musculoskeletal biomechanics

Upload: wayo-asakura

Post on 10-Apr-2018

234 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/8/2019 Musculoskeletal Biomechanics

    1/120

  • 8/8/2019 Musculoskeletal Biomechanics

    2/120

    KNEE BIOMECHANICS

    Andrew Crosby

    The Musculoskeletal Sy

    stemThe Musculoskeletal System

  • 8/8/2019 Musculoskeletal Biomechanics

    3/120

    11. Anatomy:. Anatomy:The science or study of bodyThe science or study of body

    structurestructure

    22. Physiology:. Physiology:The study of functionThe study of function

    33. Functional Human Anatomy. Functional Human Anatomy

    UNDERSTANDING THEUNDERSTANDING THE

    STRUCTURESTRUCTURE

    AS IT RELATES TO FUNCTIONAS IT RELATES TO FUNCTION

  • 8/8/2019 Musculoskeletal Biomechanics

    4/120

    Origin

    Insertion

    Musculoskeletal BiomechanicsMusculoskeletal Biomechanics

    Modeling of the MSK systemwith the objective of identifyingforces exerted/acting on the

    Bones, Joints, Muscles andother soft tissues;

    Application to Trauma,

    Prosthetics and OrthopedicImplant Design

  • 8/8/2019 Musculoskeletal Biomechanics

    5/120

    The Skeletal SystemThe Skeletal System

    The human skeleton isThe human skeleton is

    composed ofcomposed of 208208 toto 212212

    1717%% of the total weightof the total weight

    1. (bone)

    2. (cartilage)

  • 8/8/2019 Musculoskeletal Biomechanics

    6/120

    Cartilage

    chondrocytes matrix matrix 2 fiber collagen fiber

    elasticfiber ground substance glycosaminoglycans chondrocyte matrix

    fiber matrix 3

    1. Hyaline cartilage

    2. Elastic cartilage 3. Fibro cartilage

  • 8/8/2019 Musculoskeletal Biomechanics

    7/120

    1.Hyaline cartilage

    , (larynx), (trachea),bronchus,costal cartilage articularcartilage

    Hyaline cartilage perichondrium articularcartilage

  • 8/8/2019 Musculoskeletal Biomechanics

    8/120

    2.Elastic cartilage

    hyaline cartilagematrixcollagenfiber elasticfiber

    Eustatiantube (epiglottis)

  • 8/8/2019 Musculoskeletal Biomechanics

    9/120

    3.Fibrocartilage dense connective

    tissue hyaline cartilage perichondrium pubic symphysis

    (intervertrebral disk)(ligament) (tendon)

  • 8/8/2019 Musculoskeletal Biomechanics

    10/120

    Bones

  • 8/8/2019 Musculoskeletal Biomechanics

    11/120

    Function ofBones

    Store Minerals Bones store calcium, phosphorus and otherminerals used by your body.

    ProtectsProtects Bones help protect the body from injury. The spine andskull protect the CNS (Central Nervous System).

    MovementMovement Bones provide form and structure for muscles to workagainst. Muscles can contract, but not extend. Using bones as leversone muscle can contract to extend another.

    Blood CellsBlood Cells Red blood cells and some white blood cells are formedin the epiphysis of long bones. Red blood cells carry oxygenthroughout the body. White blood cells help fight off infections.

    Structure and SupportStructure and Support The skeletal system provides a framework ofsupport for the body to be built upon. The bones of the legs andback support the body's entire weight

  • 8/8/2019 Musculoskeletal Biomechanics

    12/120

    (Microscopic structure)

    1. (Osteoblast)-

    (osteoprogenitorcells)

    - (osteoid)

    -

  • 8/8/2019 Musculoskeletal Biomechanics

    13/120

    2. (Osteocyte)

    (lacuna)

    (canaliculi)

  • 8/8/2019 Musculoskeletal Biomechanics

    14/120

    3. (Osteoclast)

    (monocytestem cells)

    (bone remodeling)

    (acidphosphatase)

  • 8/8/2019 Musculoskeletal Biomechanics

    15/120

    (Gross structure of bone)

