multinode cooperative communications with generalized combining schemes

33
Republic of Tunisia Ministry of High Education, Scientific Research and Technology University of Carthage Tunisia Polytechnic School Option: SIGNALS AND SYSTEMS (SISY) Graduation Project Presentation Multinode Cooperative Communications with Generalized Combining Schemes Carried out by : Amir HADJTAIEB Supervised by: Dr. Mohamed-Slim ALOUINI Dr. Hatem BOUJEMAA Dr. Ferkan YILMAZ Vis-` a-vis: Dr. Issam MABROUKI June 27, 2012

Upload: akrambedoui

Post on 28-Nov-2014

258 views

Category:

Education


0 download

DESCRIPTION

PFE de Amir HADJTAIEB à l'EPT

TRANSCRIPT

Page 1: Multinode Cooperative Communications with Generalized Combining Schemes

Republic of TunisiaMinistry of High Education, Scientific Research and Technology

University of Carthage

Tunisia Polytechnic School

Option:SIGNALS AND SYSTEMS (SISY)

Graduation Project Presentation

Multinode Cooperative Communicationswith Generalized Combining Schemes

Carried out by : Amir HADJTAIEB

Supervised by: Dr. Mohamed-Slim ALOUINIDr. Hatem BOUJEMAADr. Ferkan YILMAZ

Vis-a-vis: Dr. Issam MABROUKI

June 27, 2012

Page 2: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Introduction

Figure : Services evolution over time

Amir HADJTAIEB - Graduation Project Presentation 2 / 29

Page 3: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Outline

1 Multinode RelayingSystem model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

2 Incremental RelayingProtocol descriptionSymbol Error RateAverage number of time slots per burst

3 Joint Adaptive modulation and incremental RelayingProtocol descriptionSymbol Error Rate

4 Summary

Amir HADJTAIEB - Graduation Project Presentation 3 / 29

Page 4: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

Outline

1 Multinode RelayingSystem model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

2 Incremental RelayingProtocol descriptionSymbol Error RateAverage number of time slots per burst

3 Joint Adaptive modulation and incremental RelayingProtocol descriptionSymbol Error Rate

4 Summary

Amir HADJTAIEB - Graduation Project Presentation 4 / 29

Page 5: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

System Model

hS,R hR,D

hS,D

Source Destination

Relay

Figure : System model

Slow and frequency-flat fading channel with additive white Gaussiannoise

No inter relay interference is considered

hS,D, hS,R and hR,D are channel fading coefficients.

Amir HADJTAIEB - Graduation Project Presentation 5 / 29

Page 6: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

Protocol description

· Reception

…...

· Forwarding

…...S

R1

Rk

RN

D

Rk-1 Rk+1

…...…...S

R1

Rk

RN

D

Rk-1 Rk+1

Figure : Protocol description in phase k

Arbitrary N-relay wireless network

Combining scheme: Maximum Ratio Combining(MRC) or GeneralizedSelection Combining(GSC)

Cooperation strategy: selective decode and forward

Amir HADJTAIEB - Graduation Project Presentation 6 / 29

Page 7: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

General expression of SER

Simplifying assumption

Relay

. . . .

Relay 1 Relay 2 Relay3 Relay N

Network

state SNBx,N= 1 1 0 1

Forwards : 1

Remains idle: 0

Probability that the network is in a given state

Pr(SN = Bi,N ) = Pr(SN [1] = Bi,N [1]

)× Pr

(SN [2] = Bi,N [2]

∣∣∣ SN [1] = Bi,N [1])

× . . .

× Pr(SN [N ] = Bi,N [N ]

∣∣∣ SN [N − 1] = Bi,N [N − 1], ..., SN [1] = Bi,N [1])

Amir HADJTAIEB - Graduation Project Presentation 7 / 29

Page 8: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

General expression of SER

Simplifying assumption

Relay

. . . .

Relay 1 Relay 2 Relay3 Relay N

Network

state SNBx,N= 1 1 0 1

Forwards : 1

Remains idle: 0

Probability that the network is in a given state

Pr(SN = Bi,N ) = Pr(SN [1] = Bi,N [1]

)× Pr

(SN [2] = Bi,N [2]

∣∣∣ SN [1] = Bi,N [1])

× . . .

