multispectrum fit of non-voigt lineshape in the h2o v2 bandmultispectrum fit of non-voigt lineshape...

1
Multispectrum fit of non-Voigt lineshape in the H O v band 2 2 a a a b b c c J. LOOS , M. BIRK , G. WAGNER , F. HASE , D. DUBRAVICA , M. PALM , A. SADEGHI Abstract A new fitting tool for analysis of multiple molecular absorption spectra utilizing a microwindow-based line-by-line- approach has been developed. Its capabilities include the choice of numerous different line shape models, from a simple Voigt to more sophisticated models like a speed-dependent Galatry including line-mixing. A comfortable manual mode as well as a fully automatic mode have been implemented including various quality assessment procedures like the monitoring of correlation coefficients or the supply of useful information e.g. needed for file cuts (single spectrum residuals) [1]. -1 As a first application the new tool is used to re-analyze water vapor absorption spectra in the 1250-1750 cm range [1,2]. The measurements include pure water as well as water/air-mixture measurements and cover a wide range of column densities. The total air pressure and partial pressure ranges were 50-1000 mb and 0.001-5 mb, respectively. Whereas the original analysis was based on single spectrum fits applying the Voigt procedure, in the present multispectrum fit the speed-dependent Voigt lineshape was used. The advantages of a multispectral analyis approach as well as the need for consideration of narrowing effects is illustrated by the presentation of differences in residuals as well as resulting line parameters for selected transitions. As indicated in [3] opaque as well as non opaque lines could be fitted with the speed-dependent Voigt while the pure Voigt yields to narrow opaque lines. New multispectrum fitting tool The software - written in IDL - has been developed for fitting of multiple absorption spectra recorded with a Fourier- transform spectrometer. Great effort was taken to make it as generic and comfortable as possible. Although it is tailored to the needs of high resolution FT-spectroscopy, it might be easily customized to be applied to spectra recorded with other instrument types. The results of the tool were validated vs. a single-spectrum IDL DLR fitting tool [4] and FITMAS [5]. Line models Ÿ Voigt Ÿ Speed-dependent Voigt [6] Ÿ Speed-dependent Galatry + Rosenkranz line mixing (based on PROFFWD-routine [7,8]) Spectrum/microwindow-specific fitting capabilities Ÿ polynomial baseline Ÿ channelling Ÿ wavenumber-calibration factor Ÿ offset Ÿ ILS (delta, sincbox, modulation + phase as a function of path difference as provided by LINEFIT [9]) Multispectrum fitting capabilities Ÿ line parameters (position, intensity, self-/foreign-broadening + T-dependency, self-/foreign-shift + T-dependency, self-/foreign-narrowing parameters, line-mixing Y-paramerters) Ÿ entrance aperture Automatic mode Ÿ automatic microwindow-, spectra- and line-fit parameter selection Ÿ automatic fit Ÿ automatic iteration of fit parameters (e.g. parameter error above threshhold) Quality assessment 2 c Ÿ goodness-of-fit (reduced , residua analysis planned) Ÿ identification/prevention of parameter correlations i,j = fitted parameter number Ÿ single-spectrum-fits with line-specific parameters (position, intensity, width, narrowing) Ÿ differences of calculated parameters from multispectrum fit results Ÿ measurement-specific differences can be investigated (as a function of position, intensity, ...) -> file cut [1], e.g. Fig. 1 Ÿ helps to identify systematic spectrum-specific errors Ÿ calculation of contribution matrix B percentage information contribution of single spectrum to parameter W = weight matrix, s = spectrum number, p = parameter number, k = data point number Ÿ redundancies virtual number of statistically independent data points with equal information content s = spectrum number, p = parameter number References [1] M. Birk, G. Wagner, Journal of Quantitative Spectroscopy and Radiative Transfer 113, 889 (2012) [2] L. H. Coudert et. al., Journal of Molecular Spectroscopy 251, 339 (2008) [3] G. Wagner, M. Birk, S. A. Clough, „Undiscovered errors of Voigt profile beyond tiny w-shaped residuals”, International Symposium on Molecular Spectroscopy – 68th Meeting, Columbus (OH), June 17th, 2013 [4] G. Wagner, M. Birk, private communication, 06/2013 [5] G. Wagner, M. Birk, F. Schreier, Journal of Geophysical Research 107, ACH 10-1 - 10-18 (2002) [6] C. D. Boone, K. A. Walker, P. F. Bernath, Journal of Quantitative Spectroscopy and Radiative Transfer 105, 525 (2007) [7] R. Ciurylo, J. Szudy, Journal of Quantitative Spectroscopy and Radiative Transfer 57, 411 (1997) [8] M. Schneider [9] [10] J. Loos, M. Birk, G. Wagner, „Novel Design of MCT-Detector Optics with Enhanced Perfomance“, HRMS 2011, Dijon et. al., Journal of Quantitative Spectroscopy and Radiative Transfer 112, 465 (2011) F. Hase, T. Blumenstock, C. Paton-Walsh, Applied Optics 38, 3417 (1999) Experiment Experimental conditions Ÿ Mar ´03 - Jun ´05 Ÿ Bruker IFS 120 HR Ÿ improved MCT-detector [10] Ÿ p = 50 - 1000 mb total Ÿ p = 0.001 - 5 mb H2O Ÿ l = 16 - 8500 cm