multi-messenger grb astrophysics

16
Multi- Messenger GRB Astrophysics Center for Cosmology and AstroParticle Center for Cosmology and AstroParticle Physics (CCAPP) Fellow Physics (CCAPP) Fellow The Ohio State University (OSU) The Ohio State University (OSU) [email protected] [email protected] The Inaugural CCAPP Symposium 2009 The Inaugural CCAPP Symposium 2009 The Ohio State University The Ohio State University Department of Physics Department of Physics October 12, 2009 October 12, 2009 Michael Stamatikos Michael Stamatikos GSFC

Upload: tovah

Post on 02-Feb-2016

31 views

Category:

Documents


1 download

DESCRIPTION

GSFC. Multi-Messenger GRB Astrophysics. Michael Stamatikos. Center for Cosmology and AstroParticle Physics (CCAPP) Fellow The Ohio State University (OSU) [email protected] The Inaugural CCAPP Symposium 2009 The Ohio State University Department of Physics October 12, 2009. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multi-Messenger GRB Astrophysics

Multi-Messenger GRB

Astrophysics

Center for Cosmology and AstroParticleCenter for Cosmology and AstroParticlePhysics (CCAPP) FellowPhysics (CCAPP) Fellow

The Ohio State University (OSU)The Ohio State University (OSU)[email protected]@nasa.gov

The Inaugural CCAPP Symposium 2009The Inaugural CCAPP Symposium 2009The Ohio State UniversityThe Ohio State University

Department of PhysicsDepartment of PhysicsOctober 12, 2009October 12, 2009

Michael StamatikosMichael Stamatikos

GSFC

Page 2: Multi-Messenger GRB Astrophysics

Overview

I. GRB Electromagnetic Emission

II. GRB Satellite Missions

III. Neutrino Astronomy

IV. Summary & Future Outlook

A. PromptB. Afterglow

A. Swift (BAT, XRT & UVOT)B. Fermi (LAT & GBM)C. Correlative observations of GRBs

A. Fireball phenomenology & GRB NeutrinosB. Discrete Neutrino fluxC. IceCube/ANTARES/NESTOR/KM3NET

A. Decade of science synergy

Page 3: Multi-Messenger GRB Astrophysics

• Millisecond temporal variability implies compact objects R ≤ 2ct.

• Compactness problem resolved via ~100 ≤ Bulk ≤ ~1000, ensuring transparent optical depth to observed -ray photons, i.e.≤ 1.

Gamma-Ray Bursts (GRBs): Prompt Emission• GRBs are unique, varying from burst to burst and class to class (short, long, X-ray rich, non-triggered).

• Super-Eddington luminosities imply relativistic expansion.

T90 (seconds)

Nu

mb

er

of

Bu

rsts

“Long” GRBs ~1301 s

“Short” GRBs ~0.02 s

T90 (seconds) ≡ Time required to accumulate from 5% to 95% of total counts in 50-350 keV band50-350 keV band.

“Short” GRBs

are “hard”

“Long” GRBs

are “soft”

Durations span 6 orders of magnitude!

Num

ber

of B

urst

sN

umbe

r of

Bur

sts

BATSE GRBs

AMANDA-II IceCube

ANTARES /NESTOR KM3NET

b

b

d

dn

for

for

energyBreak

indices Spectral,

densitynumber Spectral

b

oE

d

dn

Kouveliotou et al., ApJ 413: 101 (1993)

Briggs et al., ApJ 459: 40 (1996)

Page 4: Multi-Messenger GRB Astrophysics

GRBs: Multi-Wavelength EM Afterglows

Spectroscopically observed Doppler redshifts from optical transient (OT) afterglows.

Isotropic Emission: ~ 1 GRB/Day → RGRBiso ~ 0.5 GRB/(Gpc3·yr).

Beamed (Jet) Emission: Corrections → RGRBiso·(4/Ωb) sr and

Eiso· (Ωb/4) sr. Where: b ≡ Beaming solid angle (sr).

