multi-stage robust unit commitment considering wind and ... - guan.pdf · i demand response program...

46
Multi-Stage Robust Unit Commitment Considering Wind and Demand Response Uncertainties Chaoyue Zhao * , Jianhui Wang , Jean-Paul Watson , Yongpei Guan * * University of Florida, Gainesville, FL 32611 Argonne National Laboratory, Lemont, IL 60439 Sandia National Laboratories, Albuquerque, NM 87185 2013 FERC Technical Conference

Upload: trinhbao

Post on 23-Jul-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Unit CommitmentConsidering Wind and Demand Response

Uncertainties

Chaoyue Zhao∗, Jianhui Wang†, Jean-Paul Watson‡, YongpeiGuan∗

∗University of Florida, Gainesville, FL 32611

†Argonne National Laboratory, Lemont, IL 60439

‡Sandia National Laboratories, Albuquerque, NM 87185

2013 FERC Technical Conference

Page 2: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Unified Stochastic and Robust Unit Commitment

miny ,u,v

(aTu + bT v) + α1

N

N∑n=1

eTφ(ξn) + (1− α)maxd∈D

minx,φ

eTφ

s.t. Ay + Bu + Cv ≥ r,

Fy −Dq(ξn) ≤ g, n = 1, · · · ,NKy − Pq(ξn)− Jφ(ξn) ≤ 0, n = 1, · · · ,NTq(ξn) ≥ Sd(ξn) + s, n = 1, · · · ,NFy −Dx(d) ≤ g,

Ky − Px(d)− Jφ(d) ≤ 0,

Tx(d) ≥ Sd + s,

y , u, v ∈ 0, 1, x(d), q(ξn) ≥ 0, φ(d), φ(ξn) free,∀n

where

D =d ∈ R|B|×|T | : d− ≤ d ≤ d+,UTd ≤ z

.

Ref: Zhao and Guan, Unified Stochastic and Robust Unit Commitment, IEEE Transaction on Power Systems, 2013.

Page 3: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Agenda

I Introduction and Motivation

I Mathematical Formulation

I Solution Methodologies

I Computational Results

I Conclusion

Page 4: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Agenda

I Introduction and Motivation

I Mathematical Formulation

I Solution Methodologies

I Computational Results

I Conclusion

Page 5: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Agenda

I Introduction and Motivation

I Mathematical Formulation

I Solution Methodologies

I Computational Results

I Conclusion

Page 6: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Agenda

I Introduction and Motivation

I Mathematical Formulation

I Solution Methodologies

I Computational Results

I Conclusion

Page 7: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Agenda

I Introduction and Motivation

I Mathematical Formulation

I Solution Methodologies

I Computational Results

I Conclusion

Page 8: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Wind Energy

I Wind power is hard to predict and intermittent

I Security: system reliability

I Operation: generation scheduling and curtailment

I Consider renewable energy a higher priority over the otherconventional generation sources.

I Physical constraints of other non-wind units, such as rampingrates and minimum up/down times, are influenced.

I Challenges on how to commit thermal generation units toaccommodate intermittent wind power.

Page 9: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

UC with Wind

I Significant research progress made recently on UC with wind.

I Simulate wind realizations: Stochastic unit commitmentmodels, e.g., [4] and lots of others....

I Ensure high utilization:

I A large portion of wind power can be utilized with a highprobability: chance constrained model [6].

I Wind power within an interval defined by quantiles is ensuredto be utilized: robust unit commitment model, e.g., [13], [7],and several others....

Page 10: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Demand Response

I Demand Response Program (DRP) encourages the demandside to voluntarily schedule the consumption based on theprice signal.

I For load-serve entities

I Reduce peak-hour power supply and lower the capacityrequirement.

I For customers

I Adjust electricity demand from high price periods to low priceperiods to reduce electricity usage cost.

I For Independent System Operators (ISO)

I Accommodate wind power uncertainty, balance the electricityconsumption and production...

