name_____________________€¦  · web viewa. common names: nh3 (ammonia), h2o2 (hydrogen...

21
AP Chemistry 3: Chemical Bonding Name __________________________ A. Bonding (8.1 to 8.4) 1. why bond? a. atoms and ions become attached (bonded) because they enter a lower energy state b. complete valence shell = lowest energy state 1. metals lose all valence electrons, which uncovers complete valence shell (+ ion) 2. nonmetals with 5-7 valence electrons gain electrons to complete valence shell (– ion) 3 nonmetals share valence electrons with other nonmetals a. 1-3 valence electrons share 1 for 1 doubling valence number b. 4-7 valence electrons share to fill s and p orbitals (8 electrons = octet rule) c. Lewis symbols 1. a system to show valence electrons 2. chemical symbol + dots for valence electrons 3. Na•, •Mg•, etc. d. three major types of bonds 1. ionic bond: electrostatic attraction between cations and anions 2. covalent bond: shared electrons between non-metal atoms 3. metallic bond: metal atoms collectively share valence electrons 4. molecular bonds, discussed in the next section, aren't true bonds 2. ionic bonding a. metal and nonmetal: Na(s) + ½ Cl 2 (g) NaCl(s) (oxidation-reduction reaction) b. cations and anions: Na + (aq) + Cl - (aq) NaCl(s) (precipitation reaction) c. bond strength 1. lattice energy measures E for bonding 2. electrostatic force measures ionic attraction 3. proportional to ionic charges 4. inversely proportional to ionic radii 3. covalent bonding a. bonding atoms' orbitals overlap, which maximizes attraction between nuclei and bonding electrons b. atoms share 2, 4 or 6 electrons 1. 2 (single), 4 (double), 6 (triple) bond 2. multiple bonds reduce bond distance a. bond distance < sum of atomic radii b. shorter bond distance = stronger bond c. polar bond when electrons are not shared equally 1. electronegativity a. measures atom's attraction for bonding electron pair (higher # = stronger) b. relative scale where period 2 elements are 1.0 (Li) to 4.0 (F), with 0.5 intervals 1. noble gases are excluded 2. trend: a. increase across period b. decrease down groups 2. bond polarity a. electronegativity difference between bonding atoms result in uneven sharing of electrons, which generates a partially positive charged side, +, and a partial negative charged side, - b. notation c. measured as dipole moment 3. bond strength increases with polarity

Upload: others

Post on 19-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

AP Chemistry 3: Chemical Bonding Name __________________________A. Bonding (8.1 to 8.4)

1. why bond?a. atoms and ions become attached (bonded)

because they enter a lower energy stateb. complete valence shell = lowest energy state

1. metals lose all valence electrons, which uncovers complete valence shell (+ ion)

2. nonmetals with 5-7 valence electrons gain electrons to complete valence shell (– ion)

3 nonmetals share valence electrons with other nonmetalsa. 1-3 valence electrons share 1 for 1

doubling valence numberb. 4-7 valence electrons share to fill s and p

orbitals (8 electrons = octet rule)c. Lewis symbols

1. a system to show valence electrons2. chemical symbol + dots for valence electrons3. Na•, •Mg•, etc.

d. three major types of bonds1. ionic bond: electrostatic attraction between

cations and anions2. covalent bond: shared electrons between

non-metal atoms3. metallic bond: metal atoms collectively share

valence electrons4. molecular bonds, discussed in the next

section, aren't true bonds 2. ionic bonding

a. metal and nonmetal: Na(s) + ½ Cl2(g) NaCl(s)(oxidation-reduction reaction)

b. cations and anions: Na+(aq) + Cl-(aq) NaCl(s) (precipitation reaction)

c. bond strength1. lattice energy measures E for bonding 2. electrostatic force measures ionic attraction3. proportional to ionic charges4. inversely proportional to ionic radii

3. covalent bondinga. bonding atoms' orbitals overlap, which maximizes

attraction between nuclei and bonding electronsb. atoms share 2, 4 or 6 electrons