Ÿ T = 240 -316 K Setup Ÿ 26 cm double-jacket short cell Ÿ double-jacket White-type multireflection cell with absorption path up to 85 m Ÿ 800 l vessel for H O/air-mixture preparation 2 Ÿ Pt100 temperature sensors, mks baratron pressure gauges, mks constant pressure valve Ÿ short cell: sealed off pure H O @ room temperature 2 Ÿ multireflection cell: pure H O flow @ room temperature 2 Ÿ multireflection cell: pressure broadened H O flow @ 240 - 316 K 2 A more detailed description can be found in [1]. Analysis procedure and results As a first application previously done measurements are re-analyzed with special focus on non-Voigt effects. The following analysis is based on a speed-dependent Voigt lineshape and does not account for temperature dependencies. A complete analysis is to be done in the near future. 1. Generation of a linestrength reference Ÿ multispectrum fit of 9 room temperature pure water spectra Ÿ Voigt-fit of position, linestrength, width parameter 2. Fit of column density and temperature for water/air-mixture room-temperature spectra Ÿ single spectrum fit of mixture-spectra Ÿ Voigt fit of position, effective linestrength, width Ÿ fit of number density and temperature -> effective linestrengths match linestrength reference on average 3. Fit of all room-temperature spectra Ÿ multispectrum fit of 9 pure an 16 mixture spectra (corrected column density and temperature) Ÿ speed-dependent Voigt (SDV) lineshape for lines with a wide range of opacities - including opaque lines Results Ÿ opaque and non-opaque lines fitted simultaneously Ÿ case 1: Voigt, case 2: speed-dependent Voigt (SDV) Ÿ Voigt shows W-shaped residuals for non-opaque lines and line wing residuals for opaque lines Ÿ speed-dependent Voigt improves residuals significantly Ÿ fitted broadening parameters systematically greater when fitting with SDV in comparison to a Voigt fit of lines with opacities < 4 [1] -> opaque lines are modeled too narrow with Voigt [3] Ÿ influence of narrowing is greater when the broadening parameter is lower, i.e. when the J-quantum number is higher Conclusion Ÿ a new multispectrum tool has been developed and testet against two independent tools Ÿ innovations like an automatic mode and quality control mechanisms have been implemented Ÿ widely used line profile models are implemented Ÿ sophisticated ils-modelling included Ÿ as a first test water absorption spectra were re-analyzed Ÿ Voigt lineshape not sufficient Ÿ opaque and non-opaque lines have to be fitted simultaneously to prevent too narrow broadening parameters Ÿ the narrowing parameter shows a clear trend with the broadening parameter Ÿ complete analysis (T-dependencies, shifts, etc. ) to be done 1 1 1 ) ( ) ( ) ( - - - = jj T ii T ij T ij WJ J WJ J WJ J C max ! C C ij £ kp T T k s k kp T T sp W J WJ J W J WJ J B ) ) (( max ) ) (( 1 1 1 - Î - å = å = s sp p B R 1 0,0 0,2 0,4 0,6 0,8 1,0 transmittance pure 1.2e21 m -2 pure 6.1e21 m -2 pure 1.1e23 m -2 pure 5.2e23 m -2 pure 4.3e23 m -2 0,0 0,2 0,4 0,6 0,8 1,0 SDV SDV SDV SDV Voigt Voigt transmittance SDV pure 2.1e24 m -2 pure 3.0e22 m -2 pure 2.5e24 m -2 pure 1.0e25 m -2 1000.6 mb 2.2e22 m -2 0,0 0,2 0,4 0,6 0,8 1,0 transmittance 501.8 mb 1.1e22 m -2 400.3 mb 1.3e24 m -2 399.9 mb 2.6e24 m -2 199.4 mb 1.1e22 m -2 199.4 mb 4.6e22 m -2 0,0 0,2 0,4 0,6 0,8 1,0 transmittance residual water 200.7 mb 1.0e23 m -2 200.7 mb 3.9e23 m -2 200.4 mb 1.3e24 m -2 199.6 mb 2.6e24 m -2 100.0 mb 1.3e24 m -2 0,0 0,2 0,4 0,6 0,8 1,0 transmittance 100.6 mb 2.6e24 m -2 50.4 mb 3.9e23 m -2 50.4 mb 2.1e24 m -2 pressure- or column density error 50.5 mb 1.3e24 m -2 49.8 mb 2.5e24 m -2 1287,3 1287,4 1287,5 wavenumber [cm -1 ] 1287,3 1287,4 1287,5 wavenumber [cm -1 ] 1287,3 1287,4 1287,5 wavenumber [cm -1 ] 1287,3 1287,4 1287,5 wavenumber [cm -1 ] 1287,3 1287,4 1287,5 Voigt Voigt wavenumber [cm -1 ] Voigt 0,02 0,04 0,06 0,08 0,10 0,08 0,12 0,16 0,20 0,24 guide to the eye (3rd order polynomial) g 2,SDV / g SDV g SDV [cm -1 atm -1 ] å = s sp sp sp B B B 1 1 a Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung, [email protected] b Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung c Universität Bremen, Institut für Umweltphysik (IUP) Fig. 1: File cut example of measurement with number density error Fig. 2: Experimental setup for water/air-mixture flow measurements Fig. 3: Comparison between Voigt and SDV fitting residuals (residua are scaled for easier comparison) Fig. 4: Relative differences of broadening parameters from SDV-analysis and HITRAN 2012 Fig. 5: Comparison of narrowing and bradening parameters Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center Acknowledgement: This work has been performed within the frameworf of DFG project „Improving spectroscopic data of H2O and CH4 for application on remote atmospheric measurements in the infrared“ under contract number BI 834/5-1. 0,02 0,04 0,06 0,08 0,10 0 2 4 6 8 guide to the eye (3rd order polynomial) (g SDV - g Hit12 )/ g Hit12 [%] g Hit12 [cm -1 atm -1 ] 1E-22 1E-21 1E-20 1E-19 1E-18 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 (S - S ref )/S ref S ref [cm -1 /(molecule cm -2 )] offset due to n-error