Page 11: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Demand Response Curve

I DR was mostly modeled as a “fixed” demand curve

I Price-elastic demand curve

I Characterized by price elasticity - the sensitivity of electricitydemand (Q) with respect to the change of price (P), i.e.,

α = ∆Q/Q∆P/P

I Concept of “inelastic demand” and “elastic demand”

I Inelastic demand: critical loads like hospitals and airports

I Elastic demand: depend on time-varying price

I DR vs auxiliary services market

Page 12: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Demand Response Curve

Quantity (MW)

Price ($/MWh)

Demand curveSupplier surplus

Consumer surplus

Supply curve

D0tb DM

tb

inelastic

demand

elastic

demand

dbt

pbt

Figure: An Example of Price-elastic Demand Curve

Page 13: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Our Contributions

I Both wind power output and demand response uncertaintiesin the Reliability Unit Commitment Run (or ReliabilityAssessment Commitment Run).

I Multi-stage robust optimization model to address bothuncertainties, instead of previous two-stage robustoptimization approaches.

I A tractable solution approach to solve the multi-stage robustoptimization problem.

Page 14: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Mathematical Formulation - Notation

Parameters

SUbi /SD

bi Start-up/shut-down cost for generator i at bus b

MUbi /MDb

i Minimum-up/Minimum-down time for generator i at bus b

MAbi /MI bi Maximal/Minimal generation capacity of generator i at bus b

RUbi /RD

bi Ramp-up/Ramp-down limit for generator i at bus b

D0tb/D

Mtb The inelastic/maximum demand at bus b in time period t.

Uij Maximal capacity for transmission line from bus i to bus j

F bij Distribution factor for transmission line from bus i to bus j due

to the net injection at bus b

Page 15: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Mathematical Formulation - Notation

Decision variables

ybit Generator i is on (= 1) or not (= 0) in period t at bus b

ubit Generator i is started up (= 1) or not (= 0) in period t at bus b

vbit Generator i is shut down (= 1) or not (= 0) in period t at bus b

xbit Amount of electricity generated by generator i in period t at bus b

dbt Electricity demand in period t at bus b

Page 16: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Nominal Model

I Objective:max

∑Bb=1

∑Tt=1 r

bt (db

t )−∑B

b=1

∑Tt=1

∑Gbi=1(f bi (xb

it) + SUbi u

bit + SDb

i vbit )

I Constraints: Minimum-up/down time constraints (MM)

−ybi(t−1) + yb

it − ybik ≤ 0,

(1 ≤ k − (t − 1) ≤ MUbi ,

t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

ybi(t−1) − yb

it + ybik ≤ 1,

(1 ≤ k − (t − 1) ≤ MDbi ,

t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Start-up/Shut-down constraints (SS)

−ybi(t−1) + yb

it − ubit ≤ 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

ybi(t−1) − yb

it − vbit ≤ 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Page 17: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Nominal Model

I Constraints: Ramp-up/down rate constraints (RR)

xbit − xb

i(t−1) ≤ ybi(t−1)RU

bi + (1− yb

i(t−1))MAbi ,

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

xbi(t−1) − xb

it ≤ ybitRD

bi + (1− yb

it )MAbi ,

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Generation capacity constraints (GC)

MI bi ybit ≤ xb

it ≤ MAbi y

bit ,

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Load balance (SD)∑Bb=1(

∑Gbi=1 x

bit + wb

t ) =∑B

b=1 dbt ,

(t = 1, 2, · · · ,T )

DC transmission constraint (TC)

−Uij ≤∑B

b=1 Fbij (∑Gb

l=1 xblt + wb

t − dbt ) ≤ Uij .