    2

    1.Cancellous (spongy) bone (trabeculae) trabeculae (bone marrow)

    )

  • 8/8/2019 Musculoskeletal Biomechanics

    16/120

    DiaphysisDiaphysis compactbonecompactbone spongybonespongybonediaphysisdiaphysismarrowmarrow cavitycavity ((medullarymedullary cavitycavity))

    EpiphysesEpiphyses spongyspongy bonebone compactcompactbonebone

  • 8/8/2019 Musculoskeletal Biomechanics

    17/120

    (periosteum)

    2 fibrous layer osteogenic

    layerfibroblastosteoblast

    articularsurface

  • 8/8/2019 Musculoskeletal Biomechanics

    18/120

    (Haversian canal)

    (bone cells)

  • 8/8/2019 Musculoskeletal Biomechanics

    19/120

    33

    1.Growth epiphyseal plate

    peak bone mass 20-30 2.Bone modeling

    growth

    3.Bone remodeling

  • 8/8/2019 Musculoskeletal Biomechanics

    20/120

    2 1.Axial skeleton

    29 26 (

    24 (12 11 12 )

    1

  • 8/8/2019 Musculoskeletal Biomechanics

    21/120

    2.Appendicular skeleton cortical compact trabecularcortical 126

    - 30

    - 30 - 1 -1

    - 1

  • 8/8/2019 Musculoskeletal Biomechanics

    22/120

    Types of BonesTypes of Bones

    11.Long Bones.Long Bones

    The classification body which is longer than itis wide, with growth plates (epiphysis) at either

    end,

    Both ends ofthe bone are covered in hyalinehyaline

    cartilagecartilage to help protect the bone and aid shock

    absorption

    The femurs, tibias, fibulas, humeri, radii,

    ulnas, metacarpals, metatarsals, phalanges, and

    clavicles

  • 8/8/2019 Musculoskeletal Biomechanics

    23/120

    2.Short Bones

    defined as being approximately as wide as they are long

    primary function ofproviding support and stability with little movement

    .the Carpals and Tarsals in the wrist and foot.

    They consist ofonly a thin layerthin layer ofcompactofcompact, hard bone with cancellous

    bone on the inside along with relatively large amounts of bone marrow.

  • 8/8/2019 Musculoskeletal Biomechanics

    24/120

    3.Flat Bones

    the main function of providing protection to the bodies vital

    organs and being a base for muscular attachment the Scapula (shoulder blade). The Sternum (breast bone), Cranium

    (skull), Pelvis and Ribs

    Anterior and posterior surfaces are formed ofcompact bone to

    provide strengthfor protection with the centre consisting of

    cancellous (spongy) bone and varying amounts of bone marrow. In adults, the highest number ofred blood cells are formed in flat

    bones.

  • 8/8/2019 Musculoskeletal Biomechanics

    25/120

    44.Irregular Bones.Irregular Bones

    non-uniform shape. Good

    examples ofthese are the Vertebrae,Sacrum and Mandible (lower jaw).

  • 8/8/2019 Musculoskeletal Biomechanics

    26/120

    5.Sesamoid Bones

    short or irregular bones, imbedded in a tendon.The most obvious example ofthis is the Patella (knee

    cap) which sits within the Patella or Quadriceps tendon.

    Other Pisiform (smallest ofthe Carpals) and the two small

    bones at the base ofthe 1st Metatarsal.

    Sesamoid bones are usually present in a tendon where

    it passes over a joint which serves to protect the tendon.

