

NOTEThe allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D– not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and D– package pins.

Figure 15. Test Measurement Load

3.6.2.4 Serial RapidIO AC Timing SpecificationsTable 37 defines the transmitter AC specifications for the Serial RapidIO interface at frequencies up to 3.125 Gbaud. The AC timing specifications do not include REF_CLK jitter.

Table 38 defines the Receiver AC specifications for the Serial RapidIO interface at frequencies up to 3.125 Gbaud. The AC timing specifications do not include REF_CLK jitter.

Table 37. Serial RapidIO Transmitter AC Timing Specifications Up to 3.125 GbaudAt recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Deterministic Jitter JD — — 0.17 UI p-p

Total Jitter JT — — 0.35 UI p-p

Unit Interval: 1.25 GBaud UI 800 – 100ppm 800 800 + 100ppm ps

Unit Interval: 2.5 GBaud UI 400 – 100ppm 400 400 + 100ppm ps

Unit Interval: 3.125 GBaud UI 320 – 100ppm 320 320 + 100ppm ps

Table 38. Serial RapidIO Receiver AC Timing Specifications Up to 3.125 GbaudAt recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit Notes

Deterministic Jitter Tolerance JD — — 0.37 UI p-p 1

Combined Deterministic and Random Jitter Tolerance

JDR — — 0.55 UI p-p 1

Total Jitter Tolerance JT — — 0.65 UI p-p 1, 2

Bit Error Rate BER — — 10–12 — —

TXSilicon

+ Package

D+ PackagePin

D– PackagePin

C = CTX

C = CTXR = 50 ΩR = 50 Ω

Page 80: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor80

Table 39 defines the short run transmitter AC specifications for the Serial RapidIO interface at 5 Gbaud. The AC timing specifications do not include REF_CLK jitter.

Table 40 defines the short run Receiver AC specifications for the Serial RapidIO interface at 5 Gbaud. The AC timing specifications do not include REF_CLK jitter.

Unit Interval: 1.25 GBaud UI 800 – 100ppm 800 800 + 100ppm ps —

Unit Interval: 2.5 GBaud UI 400 – 100ppm 400 400 + 100ppm ps —

Unit Interval: 3.125 GBaud UI 320 – 100ppm 320 320 + 100ppm ps —

Notes: 1. Measured at receiver.2. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 16. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Table 39. Serial RapidIO Short Run Transmitter AC Timing Specifications at 5.0 GbaudAt recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Uncorrelated High Probability Jitter T_UHPJ — — 0.15 UI p-p

Total Jitter T_TJ — — 0.30 UI p-p

Baud Rate UI 5.000 – 100ppm 5.000 5.000 + 100ppm Gbaud

Table 40. Serial RapidIO Short Run Receiver AC Timing Specifications at 5 GbaudAt recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Rx Baud Rate R_Baud 5.000 – 100ppm 5.000 5.000 + 100ppm Gbaud

Uncorrelated Bounded High Probability Jitter R_UBHPJ — — 0.15 UIp-p

Correlated Bounded High Probability Jitter R_CBHPJ — — 0.3 UIp-p

Bounded High Probability Jitter R_BHPJ — — 0.45 UIp-p

Sinusoidal Jitter maximum R_SJ-max — — 5 UIp-p

Sinusoidal Jitter, High Frequency R_SJ-hf — — 0.05 UIp-p

Total jitter (without sinusoidal jitter) R_Tj — — 0.6 UIp-p

Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region in Figure 17. The ISI jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PCB trace.

Table 38. Serial RapidIO Receiver AC Timing Specifications Up to 3.125 Gbaud (continued)At recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit Notes

Page 81: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 81

Table 41 defines the Transmitter AC specifications for long run Serial RapidIO interfaces using a transfer rate of 5 Gbps. The AC timing specifications do not include REF_CLK jitter.

Table 42 defines the Receiver AC specifications for long run Serial RapidIO interfaces using a transfer rate of 5 Gbps. The AC timing specifications do not include REF_CLK jitter.

Table 41. Serial RapidIO Transmitter Long Run AC Timing for Transfer Rate of 5 GbpsAt recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit Conditions

Tx Baud Rate T_Baud 5.000 – 100 ppm

5.000 5.000 + 100 ppm Gbps ± 100 ppm

Uncorrelated high probability jitter

T_UHPJ — — 0.15 UI p-p With de-emphasis disabled.

Total Jitter T_TJ — — 0.30 UI p-p With de-emphasis disabled.