((i , j) ∈ Ω, t = 1, 2, · · · ,T )

Load bound (LB)

D0tb ≤ db

t ≤ DMtb . (t = 1, 2, · · · ,T , b = 1, 2, · · · ,B)

Page 18: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Model

I Linearize the nonlinear terms of the objective function

I rbt (dbt )

I f bi (xbit)

zR = maxB∑

b=1

T∑t=1

rbt (dbt )−

B∑b=1

T∑t=1

Gb∑i=1

(f bi (xbit) + SUbi u

bit + SDb

i vbit)

s.t. (SS),(MM),(RR),(GC),(SD),(TC),(LB),

ybit , ubit , v

bit ∈ 0, 1, and ybi1 = 0.

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Page 19: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Model

I Linearize the nonlinear terms of the objective function

I rbt (dbt )

I f bi (xbit)

zR = maxB∑

b=1

T∑t=1

rbt (dbt )−

B∑b=1

T∑t=1

Gb∑i=1

(f bi (xbit) + SUbi u

bit + SDb

i vbit)

s.t. (SS),(MM),(RR),(GC),(SD),(TC),

ybit , ubit , v

bit ∈ 0, 1, and ybi1 = 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Page 20: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Model

I Linearize the nonlinear terms of the objective function

I rbt (dbt )

I f bi (xbit)

zR = maxB∑

b=1

T∑t=1

rbt (dbt )−

B∑b=1

T∑t=1

Gb∑i=1

(f bi (xbit) + SUbi u

bit + SDb

i vbit)

s.t. (SS),(MM),(RR),(GC),(SD),(TC),

ybit , ubit , v

bit ∈ 0, 1, and ybi1 = 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Page 21: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Linearize r bt (dbt )

I If the elasticity value is constant for the entire curve, the

price-elastic demand curve will be: dbt = Ab

t (pbt )αbt .

I Linearize the price-elastic demand curve by a step-wisefunction.

Demand (MW)

Price ($/MWh)

dbtD0

tb DMtb

pb1t

pb2t

pbKt

lb1t

lb2t

lbKt

db∗t

pb∗t

Figure: Approximation of the Price-elastic Demand Curve

Page 22: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Linearize r bt (dbt )

I Linearize the curve by a K -piece step-wise function.

I rbt (dbt ) =

∑Kk=1 p

bkt hbk

t , dbt =

∑Kk=1 h

bkt , 0 ≤ hk

t ≤ `bkt(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb, k = 1, 2, · · · ,K)

zR = maxB∑

b=1

T∑t=1

K∑k=1

pbkt hbkt −B∑

b=1

T∑t=1

Gb∑i=1

(f bt (xbit) + SUbi u

bit + SDb

i vbit )

s.t. (SS),(MM),(RR),(GC),(SD),(TC),(LB)

dbt =

∑Kk=1 h

bkt ,

0 ≤ hkt ≤ `bkt ,ybit , u

bit , v

bit ∈ 0, 1, and yb

i1 = 0.

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Page 23: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Linearize f bi (xbit)

I Linearize the cost function by an N-piece piecewise linearfunction:

I φbit ≥ βbj

it ybit + γbj

it xbit .

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb, j = 1, 2, · · · ,N)

zR = maxB∑

b=1

T∑t=1

K∑k=1

pbkt hbkt −B∑

b=1

T∑t=1

Gb∑i=1

(φbit + SUbi u

bit + SDb

i vbit )

s.t. (SS),(MM),(RR),(GC),(SD),(TC),(LB),

dbt =

∑Kk=1 h

bkt , 0 ≤ hkt ≤ lbkt ,

φbit ≥ βbjit y

bit + γbjit x

bit ,

ybit , u

bit , v

bit ∈ 0, 1, and yb

i1 = 0.

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B, i = 1, 2, · · · ,Gb)

Page 24: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Uncertainty Sets

Wind power output formulation

I W :=

w ∈ R|B|×|T | : wb

t = W b∗t + zb+

t W b+t − zb−t W b−

t ,

∑Tt=1(zb+

t + zb−t ) ≤ πb, ∀t, ∀b

I Remark:

I W b∗t is the predicted value for wind power output in period t at bus

b, and W b+t , W b−

t are the allowed maximum deviations above and

below W b∗t , respectively. This interval can usually be generated by

using quantiles.