  • 8/8/2019 Musculoskeletal Biomechanics

    27/120

    Bones as Components of JointsBones as Components of JointsClassification of Joints

    By Structure

    1.Fibrous jointfibrous tissue

    2.Cartilagenous joint

    3.Synovial jointsynovial membrane synovial fluid

  • 8/8/2019 Musculoskeletal Biomechanics

    28/120

    (Fibrous joints=) (dense

    connective tissue)

    joint capsule

    (Sutures) =Skull

    (Syndesmosis) =Ulnars , Radius

    densefibrous tissue

    distal tibiofibularjoint

    (Gomphosis) =(maxilla,mandible)

  • 8/8/2019 Musculoskeletal Biomechanics

    29/120

    (Cartilaginous joint)

    (Synchondrosis) (hyaline cartilage)

    (Symphysis) (Fibrocartilage) (intervertebral discs)(intervertebral discs)

  • 8/8/2019 Musculoskeletal Biomechanics

    30/120

    (Synovial joint)(Synovial joint)

    jointcapsule ligament

    (articular capsule)

    (synovial fluid)

    articular discmeniscus

  • 8/8/2019 Musculoskeletal Biomechanics

    31/120

    By functionBy function

    degree of movement 31. Synarthrosis

    2. Amphiarthrosis

    3. Diarthrosis

  • 8/8/2019 Musculoskeletal Biomechanics

    32/120

    ((DiarthrosisDiarthrosis))Joint Type Movement at joint Examples Structure

    HingeHinge

    Flexion/Extension Elbow/Knee Hinge joint

    Pivot

    Rotation of one bone

    around another

    Top of the neck

    (atlas and axis bones)

    Pivot Joint

  • 8/8/2019 Musculoskeletal Biomechanics

    33/120

    Joint TypeJoint Type Movement at jointMovement at joint ExamplesExamples StructureStructure

    Socket

    ---

    Flexion/Extension/Ad

    duc

    tion/Abduction/Internal &

    External Rotation

    Shoulder/Hip Ball and socket joint

    Saddle

    Flexion/Extension/Ad

    duction/

    Abduction/Circumduc

    tion

    CMC joint ofthe

    thumb

    Saddle joint

  • 8/8/2019 Musculoskeletal Biomechanics

    34/120

    Joint TypeJoint Type Movement at jointMovement at joint ExamplesExamples StructureStructure

    Condyloid

    Flexion/Extension/Adduction

    /Abduction/Circumduction

    Wrist/MCP & MTP

    joints

    Condyloid joint

    GlidingGliding

    Gliding movements Intercarpal joints Gliding joint

  • 8/8/2019 Musculoskeletal Biomechanics

    35/120

  • 8/8/2019 Musculoskeletal Biomechanics

    36/120

    (tendon) VS (ligament)

    (ligament)

    (tendon)

  • 8/8/2019 Musculoskeletal Biomechanics

    37/120

    Biomechanics of the SpineBiomechanics of the Spine (Biomechanics of

    the cervical spine)

    1.Occipitoatlanto axial complex

    -(occiput)1 (cup-shaped)

    -(rotation) -(flexion/extension)

  • 8/8/2019 Musculoskeletal Biomechanics

    38/120

    2.Lower cervical spine (C3-C7)

    intervetebral disc facet joints

    (Facet joint)

    Facet

    Facet

  • 8/8/2019 Musculoskeletal Biomechanics

    39/120

    flexion, extension, lateralbending rotation

  • 8/8/2019 Musculoskeletal Biomechanics

    40/120

    (Biomechanics of the lumbar spine)

    lumbar spine thoraciccervical spine

    facet joints Sagittalplane

    (flexion/extension) thoracic spine

    12

  • 8/8/2019 Musculoskeletal Biomechanics

    41/120

    0o 60o lumbar spine

    60o

  • 8/8/2019 Musculoskeletal Biomechanics

    42/120

    (bendingmoment) lumbar spine (W)lever arm(Lw) lumbar spine

    (compression) (tension)

  • 8/8/2019 Musculoskeletal Biomechanics

    43/120

    L3 disc

    L3 disc

    100%

  • 8/8/2019 Musculoskeletal Biomechanics

    44/120

    Biomechanics of Shoulder, elbow, and wristBiomechanics of Shoulder, elbow, and wrist

    Shoulder, elbow, and wrist

  • 8/8/2019 Musculoskeletal Biomechanics

    45/120

    ShoulderShoulder

    Shoulder forward flexion = zero to 180 degrees.

    Shoulder abduction = zero to 180 degrees.

    Shoulder external rotation = zero to 90 degrees.

