n § 24.1 nomenclatuur and structure (page 1235) polyfunctional natural products: carbohydrates...

97
§ 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde. Fig. 24.1 C x (H 2 O) y Hydrated carbon!

Upload: howard-reed

Post on 05-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1235)

Polyfunctional Natural Products:Carbohydrates

Chapter 24

The two enantiomers of the simplest sugar, glyceraldehyde.

Fig. 24.1

Cx(H2O)y

Hydrated carbon!

Page 2: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1235)

Polyfunctional Natural Products:Carbohydrates

Glyceraldehyde is an aldotriose because it has a three-carbon backbone and an aldehyde group.

Fig. 24.2

Problem 24.1* Generalize from the definition of a triose to generate the structures of an aldotetrose and an aldopentose.

Page 3: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1236)

Polyfunctional Natural Products:Carbohydrates

Aldo sugars are written with the aldehyde group at the top and the primary alcohol at the bottom. In this scheme, called a Fischer projection, horizontal bonds are taken as coming toward the viewer and vertical bonds as retreating. If the OH adjacent to the primary alcohol at the bottom is on the right, the sugar is a member of the D series. If it is on the left, it is in the L series.

Fig. 24.3

Page 4: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1237)

Polyfunctional Natural Products:Carbohydrates

There is no relation between D and L and the sign of optical rotation, (+) and (-).Fig. 24.4

Page 5: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1237)

Polyfunctional Natural Products:Carbohydrates

Problem 24.2 Write three-dimensional representations for the following molecules.

Page 6: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1237)

Polyfunctional Natural Products:Carbohydrates

Problem 24.3 Write Fischer projections for the molecules in Figure 24.6

Page 7: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1237)

Polyfunctional Natural Products:Carbohydrates

The four aldotetroses Fig. 24.8

The four D-aldopentoses Fig. 24.9

22

stereoisomers

both D and L isomers shown

23 stereoisomers

only D-diastereoisomers

shown!

Page 8: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1238)

Polyfunctional Natural Products:Carbohydrates

The eight D-aldohexoses Fig. 24.10

24 stereoisomers

only D-diastereoisomers

shown!

Page 9: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1238)

Polyfunctional Natural Products:Carbohydrates

D-Fructose, a common ketohexose. Fig. 24.10

Page 10: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1238)

Polyfunctional Natural Products:Carbohydrates

Problems 24.4 + 24.5

Problem 24.6Treatment of D-glucose with sodium borohydride (NaBH4) gives D-

glucitol (sorbitol), C6H14O6. Show the structure of D-glucitol and write a brief mechanism for this simple reaction

Page 11: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1239)

Polyfunctional Natural Products:Carbohydrates

Although reduction with sodium borohydride, followed by hydrolysis, proceeds normally to give an alcohol, neither NMR or IR reveals large amounts of an aldehyde in the starting material. Fig. 24.12

Why?

Page 12: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1239)

Polyfunctional Natural Products:Carbohydrates

Intramolecular hemiacetal formation is analogous to hydration and intermolecular hemiacetal formation. Five- and six-membered ring hemiacetals are easily made, and are often more stable than their open forms. Fig. 24.13

Page 13: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1240)

Polyfunctional Natural Products:Carbohydrates

Intramolecular hemiacetal formation is analogous to hydration and intermolecular hemiacetal formation. Five- and six-membered ring hemiacetals are easily made, and are often more stable than their open forms. Fig. 24.13

Example

Page 14: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1241)

Polyfunctional Natural Products:Carbohydrates

In an aldohexose, intramolecular hemiacetal formation results in a furanose (five-membered ring) or pyranose (six-membered ring) Fig. 24.14

Page 15: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1241)

Polyfunctional Natural Products:Carbohydrates

Fischer projections for D-glucofuranose and D-glucopyranose Fig. 24.5

Page 16: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1242)

Polyfunctional Natural Products:Carbohydrates

If two compounds are in equilibrium, irreversible reaction of the minor partner can result in complete conversion into a product. As long as the equilibrium exists, the small amount of the reactive molecule will be replenished as it is used up. Fig. 24.16

Page 17: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1242)

Polyfunctional Natural Products:Carbohydrates

Intramolecular hemiacetal formation results in two C(1) stereoisomers called anomers. Fig. 24.17

On the same side as

attacking OH, is -anomer!

On the opposite side as

attacking OH, is -anomer!