Upload: others

Post on 07-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Multispectrum fit of non-Voigt lineshape in the H O v band2 2a a a b b c cJ. LOOS , M. BIRK , G. WAGNER , F. HASE , D. DUBRAVICA , M. PALM , A. SADEGHI

Abstract

A new fitting tool for analysis of multiple molecular absorption spectra utilizing a microwindow-based line-by-line-approach has been developed. Its capabilities include the choice of numerous different line shape models, from a simple Voigt to more sophisticated models like a speed-dependent Galatry including line-mixing. A comfortable manual mode as well as a fully automatic mode have been implemented including various quality assessment procedures like the monitoring of correlation coefficients or the supply of useful information e.g. needed for file cuts (single spectrum residuals) [1].

-1As a first application the new tool is used to re-analyze water vapor absorption spectra in the 1250-1750 cm range [1,2]. The measurements include pure water as well as water/air-mixture measurements and cover a wide range of column densities. The total air pressure and partial pressure ranges were 50-1000 mb and 0.001-5 mb, respectively.

Whereas the original analysis was based on single spectrum fits applying the Voigt procedure, in the present multispectrum fit the speed-dependent Voigt lineshape was used. The advantages of a multispectral analyis approach as well as the need for consideration of narrowing effects is illustrated by the presentation of differences in residuals as well as resulting line parameters for selected transitions. As indicated in [3] opaque as well as non opaque lines could be fitted with the speed-dependent Voigt while the pure Voigt yields to narrow opaque lines.

New multispectrum fitting tool

The software - written in IDL - has been developed for fitting of multiple absorption spectra recorded with a Fourier-transform spectrometer. Great effort was taken to make it as generic and comfortable as possible. Although it is tailored to the needs of high resolution FT-spectroscopy, it might be easily customized to be applied to spectra recorded with other instrument types. The results of the tool were validated vs. a single-spectrum IDL DLR fitting tool [4] and FITMAS [5].