    Shoulder internal rotation = zero to 90 degrees

  • 8/8/2019 Musculoskeletal Biomechanics

    46/120

    Shoulder dislocation () 90%

  • 8/8/2019 Musculoskeletal Biomechanics

    47/120

    Rotatorcuff

  • 8/8/2019 Musculoskeletal Biomechanics

    48/120

    Elbow Anatomy

    Elbow flexion = zeroto 145 degrees.

    Forearmsupination = zeroto 85 degrees.

    Forearmpronation = zeroto 80 degrees

  • 8/8/2019 Musculoskeletal Biomechanics

    49/120

    Medial Elbow Injuries The Ulnar Collateral

    Ligament

  • 8/8/2019 Musculoskeletal Biomechanics

    50/120

    Medial Elbow Injuries The Ulnar

    Collateral Ligament

  • 8/8/2019 Musculoskeletal Biomechanics

    51/120

    the ulnar collateral ligamentor"UCL - pulls the forearmforward with the rotating upper armWhen improper mechanics are used or arm muscles becomefatigued, the load placed on the UCL may be increased to morethan it can withstand, causing small "micro"-tears in the UCL.

    Microtears in muscles or ligaments can heal when given enough

  • 8/8/2019 Musculoskeletal Biomechanics

    52/120

    Golferselbow

    Golferselbow

    ()(medialepicondyle) tenniselbow

    (lateralepicondyle)

  • 8/8/2019 Musculoskeletal Biomechanics

    53/120

    1. Superficial extensor muscles forearms back-hand 2. lateral epicondyle

  • 8/8/2019 Musculoskeletal Biomechanics

    54/120

    Wrist Biomechanics

    Wrist dorsi flexion (extension) = zero to 70degrees.

    Wrist plantar flexion = zero to 80 degrees.

    Wrist radial deviation = zero to 20 degrees Wrist ulnar deviation = zero to 45 degrees

  • 8/8/2019 Musculoskeletal Biomechanics

    55/120

    TennisWrist injuryTennisWrist injury

    Overuseinjuriesofthewristaretendinitis, nerveconditions

    carpaltunnelsyndrome

  • 8/8/2019 Musculoskeletal Biomechanics

    56/120

    These symptoms can be

    evident when driving, holding

    newspapersCarpal tunnel is defined by

    compression of the median

    nerve at the level of the

    wrist(help you bend yourfingers)

  • 8/8/2019 Musculoskeletal Biomechanics

    57/120

    DeQuervain's Syndrome: Also

    known as "washerwoman's

    sprain

    this syndrome can be a

    product of overuse

    rapid, repetitive movementsof the thumb and wrist

  • 8/8/2019 Musculoskeletal Biomechanics

    58/120

    Fractures

    Common types of hand and wrist fractures

    include Distal Radial Fracture, Smith'sFracture, and Scaphoid Fracture

    an outstretched hand or on to the back of the

    hand

  • 8/8/2019 Musculoskeletal Biomechanics

    59/120

    HipHip --BiomechanicsBiomechanicsForces across hip joint combination of:

    Body weight

    Ground rea

    ction

    forces

    Abductor muscle forces

  • 8/8/2019 Musculoskeletal Biomechanics

    60/120

  • 8/8/2019 Musculoskeletal Biomechanics

    61/120

    ACTIVITYACTIVITY

    Hi f ti

  • 8/8/2019 Musculoskeletal Biomechanics

    62/120

    Hip range of motion:

    (Movement offemur as it rotates in the acetabulum.)

    Flexion = 0 to 125 degrees

    Extension = 0 to 30 degrees.

    Adduction = 0 to 25 degrees.

    Abduction = 0 to 45 degrees.

    External rotation = 0 to 60 degrees.

    Internal rotation = 0 to 40 degrees

  • 8/8/2019 Musculoskeletal Biomechanics

    63/120

    Knee joint

    Flexion = 0 to 140 degrees.

    Extension - zero degrees =full extension.