1. 2 (single), 4 (double), 6 (triple) bond2. multiple bonds reduce bond distance

a. bond distance < sum of atomic radiib. shorter bond distance = stronger bond

c. polar bond when electrons are not shared equally1. electronegativity

a. measures atom's attraction for bonding electron pair (higher # = stronger)

b. relative scale where period 2 elements are 1.0 (Li) to 4.0 (F), with 0.5 intervals1. noble gases are excluded2. trend:

a. increase across periodb. decrease down groups

2. bond polaritya. electronegativity difference between

bonding atoms result in uneven sharing of electrons, which generates a partially positive charged side, +, and a partial negative charged side, -

b. notation

c. measured as dipole moment3. bond strength increases with polarity

Page 2: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

B. Lewis Structures (8.5 to 8.7) 1. shows the atoms in a molecule with their bonding and

non-bonding electron pairsa. bonding electrons (– single, = double, triple)b. lone (non-bonding or unshared) electron pair (••)

2. drawing Lewis structures with one central atom count the total number of valence electrons

(subtract charge for ions)CO2: 4 + 2(6) = 16IF2

–: 7 + 2(7) + 1 = 22 draw a skeleton structure

o first element in formula is central, except Ho single bonds to other atoms (max. 4)

O–C–O [F–I–F]–

(ions are bracketed) place electrons around each atom

o 8 total electronso except H, Be and B or when total number of

electrons is an odd number

.. .. .. .. .. ..:O – C – O: [:F – I – F:]–

.. .. .. .. .. ..

count Lewis structure electrons (including bonding electrons)o if equal to valence electrons, stopo if valence e- < Lewis e-, add additional bonds to

reduces # of electrons by 2'so if valence e- > Lewis e-, add 2 or 4 electrons to

central atom (3rd period or higher); called expanded octet

.. .. .. .... ..O = C = O [:F – I – F:]–

.. .. .. .. ..added bonds expanded octet

3. when more than one Lewis structure is possible use formal charge to decide which is more likelya. each atom is assigned its lone electrons plus half

the bonding electronsb. formal charge = valence e- – assigned e- c. preferred structure

1. atoms have formal charges closest to zero2. negative formal charge reside on the more

electronegative atom (upper right most on the periodic table)

d. example: NCS-

[:::N–CS:]- [::N=C=S::]- [:NC–S:::]-

valence e- assigned e-formal

5 4 67 4 5-2 0 +1

5 4 66 4 6-1 0 0

5 4 65 4 70 0 -1

[::N=C=S::]- is preferred because formal charges are closest to zero and negative charge is on the nitrogen (higher electronegativity)

e. technique can produce erroneous structures (experiments are required to determine actual structure)

Page 3: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

C. VSEPR Model (9.1 to 9.3)1. rules

a. maximum separation between electron pairsb. atom positions define molecular geometryc. lone electron pairs squeeze bond angle

(actual angle < ideal angle)ElectronDomains

Domain Geometry – : Molecular

GeometryBond Angle

2 2 0 180o

3

3

2

0

1

120o

4

4

3

2

0

1

2

109.5o

5

5

4

3

2

0

1

2

3

90o

120o

6

6

5

4

0

1

2

90o

2. polar moleculesa. lone electron pairs distort symmetry except for

sp3d-linear and sp3d2-square planarb. different perimeter atomsc. polar interactions increase water solubility,

increase melting and boiling temperatures, decrease evaporation (volatility)

Page 4: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

D. Valence-Bond Theory (9.4 to 9.5)1. explains electron domain geometries in terms of

electron orbitals2. atomic orbitals from bonding atoms merge, which

allows single electrons from each atomic orbital to occupy overlapping area and simultaneously attract both nuclei (i.e. H–H: overlap of 1s orbitals)