Line modelsŸVoigtŸSpeed-dependent Voigt [6]ŸSpeed-dependent Galatry + Rosenkranz line mixing (based on PROFFWD-routine [7,8])

Spectrum/microwindow-specific fitting capabilitiesŸpolynomial baselineŸchannellingŸwavenumber-calibration factorŸoffsetŸ ILS (delta, sincbox, modulation + phase as a function of path difference as provided by LINEFIT [9])

Multispectrum fitting capabilitiesŸ line parameters (position, intensity, self-/foreign-broadening + T-dependency, self-/foreign-shift + T-dependency, self-/foreign-narrowing parameters, line-mixing Y-paramerters)Ÿentrance aperture

Automatic modeŸautomatic microwindow-, spectra- and line-fit parameter selectionŸautomatic fit Ÿautomatic iteration of fit parameters (e.g. parameter error above threshhold)

Quality assessment2cŸgoodness-of-fit (reduced , residua analysis planned)

Ÿ identification/prevention of parameter correlations

i,j = fitted parameter number

Ÿ single-spectrum-fits with line-specific parameters (position, intensity, width, narrowing)Ÿdifferences of calculated parameters from multispectrum fit resultsŸmeasurement-specific differences can be investigated (as a function of position, intensity, ...) -> file cut [1], e.g. Fig. 1 Ÿhelps to identify systematic spectrum-specific errorsŸcalculation of contribution matrix B percentage information contribution of single spectrum to parameter

W = weight matrix, s = spectrum number,p = parameter number, k = data point number

Ÿ redundancies virtual number of statistically independent data points with equal information content

s = spectrum number, p = parameter number

References

[1] M. Birk, G. Wagner, Journal of Quantitative Spectroscopy and Radiative Transfer 113, 889 (2012)[2] L. H. Coudert et. al., Journal of Molecular Spectroscopy 251, 339 (2008)[3] G. Wagner, M. Birk, S. A. Clough, „Undiscovered errors of Voigt profile beyond tiny w-shaped residuals”, International Symposium on Molecular Spectroscopy – 68th Meeting, Columbus (OH), June 17th, 2013[4] G. Wagner, M. Birk, private communication, 06/2013[5] G. Wagner, M. Birk, F. Schreier, Journal of Geophysical Research 107, ACH 10-1 - 10-18 (2002)[6] C. D. Boone, K. A. Walker, P. F. Bernath, Journal of Quantitative Spectroscopy and Radiative Transfer 105, 525 (2007)[7] R. Ciurylo, J. Szudy, Journal of Quantitative Spectroscopy and Radiative Transfer 57, 411 (1997)[8] M. Schneider [9] [10] J. Loos, M. Birk, G. Wagner, „Novel Design of MCT-Detector Optics with Enhanced Perfomance“, HRMS 2011, Dijon

et. al., Journal of Quantitative Spectroscopy and Radiative Transfer 112, 465 (2011)F. Hase, T. Blumenstock, C. Paton-Walsh, Applied Optics 38, 3417 (1999)

Experiment

Experimental conditionsŸMar ´03 - Jun ´05ŸBruker IFS 120 HRŸ improved MCT-detector [10]Ÿp = 50 - 1000 mbtotal

Ÿp = 0.001 - 5 mbH2O

Ÿ l = 16 - 8500 cmŸT = 240 -316 K

SetupŸ26 cm double-jacket short cellŸdouble-jacket White-type multireflection cell with absorption path up to 85 mŸ800 l vessel for H O/air-mixture preparation2

ŸPt100 temperature sensors, mks baratron pressure gauges, mks constant pressure valveŸ short cell: sealed off pure H O @ room temperature2

Ÿmultireflection cell: pure H O flow @ room temperature2

Ÿmultireflection cell: pressure broadened H O flow @ 240 - 316 K2

A more detailed description can be found in [1].

Analysis procedure and results

As a first application previously done measurements are re-analyzed with special focus on non-Voigt effects. The following analysis is based on a speed-dependent Voigt lineshape and does not account for temperature dependencies. A complete analysis is to be done in the near future.

1. Generation of a linestrength referenceŸmultispectrum fit of 9 room temperature pure water spectraŸVoigt-fit of position, linestrength, width parameter

2. Fit of column density and temperature for water/air-mixture room-temperature spectraŸ single spectrum fit of mixture-spectraŸVoigt fit of position, effective linestrength, widthŸ fit of number density and temperature -> effective linestrengths match linestrength reference on average

3. Fit of all room-temperature spectraŸmultispectrum fit of 9 pure an 16 mixture spectra (corrected column density and temperature)Ÿ speed-dependent Voigt (SDV) lineshape for lines with a wide range of opacities - including opaque lines

ResultsŸopaque and non-opaque lines fitted simultaneously Ÿcase 1: Voigt, case 2: speed-dependent Voigt (SDV)ŸVoigt shows W-shaped residuals for non-opaque lines and line wing residuals for opaque linesŸ speed-dependent Voigt improves residuals significantly