  • 8/8/2019 Musculoskeletal Biomechanics

    64/120

    Knee (Femur) (Tibia)

    (Patella)

    3 (Articular cartilage)(Synovial membrane)

    C

  • 8/8/2019 Musculoskeletal Biomechanics

    65/120

    (Knee Stabilizer)

    1. (Lateral collateral ligament)2. (Medial collateral ligament)3. (Anterior cruciate ligament)4. (Posterior cruciate ligament)

    Themedial

    collateralligament (MCL)andlateral

    Themedial

    collateralligament (MCL)andlateral

    collateralligament (LCL)arethemostoftencollateralligament (LCL)arethemostofteninjuredingolfinjuredingolf

  • 8/8/2019 Musculoskeletal Biomechanics

    66/120

    ,,

  • 8/8/2019 Musculoskeletal Biomechanics

    67/120

    St t d F ti l

  • 8/8/2019 Musculoskeletal Biomechanics

    68/120

    StructureandFunctionalAnatomyoftheAnkle

  • 8/8/2019 Musculoskeletal Biomechanics

    69/120

    Ankle range of motion

    Pronation

    Abduction, dorsiflexion, eversion

    SupinationAdduction, plantarflexion, inversion

    dorsiflexion is 0 to 20 degrees; plantar flexion is0 to 45 degrees.

  • 8/8/2019 Musculoskeletal Biomechanics

    70/120

  • 8/8/2019 Musculoskeletal Biomechanics

    71/120

  • 8/8/2019 Musculoskeletal Biomechanics

    72/120

    1.lateral ankle sprain

  • 8/8/2019 Musculoskeletal Biomechanics

    73/120

    lateral ankle ligaments : lateral angleligaments ligament 31. Anterior talofibular ligaments

    2. Caleaneofibular ligaments3. Posterior talofibular ligament anterior talofibular ligament anterior subluxation talus

    planter flexion ligament inversion

    A hili t d

  • 8/8/2019 Musculoskeletal Biomechanics

    74/120

    Achilis tendon(Achilles tendon ruptures)

    - Overuse injuries

    Achilles tendon gastrochemiussoleuscomplex

    2 ten ion

  • 8/8/2019 Musculoskeletal Biomechanics

    75/120

    Planes

  • 8/8/2019 Musculoskeletal Biomechanics

    76/120

    Planes

  • 8/8/2019 Musculoskeletal Biomechanics

    77/120

    SagittalPlane Movements (bilateral axis)1. Flexion joint angle increases*.

    2. Extension joint angle decreases*

    3. Hyperextension continued extension beyond starting position.

    Frontal Plane Movements (anteroposterior axis)1. Abduction movement away from midline ofthe body

    2. Adduction movement toward midline ofthe body

    3. Lateral Flexion lateral bending oftrunk or head

    Transverse Plane Movements (vertical axis)1. Rotation# anterior aspect turns left or right.

    2. Supination outward rotation offorearm

    3. Pronation inward rotation offorearm

    #the shoulder can rotate in all three planes

    Fundamental movements:

  • 8/8/2019 Musculoskeletal Biomechanics

    78/120

    Axis of Rotation

  • 8/8/2019 Musculoskeletal Biomechanics

    79/120

    Standard Reference Terminology

    Anatomical Reference Axes

    An imaginary axis ofrotation that passes

    through a joint to which it is attached

    Mediolateral or frontal axis

    Anterioposterior or sagittal axis

    Longitudinal axis

  • 8/8/2019 Musculoskeletal Biomechanics

    80/120

  • 8/8/2019 Musculoskeletal Biomechanics

    81/120

    2-5

  • 8/8/2019 Musculoskeletal Biomechanics

    82/120

    Joint Movement Terminology

    In anatomical position, all body segments are

    considered to be positioned at zero degrees.