3. more complex molecules require a fusion of s and p orbitals into equivalent (hybrid) orbitalsa. explains why covalent bonds around an atom are

all the same even if electrons were originally in different shaped (s, p and d) atomic orbitals

b. 1 s + 1 p form 2 sp hybrids (2 electron domains)

ground state excited state hybridized state

s p s p sp p

c. 1 s + 2 p form 3 sp2 hybrids (3 electron domains)

ground state excited state hybridized state

s p s p sp2 p

d. 1 s + 3 p form 4 sp3 hybrids (4 electron domains)

ground state excited state hybridized state

s p s p sp3

e. expanded octet hybridization1. 1 s + 3 p + 1 d = 5 sp3d hybrids (5 domains)2. 1 s + 3 p + 2 d = 6 sp3d2 hybrids (6 domains)

4. not all valence electrons enter hybrid orbitalsa. one electron pair per bond enters a hybrid orbital

1. sigma bond ()2. electrons located between bonding atoms

b. lone pairs of electrons enter hybrid orbitalc. remaining bonding pairs of electrons from multiple

bonds remain in pure p orbitals1. pi bond ()2. electrons located above/below bonding atoms

d. example: ::O=C=O::

p p sp2 p p sp2

sp2 sp sp sp2

p p sp2

sp2 p p

e. bond electrons can spread out across entire molecule (delocalized)1. NO3

- has one bond, which is shared evenly and simultaneously between 3 O's

2. multiple Lewis structures show all possible locations for bonds = resonance forms

3. bond order = sigma bond + share of bonds(each N–O bond has bond order = 1 1/3)

Page 5: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

E. Naming Binary Molecules (2.8)1. two types of nonmetal atoms covalently bonded2. lower electronegative atom is written first and named

as the element3. second element is given –ide ending4. prefix used to indicate number of atoms

a. 1—mono, 2—di, 3—tri, 4—tetra, 5—penta, etc.b. mono never used for first element

5. exceptionsa. common names: NH3 (ammonia),

H2O2 (hydrogen peroxide) and H2O (water)b. molecules that begin with H (except H2O)

1. no prefix for H H2S(g) is hydrogen sulfide2. water solutions are acidic H2S(aq) is

hydrosulfuric acidc. organic molecules (discussed next)

F. Simple Organic Molecules—Hydrocarbons (25.1 to 25.6) 1. general properties

a. contain C and Hb. nonpolar, flammable (fuels)

2. formulas and namesa. number of carbons in parent chain1 2 3 4 5

meth eth prop but pent6 7 8 9 10

hex hept oct non decb. bond between carbons

1. alkanes (all single bonds) end in “ane”2. alkenes (1 or more double bonds)

1 double end in “ene”, 2 double end in "diene"3. alkynes (1 or more triple bonds) end in “yne”4. cyclical

a. 3 to 6 carbon ring with single bonds between carbons: prefix "cyclo"

b. 6 carbon ring with 3 shared bonds: benzene (called aromatic hydrocarbon)

c. branches1. C-branches—“yl”2. benzene branch—"phenyl"3. location of branches

a. number of the parent carbonb. lowest number possiblec. dash: # – word, comma: #, # d. number of branches (2—di, 3—tri, etc.)

3. condensed structural formulaa. hydrogens are written after the carbon b. branches are in parentheses after hydrogensc. example: 4-ethyl-2-methyl-1-hexene

CH2C(CH3)CH2CH(C2H5)CH2CH3

d. semi-condensed (shows branches and bonds) CH3 C2H5 | |

CH2=C–CH2–CH–CH2–CH3

4. functional groupsa. dramatically modify properties of hydrocarbonb. haloalkanes: halogen replaces one or more H

1. reduces reactivity (flammability)2. named as a branch with an “o” ending

c. oxygen containing groups1. hydroxyl group (C–OH)

a. water solubleb. alcohols (antiseptic, solvent, fuel)c. acids (release H+ in solution)

2. carbonyl group (C=O)a. aldehydes (preservative, flavors)b. ketones (solvent)c. esters (pleasant odors, polymers)

3. ethers have C–O–C (first anesthesia, solvent)4. increases polarity: C–OH > C=O > C–O–C