I πb is cardinality budget to restrict the number of time periods in

which the wind power output is far away from its forecasted value

at bus b.

I Wind power reaches upper bound (zb+t = 1), lower bound

(zb−t = 1), or forecasted value (zb+t = zb−t = 0).

Page 25: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Uncertainty Sets

Uncertain demand response curve formulation

I Π = ε : −εt bk ≤ εbkt ≤ εt bk ,−κbt ≤

∑k∈K ε

bkt ≤ κb

t ,

∀t = 1, · · · ,T , ∀k = 1, · · · ,K , ∀b = 1, · · · ,B.

I Remark:

εbkt is the deviation of pbkt ,

εbkt is the upper limit of εbkt ,

κbt is used to adjust the robustness.

Page 26: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Uncertainty SetsUncertain demand response curve representation:

Demand (MW)

Price ($/MWh)

Different scenarios ofprice-elastic demand

curve

Predicted curve

d0

p0The rangefor p0

The rangefor d0

Figure: The Uncertainty of Price-elastic Demand Curve

Page 27: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Formulation

I The formulation of the multi-stage robust optimizationproblem is:

I First stage: unit commitment decisions y , u, vI Second stage: economic dispatch amount under the worst-case wind

power output scenarioI Third stage: the worst-case price-elastic demand curve

maxy,u,v

−B∑

b=1

T∑t=1

Gb∑i=1

(SUbi u

bit + SDb

i vbit ) + min

w∈Wmax

x,h∈χ( minε∈Π

B∑b=1

T∑t=1

K∑k=1

(pbk∗t + εbkt )hbkt −

B∑b=1

T∑t=1

Gb∑i=1

φbit )

s.t. (SS),(MM),

ybit , ubit , v

bit ∈ 0, 1, and ybi1 = 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

X =

(x, h) : (RR), (GC), (SD), (TC), (LB)

φbit ≥ α

bjit y

bit + β

bjit x

bit ,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

dbt =∑K

k=1 hbkt , 0 ≤ hbkt ≤ lbkt .

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, k = 1, 2, . . . ,K)

Page 28: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Formulation

I The formulation of the multi-stage robust optimizationproblem is:

I First stage: unit commitment decisions y , u, v

I Second stage: economic dispatch amount under the worst-case wind

power output scenarioI Third stage: the worst-case price-elastic demand curve

maxy,u,v

−B∑

b=1

T∑t=1

Gb∑i=1

(SUbi u

bit + SDb

i vbit ) + min

w∈Wmax

x,h∈χ( minε∈Π

B∑b=1

T∑t=1

K∑k=1

(pbk∗t + εbkt )hbkt −

B∑b=1

T∑t=1

Gb∑i=1

φbit )

s.t. (SS),(MM),

ybit , ubit , v

bit ∈ 0, 1, and ybi1 = 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

X =

(x, h) : (RR), (GC), (SD), (TC), (LB)

φbit ≥ α

bjit y

bit + β

bjit x

bit ,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

dbt =∑K

k=1 hbkt , 0 ≤ hbkt ≤ lbkt .

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, k = 1, 2, . . . ,K)

Page 29: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Formulation

I The formulation of the multi-stage robust optimizationproblem is:

I First stage: unit commitment decisions y , u, vI Second stage: economic dispatch amount under the worst-case wind

power output scenario

I Third stage: the worst-case price-elastic demand curve

maxy,u,v

−B∑

b=1

T∑t=1

Gb∑i=1

(SUbi u

bit + SDb

i vbit ) + min

w∈Wmax

x,h∈χ( minε∈Π

B∑b=1

T∑t=1

K∑k=1

(pbk∗t + εbkt )hbkt −

B∑b=1

T∑t=1

Gb∑i=1

φbit )

s.t. (SS),(MM),

ybit , ubit , v

bit ∈ 0, 1, and ybi1 = 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

X =

(x, h) : (RR), (GC), (SD), (TC), (LB)

φbit ≥ α

bjit y

bit + β

bjit x

bit ,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

dbt =∑K

k=1 hbkt , 0 ≤ hbkt ≤ lbkt .