Ÿ fitted broadening parameters systematically greater when fitting with SDV in comparison to a Voigt fit of lines with opacities < 4 [1] -> opaque lines are modeled too narrow with Voigt [3]Ÿ influence of narrowing is greater when the broadening parameter is lower, i.e. when the J-quantum number is higher

Conclusion

Ÿa new multispectrum tool has been developed and testet against two independent toolsŸ innovations like an automatic mode and quality control mechanisms have been implementedŸwidely used line profile models are implemented Ÿ sophisticated ils-modelling includedŸas a first test water absorption spectra were re-analyzedŸVoigt lineshape not sufficientŸopaque and non-opaque lines have to be fitted simultaneously to prevent too narrow broadening parametersŸ the narrowing parameter shows a clear trend with the broadening parameter Ÿcomplete analysis (T-dependencies, shifts, etc. ) to be done

11

1

)()(

)(

--

-

=jj

Tii

T

ijT

ijWJJWJJ

WJJC

max

!

CC ij £

kpTT

k

skkp

TT

spWJWJJ

WJWJJ

B))((max

))((

1

1

1

-

Î

-å=

å=s

spp BR 1

0,0

0,2

0,4

0,6

0,8

1,0

tra

nsm

itta

nce

pure

1.2e21 m-2

pure

6.1e21 m-2

pure

1.1e23 m-2

pure

5.2e23 m-2

pure

4.3e23 m-2

0,0

0,2

0,4

0,6

0,8

1,0

SDV

SDV

SDV

SDV

Voigt

Voigt

tra

nsm

itta

nce

SDV

pure

2.1e24 m-2

pure

3.0e22 m-2

pure

2.5e24 m-2

pure

1.0e25 m-2

1000.6 mb

2.2e22 m-2

0,0

0,2

0,4

0,6

0,8

1,0

tra

nsm

itta

nce

501.8 mb

1.1e22 m-2

400.3 mb

1.3e24 m-2

399.9 mb

2.6e24 m-2

199.4 mb

1.1e22 m-2

199.4 mb

4.6e22 m-2

0,0

0,2

0,4

0,6

0,8

1,0

tra

nsm

itta

nce

residual water 200.7 mb

1.0e23 m-2

200.7 mb

3.9e23 m-2

200.4 mb

1.3e24 m-2

199.6 mb

2.6e24 m-2

100.0 mb

1.3e24 m-2

0,0

0,2

0,4

0,6

0,8

1,0

tra

nsm

itta

nce

100.6 mb

2.6e24 m-2

50.4 mb

3.9e23 m-2

50.4 mb

2.1e24 m-2

pressure- orcolumn density error 50.5 mb

1.3e24 m-2

49.8 mb

2.5e24 m-2

1287,3 1287,4 1287,5

wavenumber [cm-1]

1287,3 1287,4 1287,5

wavenumber [cm-1]

1287,3 1287,4 1287,5

wavenumber [cm-1]

1287,3 1287,4 1287,5

wavenumber [cm-1]

1287,3 1287,4 1287,5

Voigt

Voigt

wavenumber [cm-1]

Voigt

0,02 0,04 0,06 0,08 0,10

0,08

0,12

0,16

0,20

0,24 guide to the eye (3rd order polynomial)

g 2,S

DV

/g S

DV

gSDV

[cm-1 atm

-1]

å=

ssp

sp

spB

BB

1

1

a Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung, [email protected] Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschungc Universität Bremen, Institut für Umweltphysik (IUP)

Fig. 1: File cut example of measurement with number density error

Fig. 2: Experimental setup for water/air-mixture flow measurements

Fig. 3: Comparison between Voigt and SDV fitting residuals (residua are scaled for easier comparison)

Fig. 4: Relative differences of broadening parameters from SDV-analysis and HITRAN 2012

Fig. 5: Comparison of narrowing and bradening parameters

Deutsches Zentrumfür Luft- und RaumfahrtGerman Aerospace Center

Acknowledgement: This work has been performed within the frameworf of DFG project „Improving spectroscopic data of H2O and CH4 for application on remote atmospheric measurements in the infrared“ under contract number BI 834/5-1.

0,02 0,04 0,06 0,08 0,100

2

4

6

8 guide to the eye (3rd order polynomial)

(gS

DV-g H

it12)

/g H

it12

[%]

gHit12

[cm-1 atm

-1]

1E-22 1E-21 1E-20 1E-19 1E-18-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

(S-

Sre

f)/S

ref

Sref

[cm-1/(molecule cm

-2)]

offset due to n-error