nanoelectromechanical switches (nem relays & nemfets) dimitrios tsamados adrian ionescu epfl...

33
Nanoelectromechanical Switches (NEM Relays & NEMFETs) Dimitrios Tsamados Adrian Ionescu EPFL Kerem Akarvardar H.-S. Philip Wong Stanford Elad Alon Tsu-Jae King Liu UC Berkeley

Upload: graciela-wilds

Post on 16-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Nanoelectromechanical Switches(NEM Relays & NEMFETs)

Dimitrios Tsamados Adrian Ionescu

EPFL

Kerem AkarvardarH.-S. Philip Wong

Stanford

Elad Alon Tsu-Jae King Liu

UC Berkeley

2

Outline

• Motivation • Device operation• Logic gate configurations• State-of-the-art • Scaling and performance• Issues• Conclusion

Part I: NEM Relays

Part II: NEMFETs

3

MotivationMotivationTwo key properties unavailable in CMOS

Zero Leakage

Zero static energy

Infinite subthreshold slope

Ultra-low VDD without degrading Ion

Ultra-low dynamic energy

Ultra-low energy operation beyond the capability of CMOS

4

MotivationExtra Motivation

• Hysteresis• Stiction

• Low temperature process

• High temperature operation• High radiation hardness

• Cheap substrates

SRAM and NV Memory

3-D integration andhybrid NEMS/CMOS

Niche applications

Reduced cost

Choi et al. IEDM 2007(UC Berkeley)

Chakraborty et al. IEEE Trans. Circ. Syst. 2007(Case Western Reserve U.)

5

Operation of the NEM Relay

OFF-state

S G D

ON-statePull-in

voltage, Vpi

= VDD,min

Pull-out voltage, Vpo

Nor

mal

ized

Pos

ition

VGS

1

3

2

0

Dra

in C

urre

ntVGS

S DG

insulating substrate

air gap

limit stop cantilever beam

Conventional Device Structure & Operation

infinite slopezero leakage

6

Operation of the NEM RelayLogic Implementation and Interconnection

• CMOS schematics can be used in CNEM logic circuits• No conductivity difference between the n-type and p-type relays• Simple layout enabling to small area

MOSFET NEM RELAY

CMOS CNEM

S D

G

S D

G

VDD VDD

in out

VDD

GND

laterally-actuated cantilever

laterally-actuated cantilever

Lee et al. SPIE 2005(Simon Fraser U. –

Canada)

"n-type"

"p-type"

top view

7

Operation of the NEM RelayEnergy-Reversible (ER) CNEM Logic Gates

Top View

Laterally-actuated ER CNEM Inverter

out = in

in

VD

D

GN

D

insu

lato

rca

ntile

ver

Elastic potential energy, which is stored due to beam bending, is reversibly used for switching

out = VDD

in = GND

GN

D

VD

Dout = GND

in = VDD

VD

D

GN

D

Akarvardar et al. DRC 2008

ER principle: Yang et al. MME 2003Delft University – The Netherlands

8

Operation of the NEM RelayEnergy-Reversible CNEM Logic Gates

Conventional

energy-reversible

floa

ting

el

ectr

ode

out = AB

A

VD

D

VD

D

GN

D

BERNANDGate

Pakula et al. (Delft U.) IEEE Sensors 2005

• Reduced VDD & dynamic energy (unless hysteresis is prevented) • Experimentally demonstrated in RF switches (VDD = 5 V instead of Vpi = 38 V)

• Any logic function can be realized

ER Relays:

Nor

mal

ized

Pos

ition

VGS

1

0VpiVpo0

(energy-reversible) (conventional)

VDD,min

9

State-of-the-ArtThe smallest 2-terminal switch ever reported:

Jang et al. APL 92, 2008(KAIST & Samsung – Korea)

• 15 nm gap • 35 nm beam thickness• TiN beam, sacrificial poly-Si, wet etch + critical point dry • Several hundred cycles endurance (insulator failure)

zero leakage

infinite slope

Vpo = 8 V Vpi = 13 V300 nm

10

State-of-the-ArtHayamizu et al. Nature Nanotech 3

2008 (AIST – Japan)

Self-assembled "CNT wafers" on pre-patterned substrates

~5000 SWNTs

Parallel, scalable, and reproducible relay fabrication with > 95% structural yield

>1250 relays

11

• Scaling => smaller and faster relay that dissipates less energy• vdW Forces tend to become dominant at nanoscale

Constant-Field ScalingConstant-Field Scaling

1/KSpring constant

KResonance frequency

1/K2Elastic force

1/K2Electrostatic force

1/K3Pull-in energy

Resulting variation

Kvan der Waals forces

1/KPull-in delay

1/KPull-in voltage

1/K2Footprint area

1/KSupply voltage

1/KGap, thickness, length, widthScaled parameters

Scaling FactorParameter

1/KSpring constant

KResonance frequency

1/K2Elastic force

1/K2Electrostatic force

1/K3Pull-in energy

Resulting variation

Kvan der Waals forces

1/KPull-in delay

1/KPull-in voltage

1/K2Footprint area

1/KSupply voltage

1/KGap, thickness, length, widthScaled parameters

Scaling FactorParameter

12

Performance

Akarvardar et al. IEDM 2007

• 1 ns switching delay• 1.5 V supply voltage • 80 aJ switching energy• 0.03 μm2 lateral inverter area => competitive with CMOS• Zero leakage