Table 42. Serial RapidIO Receiver Long Run AC Timing for Transfer Rate of 5 GbpsAt recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit Condition

Rx Baud Rate R_Baud 5.000 – 100 ppm 5.000 5.000 + 100 ppm Gbps —

Gaussian R_GJ — — 0.275 UI p-p Informative jitter budget @Rx input

Uncorrelated bounded high probability jitter (DJ)

R_UBHPJ — — 0.15 UI p-p Informative jitter budget @Rx input

Correlated bounded high probability jitter (ISI)

R_CBHPJ — — 0.525 UI p-p Informative jitter budget @Rx input

Bounded high probability jitter (DJ + ISI)

R_BHPJ — — 0.675 UI p-p Informative jitter budget @Rx input

Sinusoidal jitter, maximum R_SJ-max — — 5 UI p-p Informative jitter budget @Rx input

Sinusoidal jitter, high frequency

R_SJ-hf — — 0.05 UI p-p Informative jitter budget @Rx input

Total Jitter (does not include sinusoidal jitter).

R_TJ — — 0.95 UI p-p Informative jitter budget @Rx input

Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 17. The ISl jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PC trace.

Page 82: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor82

Figure 16. Single Frequency Sinusoidal Jitter Limits for Data Rates for 3.125 Gbps and below

Figure 17. Single Frequency Sinusoidal Jitter Limits for Data Rate 5.0 Gbps

3.6.2.5 CPRI AC Timing SpecificationsTable 43 defines the transmitter AC specifications for the CPRI LV lanes. The AC timing specifications do not include REF_CLK jitter.

8.5 UI p-p

0.10 UI p-p

SinusoidalJitter

Amplitude

baud/14200 baud/1667 20 MHzFrequency

20dB/dec

Pass

5 UI p-p

0.05 UI p-p

SinusoidalJitter

Amplitude

22.1 kHz 2.999 MHz 20 MHzFrequency

Page 83: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 83

Table 44 defines the transmitter AC specifications for the CPRI LV-II lanes. The AC timing specifications do not include REF_CLK jitter.

Table 45 defines the receiver AC specifications for CPRI LV. The AC timing specifications do not include REF_CLK jitter.

Table 43. CPRI Transmitter AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps)At recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Deterministic Jitter JD — — 0.17 UI p-p

Total Jitter JT — — 0.35 UI p-p

Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm

1/1228.8 1/1228.8 + 100ppm µs

Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm

1/2457.6 1/2457.6 + 100ppm µs

Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm

1/3072.0 1/3072.0 + 100ppm µs

Table 44. CPRI Transmitter AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps)At recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Uncorrelated High Probability Jitter T_UHPJ — — 0.15 UI p-p

Total Jitter T_TJ — — 0.30 UI p-p

Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm

1/1228.8 1/1228.8 + 100ppm µs

Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm

1/2457.6 1/2457.6 + 100ppm µs

Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm

1/3072.0 1/3072.0 + 100ppm µs

Unit Interval: 4.9152 GBaud UI 1/4915.2 – 100ppm

1/4915.2.8 1/4915.2 + 100ppm µs

Unit Interval: 6.144 GBaud UI 1/6144.0 – 100ppm

1/6144.0 1/6144.0 + 100ppm µs

Table 45. CPRI Receiver AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps)At recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Deterministic jitter tolerance JD — — 0.37 UI p-p

Combined deterministic and random jitter tolerance

JDR — — 0.55 UI p-p

Total Jitter tolerance JT — — 0.65 UI p-p

Page 84: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor84

Table 46 defines the receiver AC specifications for CPRI LV-II. The AC timing specifications do not include REF_CLK jitter.

NOTEThe intended application is a point-to-point interface up to two connectors. The maximum allowed total loss (channel + interconnects + other loss) is 20.4 dB @ 6.144 Gbps.

Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm ps

Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm ps

Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm ps

Bit error ratio BER — — 10–12 —

Table 46. CPRI Receiver AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps)At recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Gaussian R_GJ — — 0.275 UI p-p

Uncorrelated bounded high probability jitter

R_UBHPJ — — 0.150 UI p-p

Correlated bounded high probability jitter

R_CBHPJ — — 0.525 UI p-p

Bounded high probability jitter R_BHPJ — — 0.675 UI p-p

Sinusoidal jitter, maximum R_SJ-max — — 5.000 UI p-p

Sinusoidal jitter, high frequency R_SJ-hf — — 0.050 UI p-p

Total Jitter (does not include sinusoidal jitter).