Page 18: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1245)

Polyfunctional Natural Products:Carbohydrates

The first step in creating a three-dimensional drawing is rotation around the indicated carbon-carbon bond. This motions generates a new Fischer projection. Fig. 24.19

Page 19: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1245)

Polyfunctional Natural Products:Carbohydrates

Next, tip the molecule over in clockwise fashion to produce a flat Haworth form Fig. 24.20

Problem 24.9 Draw the flat, Haworth form of the -anomer.

Page 20: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1245)

Polyfunctional Natural Products:Carbohydrates

Now let the flat, Haworth form relax to a chair. Don’t forget that there are always two possible chair forms. Fig. 24.21

Problem 24.10* Follow this same procedure for the -anomer.

Page 21: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.1 Nomenclatuur and Structure (page 1246)

Polyfunctional Natural Products:Carbohydrates

Problem 24.11 Transform the Fischer projection into a three-dimensional picture of D-mannopyranose

Page 22: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1246) § 24.2a Mutarotation of Sugars

Polyfunctional Natural Products:Carbohydrates

In water the -anomer is converted into the -anomer and visa versa. Explain!

Page 23: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1246) § 24.2a Mutarotation of Sugars

Polyfunctional Natural Products:Carbohydrates

The - and -anomers can equilibrate through the small amount of the open form present at equilibriumFig. 24.22

Page 24: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1247) § 24.2a Mutarotation of Sugars

Polyfunctional Natural Products:Carbohydrates

Problem 24.12* Write a mechanism for the acid-catalyzed mutarotation of D-glucopyranose (in 3-dimensional structures!)

Page 25: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1246) § 24.2b Isomerization of Sugars in Base

Polyfunctional Natural Products:Carbohydrates

In base, D-glucose equilibrates with D-mannose and D-fructose, a keto sugar. Fig. 24.23

Explain!

Page 26: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1248) § 24.2b Isomerization of Sugars in Base

Polyfunctional Natural Products:Carbohydrates

A mechanism of the equilibration of D-Glucose and D-mannose involves formation of an enolate followed by reprotonation Fig. 24.24

Lobry de Bruijn-Alberda van Ekenstein reaction!

Page 27: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1248) § 24.2b Isomerization of Sugars in Base

Polyfunctional Natural Products:Carbohydrates

Protonation on oxygen generates a double enol, which can lead to D-fructose (or the D-aldohexoses, D-glucose, and D-mannose). Fig. 24.25

Page 28: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1249) § 24.2c Reduction

Polyfunctional Natural Products:Carbohydrates

Reduction of D-glucose proceeds through the small amount of the open, aldo form present at equilibrium. As the open form is used up, it is regenerated through equilibration with the pyranose form. Fig. 24.26

Page 29: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1249) § 24.2c Reduction

Polyfunctional Natural Products:Carbohydrates

Problem 24.15* Reduction of D-altrose with sodium borohydride in water gives an optically active molecule, D-altritol. However, the same procedure aplied to D-allose gives an optically inactive, meso hexa-alcohol. Explain.

Page 30: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1250) § 24.2d Oxidation

Polyfunctional Natural Products:Carbohydrates

Oxidation of an aldohexose with bromine in water gives an aldonic acid in which the end groups are still different. Fig. 24.27

Aldonic acid

Page 31: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1250) § 24.2d Oxidation

Polyfunctional Natural Products:Carbohydrates

Problem 24.16 Write a mechanism for this oxidation. Hint for the first step: What reaction is likely between an aldehyde and water?

Page 32: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1250) § 24.2d Oxidation

Polyfunctional Natural Products:Carbohydrates

Problem 24.17 Examination of the NMR and IR spectra of typical aldonic acids often shows little evidence for the carboxylic acid group. Explain this odd behavior.

Page 33: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1251) § 24.2d Oxidation

Polyfunctional Natural Products:Carbohydrates

Oxidation with nitric acid generates an aldaric acid in which the end groups are both carboxylic acids. Figure 24.28

Aldaric acid

Page 34: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1251) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Treatment of a sugar with methyl iodide and silver oxide leads to methylation at every free hydroxyl group in the molecule. Figure 24.29

Formation of ethers via

Sn2 process!

Williamson ether

synthesis!!

Page 35: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 17.10 Synthesis of Ethers from Alkoxides (pag 845)

Polyfunctional Natural Products:Carbohydrates

Alkoxides can displace halides in an SN2 reaction to make ethers. This reaction is the Williamson ether synthesis. Figure 17.56

Formation of ethers via

Sn2 process!

