multi-scale modelling for energy storage devices€¦ · multi-scale modelling for energy storage...

22
MANIFEST Researcher Workshop Multi-scale modelling for energy storage devices Samuel J. Cooper , Dami Taiwo, Vladimir Yufit, Farid Tariq, Enrique Ruiz-Trejo, Antonio Bertei, Ann Huang, Barun Chakrabarti, Moshiel Biton, Nigel P. Brandon February 2018

Upload: others

Post on 10-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

MANIFEST Researcher Workshop

Multi-scale modelling for energy

storage devices

Samuel J. Cooper, Dami Taiwo, Vladimir Yufit, Farid Tariq, Enrique Ruiz-Trejo,

Antonio Bertei, Ann Huang, Barun Chakrabarti, Moshiel Biton, Nigel P. Brandon

February 2018

2

Faraday Challenge

• 4 Fast-start projects starting 2018

– Multi-scale modelling - Imperial

– Solid state batteries - Oxford

– Degradation - Cambridge

– Recycling - Birmingham

3

Multiscale modelling

• Lead by Greg Offer at Imperial

• Consortium includes:

– Imperial – Greg Offer (PI), Billy Wu, Monica Marinescu, Aron Walsh, Sam Cooper,

Jacqueline Edge (PM)

– Bath – Saiful Islam, Benjamin Morgan

– UCL – Paul Shearing, Dan Brett

– WMG – Emma Kendrick, Dhammika Widanalage, James Marco

– Lancaster – Harry Hoster, Dénes Csala

– Oxford – Dave Howey, Charles Monroe, Colin Please, Jon Chapman

– Southampton - Chris Skylaris, Dennis Kramer

4

Multiscale modelling

• 5 Expeditions

– XP1 - COLDSTART (Lithium intercalation at low T)

– XP2 - CELLDO (Cell model with defined parameterisation approach)

– XP3 - BATPACK (Pack level models with thermal coupling)

– XP4 - ROMCon (Reduced order models for battery control)

– XP5 - LONGTERM (Bridge the atomistic and continuum models)

• 5 Cross Cutting activities

– CC1 - PHYSMAT (Fundamental Physics & Materials Science)

– CC2 - MATHS (Mathematical Methods and Solvers)

– CC3 - VISDAM (Visualisation & data management)

– CC4 - TEST (Parameterisation & validation)

– CC5 - PEACE (Parameter estimation & analysis continuum models)

Understanding• Fast

Charging• Degradation

& Lifetime

XP2: Cell Design

XP3: Pack Design

XP4: Control

AGM, JM, Nexeon, CoSeC, nVidia

Shell

Industry Pull• Need for

design Tools

Williams, JLR, RR, Ford, Ricardo, JM, Arcola, Siemens, Potenza, CAT, Conti, BMW, BBOXX

Other FI projects

Design Tools

CC2 Mathematical methods and solvers

CC3 Experimental parameterisation and validation

CC4 Visualisation and data management

CC5 Parameter Estimation

XP5: Degradation

CC1 Physics

XP1: Low Temperature

10-9 s & 109 s 10-9 s & 109 s

10-9 m 101 m

multi-scale modellingtime & length

Critical transition molecular and

continuum models

Complexity reduction

without loss of important fidelity

Individual contribution

• PDRA – Novel isotopic approach to

characterising solid state diffusion and

surface exchange processes.

• PhD – Materials stability (impact of trapping).

• Responsibility to communicated finding and

assumption up (to continuum team) and

down (to atoms team).

7

Innovate UK

• 6 project starting at Imperial in collaboration with industry

– ABLE – M-KOPA, Denchi Power

– ATESTS – Rolls Royce

– BATMAN – Perkins, AVID tech.

– CoRuBa – Fergusson’s Advanced Composite Technology

– IMPACT – Arcola, Reaction Engines, Flint Engineering Brunel

– THT – Thermal Hazard Technology

Looking for a job?

• We’re currently looking for 12 postdocs and many PhDs!

– Please get in touch and I can point you in the right direction

Batteries and fuel cells

9

Electrode microstructurefor

Performance optimisation

↓Bulk properties• volume fractions• connectivity• area per unit

volume

Degradation

↓Local hot spots

Structural evolution

10

3D Imaging Facilities

• Lab X-ray CT* unit with high-efficiency flat panel

detector.

• Up to 1 µm spatial resolution.

• Capability to incorporate in-situ rigs for dynamic

experiments.

• Access to FIB-SEM tomography equipment.

• High spatial resolution (<10 nm for FIB imaging).

• Better suited for nanostructured material analysis.