R_TJ — — 0.950 UI p-p

Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm µs

Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm µs

Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm µs

Unit Interval: 4.9152 GBaud UI 1/4915.2 – 100ppm 1/4915.2.8 1/4915.2 + 100ppm µs

Unit Interval: 6.144 GBaud UI 1/6144.0 – 100ppm 1/6144.0 1/6144.0 + 100ppm µs

Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 17. The ISl jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PC trace.

Table 45. CPRI Receiver AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) (continued)At recommended operating conditions (see Table 4).

Characteristic Symbol Min Nom Max Unit

Page 85: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 85

3.6.2.6 SGMII AC Timing SpecificationsTransmitter and receiver AC characteristics are measured at the transmitter outputs (SD_[A–J]_TX and SD_[A–J]_TX) or at the receiver inputs (SD_[A–J]_RX and SD_[A–J]_RX) as depicted in Figure 18, respectively.

Figure 18. SGMII AC Test/Measurement Load

Table 47 provides the SGMII transmit AC timing specifications. The AC timing specifications do not include REF_CLK jitter.

Table 48 provides the SGMII receiver AC timing specifications. The AC timing specifications do not include REF_CLK jitter.

Table 47. SGMII Transmit AC Timing SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Unit Condition

Unit interval UI 800 – 100ppm 800 800 + 100ppm pS ± 100ppm

Deterministic jitter JD — — 0.17 UI p-p —

Total jitter JT — — 0.35 UI p-p —

AC coupling capacitor CTX 75 — 200 nF All transmitters must be AC-coupled

Note: The AC specifications do not include REF_CLK jitter.

Table 48. SGMII Receive AC Timing SpecificationsAt recommended operating conditions (see Table 4).

Parameter Symbol Min Nom Max Unit Condition

Unit interval UI 800 – 100ppm 800 800 + 100ppm pS ± 100ppm

Deterministic jitter tolerance JD — — 0.37 UI p-p Measured at receiver.

Combined deterministic and random jitter tolerance

JDR — — 0.55 UI p-p Measured at receiver

Total jitter tolerance JT — — 0.65 UI p-p Measured at receiver

Bit error ratio BER — — 10–12 — —

Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region shown in Figure 19 or Figure 20.

TXSilicon

+ Package

D+ PackagePin

D– PackagePin

C = CTX

C = CTX

R = 50 Ω R = 50 Ω

Page 86: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor86

Figure 19. Single Frequency Sinusoidal Jitter Limits for Baud Rate for <3.125 Gbps

Figure 20. Single Frequency Sinusoidal Jitter Limits for Baud Rate for 3.125 Gbps

8.5 UIp-p

0.10 UIp-p

SinusoidalJitter

Amplitude

baud/14200 baud/1667 20 MHzFrequency

20 dB/dec

8.5 UIp-p

0.10 UIp-p

SinusoidalJitter

Amplitude

22.1 kHz 1.875 MHz 20 MHzFrequency

Page 87: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 87

3.6.3 Timers and Timers_32b AC Timing SpecificationsTable 49 lists the timer input AC timing specifications.

Figure 21 shows the AC test load for the timers

Figure 21. Timer AC Test Load

3.6.4 Ethernet TimingThis section describes the AC electrical characteristics for the Ethernet interface.

There are three general configuration registers used to configure the timing: GCR4, UCC1_DELAY_HR, and UCC3_DELAY_HR. These registers configure the programmable delay units (PDU) that should be programmed differently for each Interface to meet timing requirements. For additional information, see the MSC8157 Reference Manual.

3.6.4.1 Management Interface Timing

Table 49. Timers Input AC Timing SpecificationsAt recommended operating conditions (see Table 4).

Characteristics Symbol Minimum Unit Notes

Timers inputs—minimum pulse width TTIWID 8 ns 1, 2

Notes: 1. The maximum allowed frequency of timer outputs is 125 MHz. Configure the timer modules appropriately.2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any

external synchronous logic. Timer inputs are required to be valid for at least tTIWID ns to ensure proper operation.

Table 50. Ethernet Controller Management Interface Timing

Characteristics Symbol Min Max Unit

GE_MDC frequency fMDC — 2.5 MHz

GE_MDC period tMDC 400 — ns

GE_MDC clock pulse width high tMDC_H 160 — ns

GE_MDC clock pulse width low tMDC_L 160 — ns

GE_MDC to GE_MDIO delay tMDKHDX 10 70 ns

GE_MDIO to GE_MDC rising edge setup time tMDDVKH 20 — ns

GE_MDC rising edge to GE_MDIO hold time tMDDXKH 0 — ns

Output Z0 = 50 Ω VDDIO/2RL = 50 Ω

Page 88: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor88

Figure 22. MII Management Interface Timing

3.6.4.2 RGMII AC Timing SpecificationsTable 51 presents the RGMII AC timing specifications for applications requiring an on-board delayed clock.