Williamson ether

synthesis!!

Page 36: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 17.10 Synthesis of Ethers from Alkoxides

Polyfunctional Natural Products:Carbohydrates

Alkoxides can displace halides in an SN2 reaction to make ethers. This reaction is the Williamson ether synthesis. Figure 17.56

Formation of ethers via

Sn2 process!

Williamson ether

synthesis!!

Page 37: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1251) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

A similar process can be carried out in base with a Williamson ether synthesis. Notice in this example that neither the existing ether at C(1) nor the pyranose ring connection is disturbed in the benzylation. Figure 24.30

Formation of ethers via

Sn2 process!

Williamson ether

synthesis!!

Page 38: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1251) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

?

Page 39: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1251) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

All the free hydroxyl groups can be esterified with acetic anhydride. Figure 24.30

Formation of

poly esters!

Page 40: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1253) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

?

Page 41: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1253) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Treatment with dilute HCl and alcohol converts only the OH at the anomeric position [C(1)] into an acetal called a glycoside.

Figure 24.32

Acetal function!

Page 42: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1253) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Treatment with dilute HCl and alcohol converts only the OH at the anomeric position [C(1)] into an acetal called a glycoside.

Figure 24.32

Glycoside!

Why only methoxylation at the C-1 position?

Page 43: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1253) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Although all OH groups can be reversibly protonated, loss of only the anomeric OH leads to a resonance-stabilized cation. Addition of alcohol at this position gives the glycoside. Figure 24.33

Page 44: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1253) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Although all OH groups can be reversibly protonated, loss of only the anomeric OH leads to a resonance-stabilized cation. Addition of alcohol at this position gives the glycoside. Figure 24.33

Page 45: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1254) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Methyl - and methyl -D-glucopyranosides. Figure 24.34

Page 46: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1254) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

?

Page 47: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1254) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Hydrolysis of the fully methylated compounds leads to a hemiacetal in which only the methoxyl group at the anomeric position [C(1)] has been converted into an OH. Figure 24.35

Page 48: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1254) § 24.2e Ether and Ester formation

Polyfunctional Natural Products:Carbohydrates

Problem 24.18* Explain carefully why it is only the acetal methoxyl group that is converted into a hydroxyl group.

Page 49: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1255) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

What product would you expect from the above reaction?

Page 50: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1255) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

What product would you expect from the above reaction?

Page 51: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1255) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

The small amount of free aldehyde present at equilibrium accounts for phenylhydrazone formation at C(1). Figure 24.36

Page 52: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1256) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

Problem 24.14 Write a mechanism for the above reaction.

Page 53: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1256) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

The actual reaction is far more complicated!

Page 54: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1256) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

Osazone formation involves conversion of C(2) as well as C(1) into phenylhydrazones.Figure 24.37

Page 55: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1256) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

How come?

Page 56: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

§ 24.2 Reactions of Sugars (page 1256) § 24.2f Osazone Formation

Polyfunctional Natural Products:Carbohydrates

The C(1) phenylhydrazone is an imine and therefore in equilibrium with an enamine. This enamine is also an enol. Figure 24.38

Page 57: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Reaction of the ketone with phenylhydrazine leads to a new phenylhydrazone that can eliminate aniline to give a new imine. Reaction with a third equivalent of phenylhydrazine leads to the osazone. Figure 24.39

Page 58: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

An osazone can be formed from two different aldo sugars that are stereoisomeric at C(2). The stereochemistry at C(2) is destroyed in the reaction.

Figure 24.40

§ 24.2 Reactions of Sugars (page 1257) § 24.2f Osazone Formation

Attention!!!!

Page 59: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.2 Reactions of Sugars (page 1257) § 24.2g Methods of Lengthening and

Shortening Chains in Carbohydrates

Page 60: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.2 Reactions of Sugars (page 1257) § 24.2g Methods of Lengthening and

Shortening Chains in Carbohydrates

Page 61: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

A modern version of the Kiliani-Fischer synthesis generates two new sugars, each one carbon longer than the starting sugar. Figure 24.41

Kiliani-Fischer Synthesis

Page 62: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.2 Reactions of Sugars (page 1259) § 24.2f Methods of Lengthening and

Shortening Chains in Carbohydrates

Problem 24.20 Apply the Kiliani-Fischer synthesis to D-glyceraldehyde. What new sugars are formed? It is not necessary to write mechanisms for the reactions.