Isotropic EmissionIsotropic Emission

Beamed EmissionBeamed Emission

22Bulkc/v1

1

Bulk1

fraction Beamingcos1

jet

jetbf

Page 5: Multi-Messenger GRB Astrophysics

Boeing Delta II expendable launch vehicle ignition blasted NASA's Swift spacecraft from Complex 17A, Cape Canaveral Air

Force Station, FL on Nov. 20 at 12:16:00.611 p.m. EST in 2004.

“Swifts fly expertly on their first try. Regardless of their

introduction to flight, all young are adept at it soon after they

take their initial leap.”

– National Geographic Society

Page 6: Multi-Messenger GRB Astrophysics

The Swift MIDEX Mission

Page 7: Multi-Messenger GRB Astrophysics

BAT

UVOT

XRT

The Swift MIDEX Mission• Burst Alert Telescope (BAT) 15-150 keV

– Coded array of 32,768 CdZnTe detectors.– Sensitivity~ 10-8 ergs/cm2/sec– Detects ~100 GRBs per year – Energy resolution ~7 keV– PSF = 17’, 1-4 arcmin positions

• X-Ray Telescope (XRT) 0.2-10 keV– Arcsec positions 23.6”x 23.6” FOV– Sensitivity ~2x10-14 ergs/cm2/s– 1 mcrab in 104 sec– CCD spectroscopy

• (UVOT) UV/Optical Telescope – Sub-arcsec imaging, 17”x17” FOV– Grism spectroscopy– 24th mag sensitivity (1000 sec)– 170 nm - 600 nm, 6 colors– Sensitivity~ B=24 in white light in 1000 s

GRB Triggers BAT

T < 10 secR < ~4 arcmin BAT Error Circle

XRT Image < 90 sUVOT Image

T< 300 secT< 300 sec

Autonomous re-pointing, = 50 < ~75 s, Orbit of 600 km x 21 inclination.

Page 8: Multi-Messenger GRB Astrophysics

Temporal Decay of Afterglows: XRT & UVOT GRB 050525A

Fluxes decrease Fluxes decrease by orders of by orders of magnitude in magnitude in first hours!first hours!

0.001 0.01 0.1 1 10 Redshift

N

umbe

r < z > = 2.3

~400 Swift GRBs 95% with XRT @ T < 200 ks ~60% with optical (UVOT + ground) ~10% Short GRBs

• Afterglow Curves, Breaks, Flares, etc.• SGRB Redshift within elliptical galaxy• SGRB with extended soft emission• Over 133 Swift GRBs have redshifts.• GRB 090423 z ~ 8.0! (GCN 9215), i.e.

~85 Gpc or ~ 13 Gyr look back time.

Gehrels et al., New Journal of Physics 9:37 (2007)

XRTUVOT

Over ¾ of all GRB x-ray afterglows and Over ¾ of all GRB x-ray afterglows and redshift are based upon Swift bursts!redshift are based upon Swift bursts!

Page 9: Multi-Messenger GRB Astrophysics

Fermi (LAT & GBM)

• Large Area Telescope (LAT)

- < 20 MeV to > 300 GeV

- Field of View (FOV) ~ 2.5 sr• GLAST Burst Monitor (GBM)

- 8 keV – 30 MeV• 12 Sodium Iodide (NaI)

Scintillation Detectors– Energy Range:

• 8 keV – 1 MeV– Wide FOV (~8 sr)– Onboard Burst Trigger

• 2 Bismuth Germanate (BGO) Scintillation detectors– Energy Range:

• 0.15 – 30 MeV– Provides important overlap

with LAT energy range.

Large Area Telescope (LAT)

GLAST Burst Monitor (GBM)

LAT FoV

GBM FoV

Page 10: Multi-Messenger GRB Astrophysics

Correlative Observations: Mutual Science Benefit!