Figure 23 shows the RGMII AC timing and multiplexing diagrams.

Figure 23. RGMII AC Timing and Multiplexing

Table 51. RGMII at 1 Gbps with On-Board Delay2 AC Timing Specifications1

Parameter/Condition Symbol Min Typ Max Unit

Data to clock output skew (at transmitter)3 tSKEWT –0.5 — 0.5 ns

Data to clock input skew (at receiver)3 tSKEWR 1 — 2.6 ns

Notes: 1. At recommended operating conditions with VDDIO of 2.5 V ± 5%.2. Program GCR4 as 0x00000000, UCC1_DELAY_HR as 0x00000000, and UCC3_DELAY_HR as 0x00000000.3. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns and

less than 2.0 ns is added to the associated clock signal.

GE_MDC

GE_MDIO

GE_MDIO

(Input)

(Output)

tMDC

tMDDXKH

tMDDVKH

tMDKHDX

tMDC_H tMDC_L

GTX_CLK

tSKEWT

TX_CTL

txd[7:4]txd[3:0]

(At Transmitter)

TXD[3:0]

RX_CTL

rxd[8:5]rxd[3:0]RXD[3:0]

RX_CLK(At Receiver)

tSKEWR

Page 89: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 89

3.6.5 SPI TimingTable 52 lists the SPI input and output AC timing specifications.

Figure 24 provides the AC test load for the SPI.

Figure 24. SPI AC Test Load

Figure 25 and Figure 26 represent the AC timings from Table 52. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 25 shows the SPI timings in slave mode (external clock).

Figure 25. SPI AC Timing in Slave Mode (External Clock)

Table 52. SPI AC Timing Specifications

Parameter Symbol1 Min Max Unit Note

SPI outputs valid—Master mode (internal clock) delay tNIKHOV — 7 ns 2

SPI outputs hold—Master mode (internal clock) delay tNIKHOX 0.5 — ns 2

SPI outputs valid—Slave mode (external clock) delay tNEKHOV — 13 ns 2

SPI outputs hold—Slave mode (external clock) delay tNEKHOX 2 — ns 2

SPI inputs—Master mode (internal clock) input setup time tNIIVKH 13 — ns —

SPI inputs—Master mode (internal clock) input hold time tNIIXKH 0 — ns —

SPI inputs—Slave mode (external clock) input setup time tNEIVKH 4 — ns —

SPI inputs—Slave mode (external clock) input hold time tNEIXKH 2 — ns —

Notes: 1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOX symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).

2. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings are measured at the pin.

Output Z0 = 50 Ω VDDIO/2RL = 50 Ω

SPICLK (input)

tNEIXKH

tNEKHOV

Input Signals:SPIMOSI

(See note)

Output Signals:SPIMISO

(See note)

tNEIVKH

tNEKHOX

Note: measured with SPMODE[CI] = 0, SPMODE[CP] = 0

Page 90: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Electrical Characteristics

Freescale Semiconductor90

Figure 26 shows the SPI timings in master mode (internal clock).

Figure 26. SPI AC Timing in Master Mode (Internal Clock)

3.6.6 Asynchronous Signal TimingTable 53 lists the asynchronous signal timing specifications.

The following interfaces use the specified asynchronous signals:• GPIO. Signals GPIO[31–0], when used as GPIO signals, that is, when the alternate multiplexed special functions are

not selected.

NOTEWhen used as a general purpose input (GPI), the input signal should be driven until it is acknowledged by the MSC8157 device, that is, when the expected input value is read from the GPIO data register.

• EE port. Signals EE0, EE1.• Boot function. Signal STOP_BS.• I2C interface. Signals I2C_SCL and I2C_SDA.• Interrupt inputs. Signals IRQ[15–0] and NMI.• Interrupt outputs. Signals INT_OUT/CP_TX_INT and NMI_OUT/CP_RX_INT (minimum pulse width is 32 ns).

Table 53. Signal Timing

Characteristics Symbol Type Min

Input tIN Asynchronous One CLKIN/MCLKIN cycle

Output tOUT Asynchronous Application dependent

Note: Input value relevant for EE0, IRQ[15–0], and NMI only.

SPICLK (output)

tNIIXKH

tNIKHOV

Input Signals:SPIMISO

(See note)

Output Signals:SPIMOSI

(See note)

tNIIVKH

tNIKHOX

Note: measured with SPMODE[CI] = 0, SPMODE[CP] = 0

Page 91: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Electrical Characteristics

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 91

3.6.7 JTAG Signals

Figure 27 shows the test clock input timing diagram.