Page 63: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.2 Reactions of Sugars (page 1259) § 24.2f Methods of Lengthening and

Shortening Chains in Carbohydrates

Problem 24.21 The following two sugars are produced by Kiliani-Fischer synthesis from an unknown sugar (Fig. 24.42). What is the structure of that unknown sugar?

Page 64: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

The Ruff degradation

The Ruff degradation shortens the starting sugar by one carbon. It is the original aldehyde carbon that is lost! Figure 24.43

§ 24.2 Reactions of Sugars (page 1259) § 24.2f Methods of Lengthening and

Shortening Chains in Carbohydrates

Page 65: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

The Ruff degradation shortens the starting sugar by one carbon. It is the original aldehyde carbon that is lost! Figure 24.43

Mechanism complicated!

§ 24.2 Reactions of Sugars (page 1259) § 24.2f Methods of Lengthening and

Shortening Chains in Carbohydrates

Page 66: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.2 Reactions of Sugars (page 1260) § 24.2f Methods of Lengthening and

Shortening Chains in Carbohydrates

The Wohl degradation also shortens sugars by loss of the aldehyde carbon.

Figure 24.43

The Wohl degradation

Page 67: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1262)

His starting point:

Arabinose

The natural sugar

arbitrarily assumed to

be the D-enantiomer

Accomplished by Emil Fischer in 1891

The first step in Emil Fischer’s determination of the structure of glucose. The Kiliani-Fischer synthesis applied to D-arabinose leads to D-glucose and D-mannose, which must share the partial structures shown. Figure 24.48

Page 68: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1263)

Second step:

Determining the

configuration of C(2) in

arabinose by oxidation

Oxidation of D-arabinose leads to an optically active diacid, which shows that the OH at C(2) in D-arabinose is on the left. Figure 24.49

Only an optically active product formed

Page 69: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1263)

Current knowledge about the

structures of D-arabinose,

D-glucose and

D-mannose

What we now know about the structures of D-arabinose, D-glucose, and D-mannose. Only the configuration at C(3) of D-arabinose, which becomes C(4) in D-glucose and D-mannose, is left to be determined. Figure 24.50

Page 70: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Third step:

Determining the

configuration of C(4) in

glucose en mannose by

oxidation

Figure 24.51

If true than both

diacids should be optically

active upon

oxidation with nitric

acid!

Assumption: OH on the right!

Page 71: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Third step:

Determining the

configuration of C(4) in

glucose en mannose by

oxidation

Figure 24.51

If true than both

diacids should be optically

active upon

oxidation with nitric

acid!

Page 72: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Third step:

Determining the

configuration of C(4) in

glucose en mannose by

oxidation

However, if the unknown OH is on the left, one possible diacid is meso, not optically active. Figure 24.52

If true than only one acid

should be optically active!

Assumption: OH on the left!

Page 73: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Third step:

Determining the

configuration of C(4) in

glucose en mannose by

oxidation

However, if the unknown OH is on the left, one possible diacid is meso, not optically active. Figure 24.52

If true than only one acid

should be optically active!

Page 74: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Conclusion:

OH on the right!

If the last unknown OH is on the rigtht, two optically active diacdis are produced on oxidation with nitric acid. This result matches the experimental results. Figure 24.51

Experimental Result:

Both sugars gave an optically

active diacid!

Page 75: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Now we know the structure of D-arabinose, L-arabinose, and the two structures (A and B) shared by D-glucose and D-mannose. We do not know which structure belongs to D-glucose and which to D-mannose Figure 24.53

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1265)

Page 76: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Oxidation with nitric acid renders the ends of a sugar equivalent. Both the aldehyde end and the primary alchohol end are converted into the same group, a carboxylic acid.

Figure 24.54

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1266)

Two different sugars may

give the same aldaric

acid when oxidized!

Page 77: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1266)

Two different sugars may

give the same aldaric

acid when oxidized!

Experimentally: Glucose gives an aldaric acid that is also obtained by oxidation of another sugar named L-Gulose

Page 78: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

If D-glucose has the structure A, oxidation of another sugar, L-gulose, can give the same aldaric acid. Note in this case that the L-gulose is drawn with the CH2OH at the top and the CHO at the bottom. Figure 24.55

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1266)

Page 79: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

However, there is no sugar other than B that can give this aldaric acid. As this fact does not match the experimental results, D-glucose must have structure A. Figure 24.56

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1266)

If glucose would have structure B only glucose would yield this aldaric acid!