Page 6: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

d. amines1. replace H in ammonia with hydrocarbon

group = amine (CH3NH2 = methylamine)2. when NH2 branches off hydrocarbon = amino

CH3CH(NH2)CH2CH3 (2-aminobutane)3. weak bases (neutralize acids—absorb H+)

e. summary chart

5. isomerisma. structural isomers: same molecular formula,

different structure and name1. move double/triple bond position 2. move branch3. form cycloalkane from alkene

b. geometric isomers: same molecular formula, same relative position of carbons and bonds, but different spatial arrangement1. >C=C< carbons can't rotate

a. x>C=C<x : cisb. x>C=C<x : trans

2. three expanded octet geometries show geometric isomerisma. sp3d: trigonal bipyramidal b. sp3d2: square planar and octahedral

Page 7: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

Bonding1. Consider the main group elements (1-2, 13-18).

a. Record the number of valence electrons.b. Draw the Lewis dot structure for element "X" c. Record the ionic charge when forming ionic bondd. Record the total number of electrons surrounding the

atom when forming covalent bond(s)1 2 13 14 15 16 17 18

a

b

cd

2. Illustrated below are four ions—A+, B+, C- and D-—showing their relative ionic radii.

A+ B+ C– D–

What combinations of ions are impossible?

What would have the greatest lattice energy?

What would have the least lattice energy?3. The table lists the ionic radius (x 10-10 m) of common ions.

Li+ (0.68) Be2+ (0.31) O2- (1.40) F- (1.33)Na+ (0.97) Mg2+(0.66) Al3+ (0.51) S2- (1.84) Cl- (1.81)a. Use the above information to estimate the relative

lattice energy for each ionic bond. E Q1Q2/d (Q1 and Q2 = ionic charge and d (rcation + ranion)

Ionic Bond Relative Lattice Energy

LiF

MgO

NaCl

Al2S3

b. Ionic compounds melt when the temperature is high enough to break the ionic bond. Rank the above compounds in order of lowest to highest melting point.

c. What is the relative lattice energy for the strongest ionic bond formed from the ions listed in the table?

4. Use the electronegativity values to answer the questions. H 2.1Li 1.0 Be 1.5 B 2.0 C 2.5 N 3.0 O 3.5 F 4.0Na 0.9 Mg 1.2 Al 1.5 Si 1.8 P 2.1 S 2.5 Cl 3.2K 0.8 Ca 1.0 Ga 1.6 Ge 1.8 As 2.0 Se 2.4 Br 2.8

Rb 0.8 Sr 1.0 In 1.7 Sn 1.8 Sb 1.9 Te 2.1 I 2.5a. What is the range of electronegativities?

metals metalloids nonmetals

b. Rank the following bonds from most polar (1) to least polar (6). Place + next to the atom with the lower electronegativity.

N–S O–S F–S

Page 8: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

P–S S–S Cl–S 5. Consider the following data for hydrogen halides.

H-Halide

Electronegativity difference

Dipole moment

Bond Strength(kJ/mol)

Bond Length

(Å)HF 1.9 1.82 436 0.92HCl 0.9 1.08 431 1.27HBr 0.7 0.82 366 1.41HI 0.4 0.44 299 1.61

Indicate whether the following correlate directly or inversely.

Direct InverseElectronegativity difference & dipole momentElectronegativity difference & bond strengthDipole moment & bond strengthBond length & bond strength

6. Consider the following data for C-C bonds.C-C bond Single Double Triple

Bond Strength (kJ/mol) 348 614 839How does bond strength correlate with the number of shared electrons?

Lewis Structures7. Record the number of covalent bonds typically

formed by the main group elements.1 2 13 14 15 16 17 18

8. In the Lewis structure shown below, A, D, E, Q, X and Z represent non-metal elements in the first two rows of the periodic table. Identify the elements.

A D E Q X Z

9. Draw the Lewis structure for the diatomic molecules.

H2 N2 O2 F2

10. There are three ways to draw Lewis structures for NCO– a. Calculate the formal charge for each version

Structure [:::N–CO:]– [::N=C=O::]– [:NC–O:::]–

FormalCharge

b. Which is the preferred structure? Give two reasons.