× Pr(SN [N ] = Bi,N [N ]

∣∣∣ SN [N − 1] = Bi,N [N − 1], ..., SN [1] = Bi,N [1])

Amir HADJTAIEB - Graduation Project Presentation 7 / 29

Page 9: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

General expression of SER

Probability that the kth relay is in a given state

Pk,i , Pr(SN [k] = Bi,N [k]∣∣ SN [k − 1] = Bi,N [k − 1], ..., SN [1] = Bi,N [1])

=

{Ψ(SNRRk ), if Bi,N [k]=0

1 − Ψ(SNRRk ), if Bi,N [k]=1

where ΨPSK(γ) ,1

π

∫ (M−1)π/M

0

exp

(− bPSKγ

sin2(θ)

)dθ

Instantaneous SER

Pe/CSI =

2N−1∑i=0

Pr(e∣∣ SN = Bi,N )Pr(SN = Bi,N )

Pr(e∣∣ SN = Bi,N ) = Ψ(SNRd)

Pr(SN = Bi,N ) =

N∏k=1

Pk,i

Amir HADJTAIEB - Graduation Project Presentation 8 / 29

Page 10: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

General expression of SER

Probability that the kth relay is in a given state

Pk,i , Pr(SN [k] = Bi,N [k]∣∣ SN [k − 1] = Bi,N [k − 1], ..., SN [1] = Bi,N [1])

=

{Ψ(SNRRk ), if Bi,N [k]=0

1 − Ψ(SNRRk ), if Bi,N [k]=1

where ΨPSK(γ) ,1

π

∫ (M−1)π/M

0

exp

(− bPSKγ

sin2(θ)

)dθ

Instantaneous SER

Pe/CSI =

2N−1∑i=0

Pr(e∣∣ SN = Bi,N )Pr(SN = Bi,N )

Pr(e∣∣ SN = Bi,N ) = Ψ(SNRd)

Pr(SN = Bi,N ) =N∏k=1

Pk,i

Amir HADJTAIEB - Graduation Project Presentation 8 / 29

Page 11: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

General expression of SER

Average SER

PSER =

2N−1∑i=0

ECSI[

Ψ(SNRd)] N∏k=1

ECSI[Pk,i

]where ECSI is expectation operator

Amir HADJTAIEB - Graduation Project Presentation 9 / 29

Page 12: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

Results for Rayleigh fading channel

0 5 10 15 20 2510

−10

10−8

10−6

10−4

10−2

100

P/N0

BE

R

N = 3

N = 2

N = 1

N = 0

Figure : BER versus SNR for different number of relays

Amir HADJTAIEB - Graduation Project Presentation 10 / 29

Page 13: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

SER expression

SER of one relay

Ps(E) =L∑

i1,i2,...,iL=1

i1 6=i2 6=,... 6=iL

1

π

∫ (M−1π/M)

0

L∏l=1

γil−1∑l

k=1 γik−1

×

(sin2 θ

gMPSKmin(l, Lc)(∑l

k=1 γik−1)−1

+ sin2 θ

)dθ

SER at destination

PGSC(E) =

2N−1∑i=0

PD(E∣∣ SN = Bi,N )

N∏k=1

Pk,i

where Pk,i =

{PRk (E), if Bi,N [k]=0

1 − PRk (E), if Bi,N [k]=1

Amir HADJTAIEB - Graduation Project Presentation 11 / 29

Page 14: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

SER expression

SER of one relay

Ps(E) =L∑

i1,i2,...,iL=1

i1 6=i2 6=,... 6=iL

1

π

∫ (M−1π/M)

0

L∏l=1

γil−1∑l

k=1 γik−1

×

(sin2 θ

gMPSKmin(l, Lc)(∑l

k=1 γik−1)−1

+ sin2 θ

)dθ

SER at destination

PGSC(E) =

2N−1∑i=0

PD(E∣∣ SN = Bi,N )

N∏k=1

Pk,i

where Pk,i =

{PRk (E), if Bi,N [k]=0

1 − PRk (E), if Bi,N [k]=1

Amir HADJTAIEB - Graduation Project Presentation 11 / 29

Page 15: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

System model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

Results for Rayleigh fading channel

0 5 10 15 20 2510

−12

10−10

10−8

10−6

10−4

10−2

100

Average SNR per Bit of first path[dB]

BE

R

Lc = 1

Lc = 2

Lc = 3

Figure : BER versus SNR of first path for different values of Lc, L = 3 and δ =0.2 γl = γ1 exp(−δ(l − 1)), l = 1,..., L, where δ is the power decay factor.