Page 80: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

However, there is no sugar other than B that can give this aldaric acid. As this fact does not match the experimental results, D-glucose must have structure A. Figure 24.56

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1266)

However, this is not true!Conclusion: Glucose has structure A!

Page 81: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

However, there is no sugar other than B that can give this aldaric acid. As this fact does not match the experimental results, D-glucose must have structure A. Figure 24.56

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1266)

This outcome also reveals the structure of L-Gulose!

Page 82: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Now we know the structures of these aldohexoses and aldopentoses. Figure 24.57

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1267)

Structures unraveled sofar!

Page 83: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

D-Arabinose and D-ribose give the same osazone, and therefore can differ only at C(2). The structure of D-ribose is therefore known. L-Ribose is simply the mirror image of the D-isomer. Figure 24.58

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1268)

Page 84: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.4 The Fischer Determination of the Structures of D-Glucose (and the 15 other Aldohexoses (page 1268)

In a similar way the structures of all the other aldopentoses and aldohexoses were established.

See Figures 24.59, 24.60, 24.61 and 24.62

Page 85: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.5 Something more: Di- and Polysaccharides (page 1270)

A disaccharide

How can this structure be unraveled?

Examples:

Disaccharides: sucrose, lactose, maltose, Polysaccharide: cellulose

Page 86: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.5 Something more: Di- and Polysaccharides (page 1270)

In acid, (+)-lactose is hydrolyzed to D-glucose and D-galactose. Figure 24.63

Hydrolysis shows the individual

monosaccharides!

Page 87: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Hydrolysis in dilute acid means that there must be a glycosidic linkage in (+)-lactose

Figure 24.64

Page 88: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

The remaining questions about the structure of (+)-lactose.Figure 24.65

§ 24.5 Something more: Di- and Polysaccharides (page 1271)

Page 89: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

The acid group in lactobionic acid marks the position of the aldehyde in (+)-lactose. As hydrolysis of lactobionic acid gives a gluconic acid (not a galactonic acid), it is glucose that has the free aldehyde in (+)-lactose. Figure 24.66

Page 90: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

The acid group in lactobionic acid marks the position of the aldehyde in (+)-lactose. As hydrolysis of lactobionic acid gives a gluconic acid (not a galactonic acid), it is glucose that has the free aldehyde in (+)-lactose. Figure 24.66

We still don’t know which OH is making the connection!!!

Page 91: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

The position of the OH used to attach glucose to C(1) of galactose can be determined through a series of methylation and hydrolysis experiments.

Figure 24.67

Methylation!

Page 92: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

The position of the OH used to attach glucose to C(1) of galactose can be determined through a series of methylation and hydrolysis experiments.

Figure 24.67

Methylation!

Not methylated

Page 93: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

A Fischer projection for (+)-lactose. Figure 24.67

§ 24.5 Something more: Di- and Polysaccharides (page 1274)

Problem 24.23 Make a good three-dimensional drawing of (+)-lactose

Page 94: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.5 Something more: Di- and Polysaccharides (page 1271)

No aldehyde oxidation with Br2/H2O

possible!!!

-> A nonreducing sugar

Sucrose

Suggest a basic structural feature for such a sugar

Page 95: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

In nonreducing sugars, there is no free aldehyde group. Attachment must be between both C(1) atoms. Sucrose is an example.

Figure 24.69

§ 24.5 Something more: Di- and Polysaccharides (page 1271)

Sucrose

No aldehyde oxidation with Br2/H2O

possible!!!

-> A nonreducing sugar

Page 96: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

Cellulose and amylose

Figure 24.70

§ 24.5 Something more: Di- and Polysaccharides (page 1276)

Polysaccharides

Page 97: N § 24.1 Nomenclatuur and Structure (page 1235) Polyfunctional Natural Products: Carbohydrates Chapter 24 The two enantiomers of the simplest sugar, glyceraldehyde

Polyfunctional Natural Products:Carbohydrates

§ 24.5 Something more: Di- and Polysaccharides

Problems 24.24; 24.25

§ 24.8 Additional Problems (page 1279)

Problems 24.27; 24.28; 24.29; 24.30; 24.31; 24.32; 24.33; 24.34; 24.37; 24.38; 24.39; 24.40; 24.42; 24.43; 24.44; 24.46; 24.48