11. Draw Lewis structures for the following molecules where the first atom listed is the central atom, unless indicated.CH4 NH3

Page 9: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

CO2 CH2O

continue

POCl3 (lowest formal charge)

CNO– (lowest formal charge)

SCN– (C is central atom) BCl3

SF6 BrF3

H2O (O is the central atom)

HF (F is the central atom)

SO3 N2O (lowest formal charge)

IF5 AsF5

SF4 SO2Cl2 (lowest formal charge)

RnCl2 IF4–

XeF4 NO2

VSEPR Model12. Make the following ideal molecules using clay and tooth

picks. Complete the table for each ideal molecule.(–) (• •) Domain Bond Molecular Polar?

Geometry Angle Geometry

2 03 03 14 04 14 25 05 15 25 36 06 16 2

13. Based on the Lewis structures from question 11, determine electron domain geometry, molecular geometry, polarities and bond angle (indicate if it is less than the ideal angle "<").Molecul

e Domain Geo Molecular Geo Polarity Angle

CH4

NH3

CO2

CH2O

POCl3

CNO-

SCN-

BCl3

SF6

BrF3

H2O

HF

SO3

N2O

IF5

AsF5

SF4

SO2Cl2

Page 10: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

RnCl2

IF4-

XeF4

NO2

Valence-Bond Theory14. Based on the Lewis structures from question 11, determine

the number of bonds, the number of bonds, number of lone electron pairs, hybridization around the central atom, and the bond order for the perimeter atoms.

Molecule

Bonds

BondsLone Pairs Hybridization Bond

OrderCH4

NH3

CO2

CH2OPOCl3CNO-

SCN-

BCl3SF6

BrF3

H2OHFSO3

N2OIF5

AsF5

SF4

SO2Cl2RnCl2

IF4-

XeF4

NO2

15. Label the hybridization for each carbon atom.

16. Draw the resonance structures for the following molecules.Molecule Resonance Structures

CO32-

SO2

Naming Binary Molecules17. Complete the chart with the formula or name of the binary

molecule.Formula Name

N2O5

carbon tetrachlorideCO2

nitrogen monoxideOF2

hydrogen bromideHBr(aq)

Simple Organic Molecules—Hydrocarbons

Page 11: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

18. Draw the structure formulas, including hydrogen, and names for the first six members of the alkane series.

19. Draw semi-condensed structural formulas for the following organic compounds.

ethane benzene

1,3-pentadiene 3-ethylbutyne

diethylamine ethanoic acid (acetic acid)

2,2-dimethylpropane

methylbenzene

ethanol (ethyl alcohol)

2-propanol (isopropyl alcohol)

propanone(acetone)

diethyl ether (ether)

methanal(formaldehyde)

methyl propanoate

20. Name the following organic molecules from their semi-condensed structural formulas.

CH3 CH3

| |CH3 – C – CH2 – CH – CH3

| CH3

| C2H5

continue

H2C–CH2

/ \Cl-CH CH2

\ /H2C–CH2

HC C – CH2Cl

CH3 – CH2 – C – OH || O

CH3 – O – C – CH2 – CH3

|| O

F F F | | |

CH2 – CH – CH2

..CH3–N–CH3

| CH3

C2H5

|CH3 – CH2 – C – CH2 – CH3

| C2H5

CH3 CH3

\ /C = C/ \

H H

CH3 – C – CH2 – CH3

|| O

HO – CH2 – CH2 – CH3 CH3 – O – C3H7

CH3 – CH2 – CH2 – CH || O

OH|

CH3 – C – CH3

| OH

CH3 – CH2 – CH – CH3

| NH2

H2N – CH2 – C – OH || O

21. Complete the table of isomers of each given formula.a. C5H12

Structure Formula

pentane

2-methybutane

2,2-dimethylpropane

Page 12: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

b. C4H8

Structure Formula

C = C – C – C

C \

C = C \

C

C C\ /C = C

C|

C = C – C

C – C| |

C – C

Aspirin Synthesis Lab (Wear Goggles)22. Synthesize aspirin from acetic acid and salicylic acid and

determine its purity.a. In order to increase the yield of aspirin and to speed up

the reaction, acetic anhydride is used, which is made by removing water from two acetic acid molecules (dehydration synthesis). Highlight the H and OH that are removed from the two acetic acid molecules.