Amir HADJTAIEB - Graduation Project Presentation 12 / 29

Page 16: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Outline

1 Multinode RelayingSystem model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

2 Incremental RelayingProtocol descriptionSymbol Error RateAverage number of time slots per burst

3 Joint Adaptive modulation and incremental RelayingProtocol descriptionSymbol Error Rate

4 Summary

Amir HADJTAIEB - Graduation Project Presentation 13 / 29

Page 17: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Protocol description

Phase 0

…...…...

S

R1

Rk

RN

D

Rk-1 Rk+1

Figure : Protocol description

Amir HADJTAIEB - Graduation Project Presentation 14 / 29

Page 18: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Protocol description

After k phases

…...…...

S

R1

Rk

RN

D

Rk-1 Rk+1

Sent in phase 0

Sent in phase 1Sent in phase (k-1)

Figure : Protocol description

Amir HADJTAIEB - Graduation Project Presentation 15 / 29

Page 19: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Protocol description

if γSD + ∑ k-1 γRiD < ζ

…...…...

S

R1

Rk

RN

D

Rk-1 Rk+1

Feedback

Figure : Protocol description

Amir HADJTAIEB - Graduation Project Presentation 16 / 29

Page 20: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Protocol description

Phase k

…...…...

S

R1

Rk

RN

D

Rk-1 Rk+1

Figure : Protocol description

Amir HADJTAIEB - Graduation Project Presentation 17 / 29

Page 21: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Protocol description

phase N

…...…...

S

R1

Rk

RN

D

Rk-1 Rk+1

Sent in phase 0

Sent in phase 1Sent in phase (k-1) Sent in phase (k+1)

Sent in phase N

Sent in phase k

Figure : Protocol description

Amir HADJTAIEB - Graduation Project Presentation 18 / 29

Page 22: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Instantaneous SER

Instantaneous SER

Pe/CSI =

N∑l=0

2l−1∑i=0

Pr(e∣∣ Sl = Bi,l, phase = l) × Pr(Sl = Bi,l

∣∣ phase = l)

× Pr(phase = l)

Pr(e∣∣ Sl = Bi,l, phase = l) = Ψ(SNRd)

Pr(Sl = Bi,l∣∣ phase = l) =

N∏k=1

Pk,i

Pr(phase = l) =

Pr(γSD > ξ), if phase=0

Pr(γl > ξ , γl−1 < ξ), if phase=1,...,(N-1)

Pr(γN−1 < ξ), if phase=N

Amir HADJTAIEB - Graduation Project Presentation 19 / 29

Page 23: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Instantaneous SER

Instantaneous SER

Pe/CSI =

N∑l=0

2l−1∑i=0

Pr(e∣∣ Sl = Bi,l, phase = l) × Pr(Sl = Bi,l

∣∣ phase = l)

× Pr(phase = l)

Pr(e∣∣ Sl = Bi,l, phase = l) = Ψ(SNRd)

Pr(Sl = Bi,l∣∣ phase = l) =

N∏k=1

Pk,i

Pr(phase = l) =

Pr(γSD > ξ), if phase=0

Pr(γl > ξ , γl−1 < ξ), if phase=1,...,(N-1)

Pr(γN−1 < ξ), if phase=N

Amir HADJTAIEB - Graduation Project Presentation 19 / 29

Page 24: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Average SER

PSER =Pr(γSD > ξ)E1(Ψ(SNRd))

+

N−1∑l=1

2l−1∑i=0

Pr(γl > ξ , γl−1 < ξ)k∏j=1

E∗(P lj,i)El(Ψ(SNRd))

+

2N−1∑i=0

Pr(γN−1 < ξ)

N∏j=1

E∗(PNj,i)EN (Ψ(SNRd))

where : E0(Ψ(γ)) =

∫ ∞0

Ψ(γ)fγSD (γ∣∣ γSD > ξ)dγ

El(Ψ(γ)) =

∫ ∞ξ

Ψ(γ)fγl(γ∣∣ γl−1 < ξ)dγ , 1 ≤ l ≤ N − 1

EN (Ψ(γ)) =

∫ ∞0

Ψ(γ)fγN (γ∣∣ γN−1 < ξ)dγ

E∗(P lk,j) =

∫ ∞0

P lk,jfγk−1(γ)dγ

Amir HADJTAIEB - Graduation Project Presentation 20 / 29

Page 25: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Results for Rayleigh fading channel