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, k = 1, 2, . . . ,K)

Page 30: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Formulation

I The formulation of the multi-stage robust optimizationproblem is:

I First stage: unit commitment decisions y , u, vI Second stage: economic dispatch amount under the worst-case wind

power output scenarioI Third stage: the worst-case price-elastic demand curve

maxy,u,v

−B∑

b=1

T∑t=1

Gb∑i=1

(SUbi u

bit + SDb

i vbit ) + min

w∈Wmax

x,h∈χ( minε∈Π

B∑b=1

T∑t=1

K∑k=1

(pbk∗t + εbkt )hbkt −

B∑b=1

T∑t=1

Gb∑i=1

φbit )

s.t. (SS),(MM),

ybit , ubit , v

bit ∈ 0, 1, and ybi1 = 0,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

X =

(x, h) : (RR), (GC), (SD), (TC), (LB)

φbit ≥ α

bjit y

bit + β

bjit x

bit ,

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, i = 1, 2, · · · , Gb)

dbt =∑K

k=1 hbkt , 0 ≤ hbkt ≤ lbkt .

(t = 1, 2, · · · ,T , b = 1, 2, · · · , B, k = 1, 2, . . . ,K)

Page 31: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multi-Stage Robust Optimization Formulation

I The formulation of the multi-stage robust optimizationproblem is:

I First stage: unit commitment decisions y , u, vI Second stage: economic dispatch amount under the worst-case wind

power output scenarioI Third stage: the worst-case price-elastic demand curve

maxy ,u,v

(aTu + bT v) + minw∈W

maxx,h,φ∈χ

(minε∈

∏ εTh + cTh − eTφ)

s.t. Ay + Bu + C v ≤ 0, y , u, v ∈ 0, 1

X =Dx ≤ F y + g ,

Px − Jφ ≤ Ky , Rh ≤ q,

T x + Sh ≤ s + Ow , x , h ≥ 0

Π =Uε ≥ m

Page 32: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Bender’s Decomposition

I Dualize the constraints in Π and combine them with thesecond stage constraints

I Dualize the remaining constraints in χ

maxy ,u,v

(aTu + bT v) + minw∈W

maxx,h,φ,θ∈χ

(mT θ + cTh − eTφ)

s.t. Ay + Bu + C v ≤ 0,

y , u, v ∈ 0, 1

χ = χ ∩UT θ − h ≤ 0, θ ≥ 0

Page 33: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Bender’s Decomposition

I Dualize the constraints in Π and combine them with thesecond stage constraints

I Dualize the remaining constraints in χ

ω(y) = minw∈W,γ,λ,τ,µ,η

(F y + g)Tγ + (Ky)Tλ+ qT τ + (s + Ow)Tµ

s.t. DTγ + PTλ+ TTµ ≥ 0, JTλ = e,

RT τ + STµ− η ≥ c , Uη ≥ m,

γ, λ, τ, µ, η ≥ 0.

Page 34: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Bilinear TermsI Replace the bilinear terms: wT OTµ

I Let OTµ = σ

I Using the uncertainty set W

wTσ =T∑t=1

B∑b=1

σbt w

bt

=T∑t=1

B∑b=1

σbt (W b∗

t + zb+t W b+

t − zb−t W b−t )

=T∑t=1

B∑b=1

(σbt W

b∗t + σb+

t W b+t + σb−

t W b−t )

s.t. σbt = (OTµ)bt ,

σb+t ≥ −Mzb+

t , σb+t ≥ σb

t −M(1− zb+t ),

σb−t ≥ −Mzb−t , σb−

t ≥ −σbt −M(1− zb−t ),∑T

t=1(zb+t + zb−t ) ≤ πb.