    Sagittal Plane Movements

    Frontal Plane Movements

    Transverse Plane Movements

    Other Movements

  • 8/8/2019 Musculoskeletal Biomechanics

    83/120

    2-6

    Sagittal plane movements

  • 8/8/2019 Musculoskeletal Biomechanics

    84/120

    2-8

    Frontal Plane Movements

  • 8/8/2019 Musculoskeletal Biomechanics

    85/120

    2-13

    Transverse Plane Movements

  • 8/8/2019 Musculoskeletal Biomechanics

    86/120

    2-16

    Other Movements

  • 8/8/2019 Musculoskeletal Biomechanics

    87/120

    2-19

  • 8/8/2019 Musculoskeletal Biomechanics

    88/120

    Spatial Reference Systems

    Used to standardize the measurements taken

    Cartesian Coordinate system

    Movements primarily in a single direction, or

    planar, can be analyzed using a two-

    dimensional Cartesian

    X (horizontal) direction

    Y (vertical) direction

    3-dimensional by adding a z-axis

  • 8/8/2019 Musculoskeletal Biomechanics

    89/120

    Cartesian Coordinate System

  • 8/8/2019 Musculoskeletal Biomechanics

    90/120

  • 8/8/2019 Musculoskeletal Biomechanics

    91/120

    Dimensions ofMovement

    0 Dimensions - point.

    1Dimension - line.

    2 Dimensions - plane.

    3 Dimensions - cube, sphere, etc.

    4 Dimensions - 3 Dimensions + time.

    Movement occ

    urs in all 4 dimensions (time andspace).

  • 8/8/2019 Musculoskeletal Biomechanics

    92/120

    Positional Reference Systems

    These are designed to identify location

    or position

    1. Anatomical2. Linear

    3. Angular (rotational or radial)

    Directional Terms Used in

  • 8/8/2019 Musculoskeletal Biomechanics

    93/120

    Directional Terms Used in

    Describing Anatomy

    SUPERIOR Directed upwards or towards the

    head

    INFERIOR Directed downwards or towards

    the feet

    ANTERIOR Directed towards the front ofthe

    body

    POSTERIOR Directed towards the back ofthebody

  • 8/8/2019 Musculoskeletal Biomechanics

    94/120

    Serratus Anterior

  • 8/8/2019 Musculoskeletal Biomechanics

    95/120

    Serratus Anterior

    Serratus Posterior

    Superior

  • 8/8/2019 Musculoskeletal Biomechanics

    96/120

    Serratus Anterior

    Serratus Posterior

    Superior

    Serratus Posterior

    Inferior

    Directional Terms Used in

  • 8/8/2019 Musculoskeletal Biomechanics

    97/120

    Directional Terms Used in

    Describing Anatomy MEDIAL Nearer the midline ofthe body

    LATERAL Farther from the midline ofthe body

    PROXIMAL Nearer to the attachment ofa limb to

    the trunk DISTAL Farther from the attachment ofthe limb to

    the trunk

    SUPERFICIAL Located on or near the surface ofthe

    body

    DEEP Away from the surface ofthe body

  • 8/8/2019 Musculoskeletal Biomechanics

    98/120

    The Anatomical Position

    The position ofreference for

    all movements.

    Also called the standing

    supine position

  • 8/8/2019 Musculoskeletal Biomechanics

    99/120

    ardinal Planesof

    the Body

    1. Sagittal Divides

    thebody intoleft

    and righthalves.2. Frontal Divides

    thebody intofront

    and backhalves.

    3. Transverse

    Dividesthebody

    intotopand

    bottomhalves.

    Sagittal Plane Movements

  • 8/8/2019 Musculoskeletal Biomechanics

    100/120

    Sagittal Plane Movements

    (Forward & Backward Movements)

    Whole Body Forward and backward

    movement such as front or back flips

    Segmental

    Flexion

    Extension

    Hyperextension

    Dorsiflexion

    Plantar flexionAnkle

  • 8/8/2019 Musculoskeletal Biomechanics

    101/120

    Backflipsand

    frontflipsare

    wholebody

    sagittalplanemovements.

  • 8/8/2019 Musculoskeletal Biomechanics

    102/120

    Fora

    cyclist, the

    legmovements

    occurinthe

    sagittal

    plane.

  • 8/8/2019 Musculoskeletal Biomechanics

    103/120

    Forward and

    backwardmovementsat

    specificjoints

    suchasthe

    shoulderandanklearesagittal

    plane

    movements.