CH3–C–OH + HO–C–CH3 CH3–C–O–C–CH3 + H2O || || || || O O O O acetic acid acetic acid acetic anhydride waterb. Aspirin is an ester that is produced by dehydration

synthesis. Highlight the H and OH from the carboxyl group (-COOH) on acetic acid and the hydroxyl group (-OH) on salicylic acid.

CH3-C-OH + HO-C6H4-COOH CH3-C-O-C6H4COOH + H2O

|| || O Oacetic acid salicylic acid aspirin waterAdd 2.0 g of salicylic acid, 5.0 mL of acetic anhydride and 5 drops of 85 % H3PO4 (catalyst) to a 125-ml Erlenmeyer flask. Place the flask in a 600-mL beaker half filled with 75oC water and clamp in place. Heat for 15 minutes (stir the contents occasionally with a stirring rod). Slowly add 2 ml of water to the flask to decompose any excess acetic anhydride. When the contents stop smelling like vinegar, remove the flask from the water bath and add 20 ml of water. Put the flask in an ice bath for 5 minutes to hasten crystallization and increase the yield. Collect the aspirin by filtering the cold mixture. To test the purity of the aspirin, add 0.10 g aspirin to 5 mL of 95% ethanol in a 50-mL beaker and dissolve. Add 5 mL of 0.025 M Fe(NO3)3 in 0.5 M HCl and 40 ml of distilled water and stir. Fill a cuvette with the solution and measure the absorbance of the solution at 525 nm.c. Record the absorbance.

Salicylic acid forms a magenta complex with Fe3+ and the spectrophotometer measures its color intensity (absorbance).

The concentration of salicylic acid, an impurity, is directly proportional to the absorbance, A, according to Beer's law (A = abc), where a (molar absorptivity) = 1000 mol/(L•cm) and b (cuvette path length) = 1.0 cm.d. Calculate c, the number of moles of salicylic acid in one

liter of solution.

e. Calculate the moles of salicylic acid in 50 mL.

f. Calculate the moles of aspirin, C9H8O4, in 0.10 g.

g. Calculate the mole percent salicylic acid in the aspirin.

h. Perform the following on the chemical equation for the synthesis of aspirin below.(1) Cross out the bond on the acetic anhydride

molecule that is broken during the reaction.(2) Highlight the hydrogen atom on salicylic acid's

hydroxyl group and draw a line showing where it attaches to the acetic anhydride molecule to form acetic acid.

(3) Draw a line that bonds the remaining half of the acetic anhydride molecule to the salicylic acid molecule.

(4) Highlight the catalyst for the reaction.

acetic anhydride salicylic acid

aspirin acetic acid

Practice QuizMultiple Choice (no calculator)

Briefly explain why the answer is correct in the space provided.1 2 3 4 5 6 7 8 9 10 11 12 13D C A B D D B A C A D D D14 15 16 17 18 19 20 21 22 23 24 25 26B A D D A A D B C B A D D27 28 29 30 31 32 33 34 35 36 37 38 39A B C D C D D D D D B A B1. Types of hybridization exhibited by the C atoms in

propene, CH3CHCH2 include which of the following? I. sp II. sp2 III. sp3

(A) I only (B) II only (C) III only (D) II and III

2. Which molecule contains 1 sigma () and 2 pi () bonds?(A) H2 (B) F2 (C) N2 (D) O2

3. Which molecule has the shortest bond length?(A) N2 (B) O2 (C) Cl2 (D) Br2

Page 13: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

4. Which molecule has only one unshared pair of valence electrons?(A) Cl2 (B) NH3 (C) H2O2 (D) N2

5. The electron pairs in a molecule where the central atom exhibits sp3d2 hybrid orbitals are directed toward the corners of (A) a tetrahedron (B) a square pyramid(C) a trigonal bipyramid (D) an octahedron