(t = 1, 2, · · · ,T , b = 1, 2, · · · ,B)

Page 35: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Master Problem

I Use the Benders’ decomposition algorithm to solve thethree-stage robust optimization problem.

I Denote θ as the second-stage optimal objective value.

I Add feasibility and optimality cuts to solve the problemiteratively.

Master problem

ωP = maxy,u,v aTu + bT v + θ

s.t. Ay + Bu + Cv ≤ 0,

Feasibility cuts,

Optimality cuts,

y , u, v ∈ 0, 1.

Page 36: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Feasibility Cuts

I Infeasibility detection: use L-shaped method to detectinfeasibility and generate feasibility cuts:

I If ωf (y) = 0, y is feasible.I If ωf (y) < 0, generate a feasibility cut ωf (y) ≥ 0.

Feasibility detection

ωf (y) = minw∈W,γ,τ ,µ,η

(F y+g)T γ+qT τ+sT µ+(W ∗)Tσ+(W+)

Tσ++(W−)

Tσ−

s.t. DT γ + TT µ ≥ 0,

RT τ + ST µ ≥ 0,

MT1 σ + MT

2 σ+ + MT

3 σ− + NT z ≤ X ,

γ, τ , µ, σ, σ+, σ− ∈ [0, 1]

Page 37: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Optimality Cuts

I Solve the master problem to get θ

I If θ > ω(y), generate an optimality cut θ ≤ ω(y)

ω(y) = minw∈W,γ,λ,τ,µ,η(F y + g)Tγ + (Ky)Tλ+ qT τ + (s + Ow)Tµ

s.t. DTγ + PTλ+ TTµ ≥ 0, JTλ = e,

RT τ + STµ− η ≥ c, Uη ≥ m,

γ, λ, τ, µ, η ≥ 0.

Page 38: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Algorithm Scheme

Page 39: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Computational Experiments

I ILOG CPLEX 12.1, Intel Quad Core 2.40GB, 8GB memoryI 118 Buses, 186 transmission lines, 24 time periodI The pattern of the wind power output is based on the

statistics from National Renewable Energy Laboratory(NREL).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Win

d P

ow

er O

utp

ut

(MW

)

Time Period (hour)

Forecasted

Minimum

Maximum

Page 40: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Effectiveness of Demand Response

I Without demand response (CD) vs with deterministic demandresponse (DR).

π System ULC Time(s) Cuts

2CD 12.518 320 11DR 12.239 579 10

4CD 12.624 413 15DR 12.368 713 11

6CD 12.722 893 14DR 12.455 1005 13

8CD 12.814 1126 14DR 12.553 1318 14

I Under the worst-case wind power output scenario, the casewith demand response has less unit load cost than the casewithout demand response given the same wind cardinalitybudget π.

Page 41: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Wind Power Output and Demand Response Uncertainties

I Both wind power output and demand response uncertainties.

π ε ULC S.W.(e+6) Consumer (e+6) Supplier(e+6)

20 12.239 7.03246 4.09943 2.933035 12.205 6.51834 4.10654 2.4118

10 12.002 6.01348 4.11373 1.89975

40 12.368 7.01773 4.08626 2.931475 12.339 6.50367 4.09272 2.41095

10 12.142 5.99897 4.10004 1.89893

60 12.445 7.00967 4.07826 2.931415 12.416 6.49478 4.08475 2.41003

10 12.221 5.99113 4.09229 1.89884

I π increases → ULC increases and both consumer surplus andsupplier surplus decrease.

I more demand response uncertainty → lower total socialwelfare.

Page 42: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Multiple Wind Farm System

I Distributed wind resources– wind farms at buses 10, 26, and32.