2 4 6 8 10 12 14 1610

−5

10−4

10−3

10−2

10−1

100

SNR[dB]

BE

R

exact BERsimulated BER

ξ = 6 dB

ξ = ∞

ξ = 4.7 dB

ξ = 3dB

ξ = −∞

Figure : BER versus SNR in incremental relaying for different threshold values.The number of relays equals to 3 and the modulation scheme is BPSK

Amir HADJTAIEB - Graduation Project Presentation 21 / 29

Page 26: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

General expression

General expression

Np =

N+1∑l=1

2l−1−1∑i=0

l P r[Np = l∣∣ Sl−1 = Bi,l−1]

l−1∏k=1

E∗(P lk,i)

where : P lk,i = Pr(Sl−1 = Bi,l−1

∣∣ phase = l)

Pr[Np = 1] = Pr(γSD > ξ)

Pr[Np = l∣∣ Sl−1 = Bi,l−1] = Pr(γl−1 > ξ, γl−2 < ξ) , 2 ≤ l ≤ N

Pr[Np = N + 1∣∣ SN = Bi,N ] = Pr(γN−1 < ξ)

Amir HADJTAIEB - Graduation Project Presentation 22 / 29

Page 27: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Results for Rayleigh fading channel

2 4 6 8 10 12 14 161

1.5

2

2.5

3

3.5

4

SNR[dB]

Ave

rage

num

ber

of ti

me

slot

s

exactsimulation

ξ = 3 dB

ξ = 6 dB

ξ = 10 dB

Figure : Average number of time slots per burst versus SNR for different thresholdvalues. The number of relays equals to 3 and the modulation scheme is BPSK

Amir HADJTAIEB - Graduation Project Presentation 23 / 29

Page 28: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error RateAverage number of time slots per burst

Results for Rayleigh fading channel

0 1 2 3 4 5 6 7 8 9 1010

−3

10−2

10−1

BE

R

0 1 2 3 4 5 6 7 8 9 101

1.5

2

2.5

3

3.5

ξ[dB]

Ave

rage

num

ber

of ti

me

slot

s

Figure : BER and average number of time slots per burst versus ξ for an SNRfixed to 10 dB. The number of relays equals to 3 and the modulation scheme isBPSK

Amir HADJTAIEB - Graduation Project Presentation 24 / 29

Page 29: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error Rate

Outline

1 Multinode RelayingSystem model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

2 Incremental RelayingProtocol descriptionSymbol Error RateAverage number of time slots per burst

3 Joint Adaptive modulation and incremental RelayingProtocol descriptionSymbol Error Rate

4 Summary

Amir HADJTAIEB - Graduation Project Presentation 25 / 29

Page 30: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error Rate

Protocol description

Highest modulation (64-QAM)

ζ1Lower modulation

(16-QAM)

ζ2

Lowest modulation (4-QAM)

ζ3

Figure : Protocol description

Amir HADJTAIEB - Graduation Project Presentation 26 / 29

Page 31: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Protocol descriptionSymbol Error Rate

Results for Rayleigh fading channel

0 5 10 15 20 2510

−4

10−3

10−2

10−1

100

SNR[dB]

BE

R

Figure : BER of incremental relaying(blue) for ξ = 25dB and joint adaptivemodulation and incremental relaying(red) for ξ = [25dB 4dB 1.6dB] versus SNR.

Amir HADJTAIEB - Graduation Project Presentation 27 / 29

Page 32: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Outline

1 Multinode RelayingSystem model and protocol descriptionSymbol Error Rate: MRC caseSymbol Error Rate: GSC case

2 Incremental RelayingProtocol descriptionSymbol Error RateAverage number of time slots per burst

3 Joint Adaptive modulation and incremental RelayingProtocol descriptionSymbol Error Rate

4 Summary

Amir HADJTAIEB - Graduation Project Presentation 28 / 29

Page 33: Multinode Cooperative Communications with Generalized Combining Schemes

Multinode RelayingIncremental Relaying

Joint Adaptive modulation and incremental RelayingSummary

Summary

Summary

Study of different relaying techniques with different strategies

Performance analysis of multinode incremental relaying

Effect of adaptive modulation on performance of multinodeincremental relaying

Extensions

Use of other combining schemes in incremental relaying protocol

Performance analysis of amplify and forward incremental relayingprotocol.

Amir HADJTAIEB - Graduation Project Presentation 29 / 29