Y. Kaneko et al 2006, ApJS 166, 298

BATSE Epeak Distribution

• BAT increases GBM’s ~20-100 keV effective area by a factor of ~ 3.• Most GRBs have Epeak above BAT energy range. BAT-GBM GRBs↑ Epeaks.• BAT localization precision ~2-3 orders of magnitude better, ↑ follow-up (z).• Test validity of Epeak-Eiso redshift relationships (~35% Swift GRBs have z).• Broad-band spectral/temporal evolution ~ 6 energy decades (keV-GeV) for BAT-

GBM, and ~11 energy decades for UVOT/XRT/BAT/GBM/LAT!! Has been realized in GRB 090510: LAT/GBM (GCN 9334/9336) and BAT/XRT/UVOT (GCN 9331).

Comparison of Effective Areas

2 BGO (0.15 to 30 MeV)

LAT (20 MeV to >300 GeV)

12 NaI (8 keV to 1 MeV)

Stamatikos arXiv:0904.2755

Page 11: Multi-Messenger GRB Astrophysics

Left plate: Swift-BAT light curve for GRB 080810 with T0 = 13:10:12.3 UTC. Blue line indicates Swift slew-time. Red and green lines indicate 1st and 2nd joint fit interval, respectively. Center plate: Joint Swift-BAT/Fermi-GBM energy spectral fit for 1st interval, with fit parameters of α ~ 0.94 (+0.13, -0.15) and Epeak ~ 674 (+493, -237) keV (χ2/dof~1.33). Right plate: Joint fit for 2nd interval, resulting in fit parameters of α ~ 1.15 (+0.09, -0.10) and Epeak

~ 406 (+189, -106) keV (χ2/dof~1.15). Both intervals were best fit via a Comptonized model. Although consistent within their error bars, the 2nd (brighter) interval provides a better Epeak constraint .

BAT-GBM Joint Spectral Fit of GRB 080810

BAT-GBM Inter-calibration has ~50 common GRBs. Joint analysis is in preparation.

Page 12: Multi-Messenger GRB Astrophysics

The Fireball Phenomenology: GRB- Connection

Self-Compton Scattering

Magnetic FieldMagnetic Field ElectronElectron

---

-ray-raySynchrotron Radiation

ElectronElectron -ray-rayLow-Energy Low-Energy

PhotonPhoton

Prompt -ray emission of GRB is due to non-thermal processes such as electron synchrotron radiation or self-Compton scattering.

ee-- pp++

E 1051 – 1054 ergs

Internal Shocks

Prompt GRB Emission

External Shocks

Afterglow

Radio

Optical X-ray

-ray

Optical Afterglow Radio Afterglow

Multi-wavelength Afterglows Span EM Spectrum

eThp

cm enpEE If

Photomeson interactions involving relativistically ( 300) shock-accelerated protons (Ep 1016 eV) and synchrotron gamma-ray photons (E 250 keV) in the fireball wind yield high-energy muonic neutrinos (E 1014 – 1015 eV).

R < 108 cm

R 1014 cmT 3 x 103 seconds

R 1018 cm T 3 x 1016 seconds

energy. thresholdΔ E &energy mass ofcenter pγ E Th

Δ

pγcm

C

ount

s/se

c

Time (seconds)Time (seconds)

Spatial & temporal coincidence with

prompt GRB emission

• Shock variability is a unique “finger-print” reflected in the complexity of the GRB time profile.

• Implies compact object.

GRB Prompt Emission GRB Prompt Emission (Temporal) Light Curve(Temporal) Light Curve

Prompt GRB Photon Energy Spectrum –

Characterized by the “Band Function”

Spectral Fit Parameters

A, b, P

Page 13: Multi-Messenger GRB Astrophysics

Fireball Phenomenology: GRBs & ’s• Fireball Phenomenology + Relativistic Hadronic Acceleration Neutrinos.

• “Smoking gun” signature of hadronic acceleration cosmic rays

• Assuming GRBs were CR accelerators Diffuse flux prediction.