π System ULC Time(s) Cuts

1CD 12.9906 993 12DR 12.8021 1272 9

2CD 13.0588 1533 14DR 12.8335 2086 9

4CD 13.1336 2875 13DR 12.9045 3408 7

I With multiple wind resources, the case with demand responsestill has smaller unit load cost than the case without demandresponse given the same wind cardinality budget.

I The CPU time increases dramatically as the number of windfarms increases.

Page 43: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Conclusion

I The proposed multi-stage robust integer programmingapproach can accommodate both wind power and demandresponse uncertainties.

I Demand response can help accommodate wind power outputuncertainty by lowering the unit load cost.

Page 44: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Bibliography

Zhang, M. and Guan, Y.”Two-stage robust unit commitment problem”,Optimization Online, 2009.

Baringo, L. and Conejo, A.”Offering strategy via robust optimization”,IEEE Transactions on Power Systems, 2011.

Bertsimas, D. and Litvinov, E. and Sun, X. and Zhao, J. and Zheng, T.”Adaptive robust optimization for the security constrained unit commitmentproblem”,IEEE Transactions on Power Systems, 2013.

Bouffard, F. and Galiana, F.”Stochastic security for operations planning with significant wind powergeneration”,IEEE Transactions on Power Systems, 2008.

Tuohy, A. and Meibom, P. and Denny, E. and O’Malley, M.”Unit commitment for systems with significant wind penetration”,IEEE Transactions on Power Systems, 2009.

Wang, Q. and Guan, Y. and Wang, J.”A chance-constrained two-stage stochastic program for unit commitment withuncertain wind power output”,Power Systems on IEEE Transactions, 2012.

Zhao, L. and Zeng, B.

Page 45: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

”Robust unit commitment problem with demand response and wind energy”,Proceedings of IEEE PES, 2012.

Jiang, R. and Zhang, M. and Li, G. and Guan, Y.”Two-stage robust power grid optimization problem”,Optimization Online, 2010.

Kirschen, D. S.“Demand-side view of electricity markets,”IEEE Transactions on Power Systems, 2003.

Su, C. and Kirschen, D.“Quantifying the effect of demand response on electricity markets,”IEEE Transactions on Power Systems, 2009.

Federal Energy Regulatory Commission(FERC).“Wholesale Competition in Regions with Organized Electric Markets: FERCNotice of Proposed Rulemaking,” 2009.

Albadi, M. H. and El-Saadany, E. F.“Demand response in electricity markets: An overview,”Proceedings of IEEE PES, 2007.

Jiang, R. and Wang, J. and Guan, Y.“Robust Unit Commitment With Wind Power and Pumped Storage Hydro,”IEEE Transactions on Power Systems, 2012.

Wang, Q. and Wang, J. and Guan, Y.“Stochastic Unit Commitment with Uncertain Demand Response,”IEEE Transactions on Power Systems, 2012.

Page 46: Multi-Stage Robust Unit Commitment Considering Wind and ... - Guan.pdf · I Demand Response Program (DRP) encourages the demand side to voluntarily schedule the consumption based

Carpentier, P. and Gohen, G. and Culioli, J. C. and Renaud, A.Stochastic optimization of unit commitment: a new decomposition framework.IEEE Transactions on Power Systems, 1996.

Takriti, S. and Birge, J. R. and Long, E.A stochastic model for the unit commitment problem.Power Systems, IEEE Transactions on, 1996

Gollmer, R. and Nowak, M. P. and Romisch, W. and Schultz, R.Unit commitment in power generation—a basic model and some extensions.Annals of Operations Research, 2000.

Ruiz, P. A. and Philbrick, C. R. and Zak, E. and Cheung, K. W. and Sauer,P. W.Uncertainty management in the unit commitment problem.IEEE Transactions on Power Systems, 2009.

Sen, S. and Yu, L. and Genc, T.A stochastic programming approach to power portfolio optimization.Operations Research, 2006.

Takriti, S. and Birge, J. R. and Long, E.A stochastic model for the unit commitment problem.IEEE Transactions on Power Systems, 1996.