*From energy storage capital grant : EPSRC Capital for Great Technologies call - Grid-Scale Energy Storage

11

Zn dendrite formation during the first charge

Zn(OH)42-

KOH

additives

Pump

Zn + 4OH- ↔Zn(OH)42- + 2e-

Load / Power generator

1/2O2 + H2O + 2e- ↔ 2OH-

OH-OH-

ZnZn

Air

Air

Zinc-based flow batteries – Morphological degradation of Zn

1

2

M. Biton,F. Tariq,V. Yufit, Z. Chen,N. Brandon, Acta Materialia 2017, 141, 39-46

Zn(OH)42-

KOH

additives

Pump

Zn + 4OH- ↔Zn(OH)42- + 2e-

Load / Power generator

1/2O2 + H2O + 2e- ↔ 2OH-

OH-OH-

ZnZn

Air

Air

Zinc-based flow batteries – Morphological degradation of Zn

In-situ observation of Zn dendritic growth

M. Biton,F. Tariq,V. Yufit, Z. Chen,N. Brandon, Acta Materialia 2017, 141, 39-46

13

No rGO Single side rGO Double side rGO

Vanadium redox flow batteries – Carbon paper modification

Total specific

surface area with

XCT [μm2 μm−3]

BET specific

surface area

[μm2 μm−3]

Untreated CP 0.81 2.8

One-sided 1.01 5.1

Double sided 1.11 11.1

B. Chakrabarti, D. Nir, V. Yufit, F. Tariq, J. Rubio-Garcia, R. Maher, A. Kucernak, P. Aravind, N. Brandon, ChemElectroChem 2017, 4, 194.

14

Lithium-ion batteries – Thick electrodes with controlled porosity

Image ref: Deville, S., Ice templating of

porous materials

Cross section

SEM

X-ray µCT

• In collaboration with Prof. P. Grant and Dr. A. Huang (Oxford)

• Manufacture of thick high energy density electrodes

• Improve battery power through microstructure control

Si/SiOX

15

Lithium-ion batteries – Thick electrodes with controlled porosity

X-dir Y-dir Z-dir0

3

6

9

12

15

To

rtu

os

ity

fa

cto

r,

Ordered

Non-ordered

Ord

ere

d p

oro

sit

yN

on

-ord

ere

d

po

rosit

y

0

10

20

30

40

Po

ros

ity

(%

)

Ordered

Non-ordered

37.5% 24.7%

7.8

2

4.5

2

5.1

2

7.5

2

7.4

8

2.8

7

16

Lithium-ion batteries – Thick electrodes with controlled porosity

Non-ordered

porosity

Ordered

porosity

17

Structure electrode modelling

• Hierarchical electrodes fabricated by Ann

Huang

• Nano-scale porosity/nanotube model -

homogenised using TauFactor

• 2D model built by Antonio Bertei

• N-P + Diffusion + B-V

Solid Oxide Fuel Cells – Microstructural degradation in NiScSZ

1 μm

1 μm

(xy) slice

Deg

rad

ed

an

od

e

Init

ial

an

od

e

Ni + ScSZ

1 µm

1 µm

TPBsFIB-SEM

0

5

10

15

20

0 5 10 15 20 25 30 35 40

-ZIm

/ W

cm

-2

ZRe / W cm-2

200 h80 h24 h2 h0.5 h

x19550 C @ OCV5% H2/3% H2O

oxygentransfer

ScSZ-YSZ

distributedcharge transfer

at TPB

gasdiffusiontest rig

ohmic

A.Bertei, E.Ruiz-Trejo, K.Kareh, V.Yufit, X.Wang, F.Tariq, N.P.Brandon, Nano Energy 2017, 36, 526-536

19

Solid Oxide Fuel Cells – Microstructural degradation in NiScSZ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

NiS

cS

z a

rea (

m2

m-3) Initial

Degraded

2.39 1.85

0

5

10

15

20

25

TP

B d

en

sit

y (

m

m-3) Initial

Degraded

19.77 11.67

1 μm

1 μm

(xy) slice

De

gra

de

d a

no

de

In

itia

l a

no

de

Ni + ScSZ

1 µm

1 µm

TPBsNi + ScSZ

1 μm

1 μm

(xy) slice

De

gra

de

d a

no

de

In

itia

l a

no

de

Ni + ScSZ

1 µm

1 µm

TPBs

A.Bertei, E.Ruiz-Trejo, K.Kareh, V.Yufit, X.Wang, F.Tariq, N.P.Brandon, Nano Energy 2017, 36, 526-536

20

Simulated impedance

S. J. Cooper, A. Bertei, D. P. Finegan, and N. P. Brandon, “Simulated impedance of diffusion in porous media,”

Electrochim. Acta, vol. 251, pp. 681–689, 2017.

Thank you