Figure 27. Test Clock Input Timing

Figure 28 shows the boundary scan (JTAG) timing diagram.

Figure 28. Boundary Scan (JTAG) Timing

Table 54. JTAG Timing

Characteristics SymbolAll Frequencies

Unit Min Max

TCK cycle time tTCKX 36.0 — ns

TCK clock high phase measured at VM = VDDIO/2 tTCKH 15.0 — ns

Boundary scan input data setup time tBSVKH 0.0 — ns

Boundary scan input data hold time tBSXKH 15.0 — ns

TCK fall to output data valid tTCKHOV — 20.0 ns

TCK fall to output high impedance tTCKHOZ — 24.0 ns

TMS, TDI data setup time tTDIVKH 5.0 — ns

TMS, TDI data hold time tTDIXKH 5.0 — ns

TCK fall to TDO data valid tTDOHOV — 10.0 ns

TCK fall to TDO high impedance tTDOHOZ — 12.0 ns

TRST assert time tTRST 100.0 — ns

Note: All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.

TCK(Input)

VM VM

tTCKX

tTCKH

tTCKRtTCKR

TCK(Input)

DataInputs

DataOutputs

DataOutputs

Input Data Valid

Output Data Valid

tBSXKHtBSVKH

tTCKHOV

tTCKHOZ

tBSXKH

Page 92: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Hardware Design Considerations

Freescale Semiconductor92

Figure 29 shows the test access port timing diagram

Figure 29. Test Access Port Timing

Figure 30 shows the TRST timing diagram.

Figure 30. TRST Timing

4 Hardware Design ConsiderationsFor detailed information about how to design this device into an application, see the MSC8157 Design Checklist (AN4110).

5 Ordering InformationConsult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Table 55. Orderable Part Numbers

Qual status

PartOperating

TempPackage Type

CoreFrequency

(MHz)

Die revision

PC =Prototype

8157 S = 0° C to 105°CT = –40° to 105°C

VT = FC-PBGA C5 lead-free

AG = FC-PBGA C4/C5 lead-free

1000 =1 Ghz

A =Rev 1.1

MSC =Production

TCK(Input)

TDI

(Input)

TDO(Output)

TDO(Output)

Input Data Valid

Output Data Valid

TMS

tTDIVKHtTDIXKH

tTDOHOV

tTDOHOZ

TRST(Input)

tTRST

Page 93: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Package Information

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Freescale Semiconductor 93

6 Package Information

Figure 31. MSC8157 Mechanical Information, 783-ball FC-PBGA Package

NOTES:1. All dimensions in millimeters.2. Dimensioning and tolerancing per ASME Y14.5M-1994.3. Maximum solder ball diameter measure parallel to Datum A.4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.5. Parallelism measurement shall exclude any effect of mark on top surface of package.6. All dimensions are symmetric across the package center lines, unless dimensioned otherwise.7. 29.2mm maximum package assembly (lid + laminate) X and Y.

Page 94: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Product Documentation

Freescale Semiconductor94

7 Product DocumentationThe following is a general list of supporting documentation:

• MSC8157 Technical Data Sheet (MSC8157). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8157 device.

• MSC8157 Reference Manual (MSC8157RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.

• Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8157 device.• QUICC Engine Block Reference Manual with Protocol Interworking (QEIWRM). Provides detailed information

regarding the QUICC Engine technology including functional description, registers, and programming information.

8 Revision HistoryTable 56 provides a revision history for this data sheet.

Table 56. Document Revision History

Revision Date Description

3 12/2103 Updated Table 55, “Orderable Part Numbers.”

2 10/2013 Updated Table 55, “Orderable Part Numbers.”

1 12/2012 • In Table 52, “SPI AC Timing Specifications,” updated tNIKHOV max value to 7 ns, tNEKHOV max value to 13 ns, and tNIIVKH min value to 13 ns.

• In Table 55, “Orderable Part Numbers,” updated the list of supported parts.

0 11/2011 Initial release of this document.

Page 95: MSC8157, MSC8157 Six-Core Digital Signal Processor - Data Sheet

Document Number: MSC8157Rev. 312/2013

How to Reach Us:

Home Page:freescale.com

Web Support:freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and StarCoreare trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engineis a trademark of

Freescale Semiconductor, Inc. All other product or service names are the property of

their respective owners.

© 2010–2013 Freescale Semiconductor, Inc.