6. The SbCl5 molecule has trigonal bipyramid structure. Therefore, the hybridization of Sb orbitals should be(A) sp2 (B) sp3 (C) dsp2 (D) dsp3

7. For which molecule are resonance structures necessary to describe the bonding satisfactorily?(A) H2S (B) SO2 (C) CO2 (D) OF2

8. Which molecules have planar configurations? I. BCl3 II. CHCl3 III. NCl3

(A) I only (B) II only (C) III only (D) II and III

9. CCl4, CO2, PCl3, PCl5, SF6

Which does NOT describe any of the molecules above?(A) Linear (B) Octahedral (C) Square planar (D) Tetrahedral

10. The geometry of the SO3 molecule is best described as (A) trigonal planar (B) trigonal pyramidal(C) square pyramidal (D) bent

11. Pi () bonding occurs in each of the following EXCEPT(A) CO2 (B) C2H4 (C) CN- (D) CH4

12. According to the VSEPR model, the progressive decrease in the bond angles in the series of molecules CH4, NH3, and H2O is best accounted for by the (A) increasing strength of the bonds (B) decreasing size of the central atom (C) increasing electronegativity of the central atom (D) increasing number of unshared pairs of electrons

Questions 13-15 refer to the following molecules. (A) PH3 (B) H2O (C) CH4 (D) C2H4

13. The molecule with only one double bond

14. The molecule with the largest dipole moment

15. The molecule that has trigonal pyramidal geometry

16. Which molecule has a zero dipole moment?(A) HCN (B) NH3 (C) SO2 (D) PF5

Page 14: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

17. Which molecule has the largest dipole moment? (A) CO (B) CO2 (C) O2 (D) HF

18. Which molecule has a dipole moment of zero? (A) C6H6 (benzene) (B) NO(C) SO2 (D) NH3

19. Which pair of atoms should form the most polar bond?(A) F and B (B) C and O(C) F and O (D) N and F

20. Which pair of ions should have the highest lattice energy?(A) Na+ and Br- (B) Li+ and F-

(C) Cs+ and F- (D) Li+ and O2-

21. Which compound has the greatest lattice energy?(A)BaO (B) MgO (C) CaS (D)MgS

22. Which molecule has the weakest bond?(B) CO (B) O2 (C) Cl2 (D) N2

23. How are the bonding pairs arranged in the best Lewis structure for ozone, O3?(A) O–O–O (B) O=O–O(C) OO–O (D) O=O=O

24. Which species has the shortest bond length?(A) CN- (B) O2 (C) SO2 (D) SO3

25. Which species has a valid non-octet Lewis structure?(A) GeCl4 (B) SiF4 (C) NH4+ (D) SeCl4

26. The Lewis structure for SeS2 with zero formal charge has (A) 2 bonding pairs and 7 nonbonding pairs of electrons.(B) 2 bonding pairs and 6 nonbonding pairs of electrons.(C) 3 bonding pairs and 6 nonbonding pairs of electrons.(D)4 bonding pairs and 5 nonbonding pairs of

electrons.

27. Which molecular shape cannot exhibit geometric isomerism?(A) tetrahedron (B) square planar(C) trigonal bipyramid (D) octahedron

28. Which molecule is NOT polar?(A) H2O (B) CO2 (C) NO2 (D) SO2

29. Which species has sp2 hybridization for the central atom?(A) C2H2 (B) SO32- (C) O3 (D) BrI3

Page 15: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

30. For ClF3, the electron domain geometry of Cl and the molecular geometry are, respectively, (A) trigonal planar and trigonal planar. (B) trigonal planar and trigonal bipyramidal.(C) trigonal bipyramidal and trigonal planar.(D) trigonal bipyramidal and T -shaped.