• AMANDA 1 PeV Diffuse Flux Upper Limits:

(eV)(eV) ArrivalArrival Astrophysical Astrophysical

Mechanism/CommentsMechanism/Comments

107 Before Progenitor Collapse/Merger

109 – 1010 Before Baryonic (n, p) Longitudinal decoupling

1012 - ≤ 1014 Before “Precursor” (pp/p)

1014 – 1015 During Prompt (Photomeson/internal shocks)

1017-1018 After Afterglow (Photomeson/External shocks)TeV-PeV muon neutrinos spatio-temporal coincidence

Razzaque, Meszaros & Waxman PRD 69 023001 (2004)Razzaque, Meszaros & Waxman PRD 69 023001 (2004)

Stamatikos, M. et al., AIP Conference Proceedings 727, 146-149 (2004) Stamatikos, M. et al., AIP Conference Proceedings 727, 146-149 (2004)

Waxman, E. Physical Review Letters 75, 386-389 (1995)Waxman, E. Physical Review Letters 75, 386-389 (1995) Stamatikos et al. astro-ph/0510336Stamatikos et al. astro-ph/0510336

Waxman & Bahcall, Phys. Rev. D 59 023002Waxman & Bahcall, Phys. Rev. D 59 023002

Achterberg et al., ApJ 674: 357 (2008)Achterberg et al., ApJ 674: 357 (2008)Achterberg et al., ApJ 664: 397 (2007)Achterberg et al., ApJ 664: 397 (2007)

“Background free” search

Page 14: Multi-Messenger GRB Astrophysics

• Fluctuations enhance neutrino production, e.g. GRB 941017.

• EM variance neutrino variance.

• Diffuse flux methodology All GRBs described by same energy spectrum• Based upon average values for observables contradicts observations.

Halzen & Hooper ApJ 527, L93-L96 (1999)Halzen & Hooper ApJ 527, L93-L96 (1999)

Alverez-Muniz, Halzen & Hooper Phys. Rev. D 62, (2000)Alverez-Muniz, Halzen & Hooper Phys. Rev. D 62, (2000)

Guetta et al., Astroparticle Physics 20 (2004) 429-455Guetta et al., Astroparticle Physics 20 (2004) 429-455

Few GRBs Few GRBs produce produce

detectable detectable signalsignal

5 orders of magnitude5 orders of magnitude

• GRB030329 Case study.

Motivation for Discrete Approach

• Distributions:

1. Span orders of magnitude,

2. Differ from burst to burst

3. Class to class, and are

4. Effected by selection effects.

Stamatikos et al. astro-ph/0510336Stamatikos et al. astro-ph/0510336

Page 15: Multi-Messenger GRB Astrophysics

Parameterization of Muon Neutrino Spectrum

b

bb

b

bb

b

b

A

21

1

1

2

ionNormalizat10ln8 90

T

fFA

e

effeciencyProton 1

20,2

45.2

52,

zt

L.f

bMeVv,

FactorBoost LorentzBulk 1276~ 61

max,

12v,52, ztL MeV

energybreak NeutrinoGeV

1

107

,

25.2

2

5

b

MeV

b

z

energybreak n SynchrotroGeV1

102v,

45.2

21

52,2

12

18

tL

z Beb

MeV 100

MeV 1

s10

10

sergs10

max,

,

22v,

5.25.2

5252,

MeV

bb

MeV

vtt

LL

Neutrino spectrum is expected Neutrino spectrum is expected to trace the photon spectrum.to trace the photon spectrum.

Guetta et al., Astroparticle Physics 20, 429-455 (2004)

1 p

Stamatikos et al. astro-ph/0510336Stamatikos et al. astro-ph/0510336

Neutrino Flux Models

Model 1: Discrete Isotropic Model 2: Discrete Jet Model 3: Average Isotropic

Page 16: Multi-Messenger GRB Astrophysics

ConclusionsConclusions

Expect ~1-3 BAT-GBM GRBs/month (~3217/year).

Can constrain/determine Epeak for all coincident bursts, use redshift to determine burst luminosity and test empirical redshift relations.

Facilitate multi-messenger searches, e.g. neutrino astronomy via IceCube/ANTARES/NESTOR and KM3NET. (See Stamatikos et al 2009, Astro2010 Decadal Whitepaper.)

Science Synergy: Swift-Fermi affords spectral & temporal evolution analysis over an unprecedented 11 energy decades (UVOTLAT)!