    F t l Pl M t

  • 8/8/2019 Musculoskeletal Biomechanics

    104/120

    Frontal Plane Movements

    (Sideward & Vertical Movements)

    Whole Body Sideward movement as seen

    in sideward cartwheels

    Frontal Plane Movements

  • 8/8/2019 Musculoskeletal Biomechanics

    105/120

    Frontal Plane Movements

    (Sideward & Vertic

    al Movements) Segmental Abduction

    Adduction

    Lateral flexion

    Elevation and depression ofthe shoulder girdle(or scapula)

    Upward and downward rotation oftheshoulder girdle (or scapula)

    Radial deviation

    Ulnar deviationWrist

  • 8/8/2019 Musculoskeletal Biomechanics

    106/120

    Hipabductionandadduction.

    Ulnarand radial

    Deviation.

  • 8/8/2019 Musculoskeletal Biomechanics

    107/120

    Elevationand depressionofthe

    shouldergirdle.

  • 8/8/2019 Musculoskeletal Biomechanics

    108/120

    ateralflexionofthetrunk.

    T Pl M t

  • 8/8/2019 Musculoskeletal Biomechanics

    109/120

    Transverse Plane Movements

    (Horizontal Movement) Whole Body

    Horizontal

    movement orrotation as in a

    skaters or dancer's

    pirouette.

    Trans erse Plane Mo ements

  • 8/8/2019 Musculoskeletal Biomechanics

    110/120

    Transverse Plane Movements

    (Rotation Around a Vertical Axis) Segmental

    Medial (inward) rotation

    Lateral (outward) rotation

    Left / right rotation ofthe trunk, neck, or head

    Supination - forearm

    Pronation forearm

    Horizontal abduction (transverse flexion)

    Horizontal adduction (transverse extension) Pronation ofsubtalar joint abduction + eversion

    Supination ofsubtalar joint adduction + inversion

  • 8/8/2019 Musculoskeletal Biomechanics

    111/120

    Horizontaladductionand

    abductionare

    segmentaltransverseplane

    movements.

    Cardinal Axes ofthe Body

  • 8/8/2019 Musculoskeletal Biomechanics

    112/120

    y

    (Axes is plural for axis.)

    X-Axis (Transverse, Mediolateral, Frontal, orBreadth Axis)

    Y-Axis (Longitudinal, Vertical, or Length Axis) Z-Axis (Anteroposterior, Sagittal, or Depth Axis)

    Movement, both whole body and segmental, takes

    place in the cardinal planes and around thecardinal axes.

    Th lli t

  • 8/8/2019 Musculoskeletal Biomechanics

    113/120

    Theellipserepresents

    thetransverseplaneand

    theblacklinerepresentsthe Y-axis. (Theplaneis

    likearecord turntable

    and theaxisislikethe

    spindlethatholdstherecord inplace.) The Y-

    axisisperpendicularto

    thetransverseplane.

    Thereforeapointwhichrotatesaround the Y-axis

    willmoveinthe

    transverseplane.

    Transverse

    Plane

    Y-axis

    X A i

  • 8/8/2019 Musculoskeletal Biomechanics

    114/120

    X-Axis

    Passes from side to side.

    Rotation in the sagittal plane takes place

    around the x-axis.

    Y Axis

  • 8/8/2019 Musculoskeletal Biomechanics

    115/120

    Y-Axis

    Passes from top to bottom.

    Rotation in the transverse plane takes place

    around the y-axis.

    Z Axis

  • 8/8/2019 Musculoskeletal Biomechanics

    116/120

    Z-Axis

    Passes from front to back.

    Rotation in the frontal plane takes placearound the z-axis.

    Y AxisThe cardinal axes

  • 8/8/2019 Musculoskeletal Biomechanics

    117/120

    ZAxis

    X Axis

    CenterofGravity

    Thecardinalaxes

    lieatthe

    intersectionofthecardinalplanes.

    Thecardinal

    planesand axes

    allintersectatthecenterof

    gravity (c-g).

  • 8/8/2019 Musculoskeletal Biomechanics

    118/120

  • 8/8/2019 Musculoskeletal Biomechanics

    119/120

  • 8/8/2019 Musculoskeletal Biomechanics

    120/120