31. The size of the H-N-H bond angles of the following species increases in which order? (A) NH3 < NH4

+ < NH2- (B) NH3 < NH2

- < NH4+

(C) NH2- < NH3 < NH4+ (D) NH2- < NH4+ < NH3

32. What is the molecular geometry and polarity of BF3?(A) trigonal pyramidal and polar(B) trigonal pyramidal and nonpolar(C) trigonal planar and polar(D) trigonal planar and nonpolar

33. In which species is the F-X-F bond angle the smallest? (A) NF3 (B) BF3 (C) CF4 (D) BrF3

34. Which set does not contain a linear species?(A) CO2, SO2, NO2 (B) H2O, HCN, BeI2 (C) OCN-, C2H2, OF2 (D) H2S, CIO2-, NH2-

35. The hybrid orbitals of nitrogen in N2O4 are(A) sp (B) sp2 (C) sp3 (D) sp3d

36. How many sigma and how many pi bonds are inCH2=CH–CH2–C–CH3? ||

O (A) 5 sigma and 2 pi. (B) 8 sigma and 4 pi. (C) 11 sigma and 2 pi. (D) 13 sigma and 2 pi.

37. What is the best estimate of the H-O-H bond angle in H3O+?(A) 109.5o (B) 107o (C) 90o (D) 120o

38. Which of the following pairs of compounds are isomers? (A) CH3–CH2–CH2–CH3 and CH3–CH(CH3)–CH3 (B) CH3–CH(CH3)–CH3 and CH3–CH3–C=CH2

(C) CH3–O–CH3 and CH3–CO–CH3 (D) CH3–OH and CH3–CH2–OH

39. CH3–CH2–CH2BrWhich of the following structural formulas represents an isomer of the compound that has the structural formula represented above? (A) CH2Br–CH2–CH2

(B) CH3–CHBr–CH3

(C) CH3–CH2–CH2–CH2Br(D) CH2Br–CH2–CH2Br

Free Response (calculator)1. Rank the oxides in order of greatest lattice energies (1) to

least (3), without looking up any values. Explain.BaO CaO MgO

2. There are several oxides of nitrogen; among the more common are N2O, NO and NO2.a. Draw the Lewis structures of these molecules.

N2O

NO

NO2

b. Which of these molecules "violate" the octet rule? Explain.

c. Draw resonance structures of N2O.

d. For each resonance structure from question 2c, calculate the formal charge and evaluate which structure is most likely. Explain.

e. Which side of the N–O bond is +? Explain.

f. Rank the strength of the N–O bond in order of strongest (1) to weakest (3). Explain your answer.

N2O NO NO2

3. Complete the chart for SeF2, SeF4, and SeF6.SeF2 SeF4 SeF6

Lewis Structure

Se- HybridizationDomain GeometryMolecular GeometryIdeal Bond Angle

Polarity

Page 16: Name_____________________€¦  · Web viewa. common names: NH3 (ammonia), H2O2 (hydrogen peroxide) and H2O (water) b. molecules that begin with H (except H2O) 1. no prefix for H

4. Consider the ion SF3+.

a. Draw a Lewis structure.

b. Identify the type of hybridization exhibited by sulfur.

c. Identify the electron-domain and molecular geometries.Electron-domain

geometry Molecular geometry

d. Predict whether the F-S-F bond angle is equal to, greater than or less than 109.5°. Explain

5. Consider the ion SF5-

a. Draw a Lewis structure.

b. Identify the type of hybridization exhibited by sulfur.

c. Identify the electron-domain and molecular geometries.Electron domain geometry Molecular geometry

6. Two Lewis structures can be drawn for the OPF3 molecule.Structure 1

..: O :

.. | ..: F – P – F :

.. | ..: F :

..

Structure 2

: O :.. || ..

: F – P – F :.. | ..

: F :..

Which Lewis structures best represents a molecule of OPF3? Justify your answer in terms of formal charge.

7. Consider chloroalkanes and chloroalkenes.a. Draw the condensed structural formula and name four

structural isomers of C4H9Cl.Formula Name

b. Draw the semi-condensed structural formula and name two geometric isomers of C2H2Cl2.

Formula Name