S DGg0 = 10nm

L = 200 – 300 nm

h = 10 nm

L = 250 nm

siliconscaling

delay ↓Fvdw ↑

stiffer beams to compensate

for Fvdw

increased VDD

~ 1 ns

~ 1 V

Negligible Fvdw => 1 ns @ VDD 150 mV

4 nm

13

NEM relays vs. Low-Power CMOS

Lg = 45 nm LSTP CMOS (ITRS):

NEM relays should achieve nanosecond-range intrinsic delay @ VDD << 425 mV

=> Decrease the vdw forces substantially• How?

=> And/or operate close to the stiction limit• Increased sensitivity to device param.

Akarvardar et al. submitted to IEDM 2008

CV/I = 1 ns @ VDD = 425 mV

Zero leakage advantage of the NEM relay would only be apparent in logic circuits with relatively high device count and low activity

High VT (0.53 V) => Very low leakage (30 pA/μm)

14

Issues

1. Contact reliability • hot switching • high current density • high impact velocity

2. Sticking: limits the voltage scaling

3. Packaging: hermetic sealing is required

4. Tunneling: determines the minimum gap

5. Long settling time & tip bouncing: tend to increase the switching delay

6. Brownian motion: leads to switching errors

15

Conclusion

NEM logic can become an alternative ultra-low power logic technology if: • Contacts can be reliably implemented at nanoscale • Nanosecond range delays can be achieved at a few 100 mV

Detailed roadmapping and intensive engineering development are recommended

Nano-Electro-Mechanical FETs

17

Hybrid M/NEMS

Pure M/NEM devices:- micro/nano movable parts- passive device operation

Hybrid M/NEM devices:- micro/nano movable parts- solid state semiconductor device involved in operation

Drain

Source

Gate

Ex: suspended nano-beams Ex: suspended-gate FETs

18

M/NEM-FET: device architectures

Out-of-plane In-plane

Mov

e ga

teM

ove

body

Major advantages: new functionality and low power

19

20μm

Drain

Source

tgap = 220nm

Suspended-Gate

A

A’

• Resonant-Gate FET (Nathanson, 1966) • Suspended-Gate MOSFET (EPFL: A.M. Ionescu, ISQED 2001, IEDM 2005, 2006)• Nano-electro-mechanical FET (UC Berkeley, T.J. King, IEDM 2005)• Modeling of SG-FET (Stanford & EPFL: Akarvardar: IEEE TED 2008, Tsamados: SSE 2008)

movablegate

0 2 4 6 8 10 12 14

Gate voltage, VG(V)

Dra

in c

urre

nt, I

D

(A)

Pull-in

Pull-out

10-12

10-6

10-7

10-8

10-9

10-10

10-11

Experiment:Out-of-plane movable gate

Gate up:• high Vt

• in-series Cgap

Gate down • low Vt

• Cox

A

tkV gapo

inPull

3

Applications: power management, low power logic, memory

M/NEM-FET abrupt switch

20

NEMS simulation & modelingElectrostatic NEMS: mechanical & electrostatic analysis

Source: G. Li et al, Urbana-Champaign.

21

Simulation: 90nm NEM-FET

NEM-FET: scaling & simulation

• Multi-physics simulation for hybrid NEM device design• Coupled FEA: 2D ANSYS-DESSIS for suspended-gate FET

S D

SuspendedGate

S D

SuspendedGate

22

NEM-FET vs. MOSFET power management switch:• dynamic VT

• Ioff, Isubthreshold : 102 -104

• sleep area ~ MOSFET

Replaced by NEM-FET

NEM-FET power management switch

23

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

0 5 10 15 20VG (V)

I D (

A)

Mechanical pull-in

Mechanical pull-out

10-6

10-7

10-8

10-9

10-10

1

0

Drain

Source

Gate

• Electro-mechanical hysteresis: [ Vpull-in – Vpull-out ]• SG-MOSFET capacitor-less memory feasible• Hysteresis control! Scaling? Reliability?

N. Abelé et al., IEDM 2006

Hysteresis: 1T MEM-FET memory

24

Size & Voltage operation scaling (1)

• nanogap scaling (Samsung) tbeam= 20nmtgap = 20nm

NEM clamp switch with TiN beam memory cell array structure for high density non-volatile memory application

M.-S. Kim et al., ISDRS 2007

25

SG-FET compliant to ITRS 90nm node:tox=2nm, L=65nm, channel doping Nch=3×1018cm−3, μ0=278cm2/Vs , air-gap g0=5nm, W=400nm, h=10nm, Young modulus, E=170GPa.

VD=1.2V

Size & Voltage operation scaling (2)

26

• significant power savings (1-2 decades reduction) of inverter peak current

• no leakage power compared with nano-meter scaled CMOS inverter.

NEM-FET inverter

27

Movable/vibrating gate transistor

Laterally (in-plane) vibrating gate• lateral MOS transistor, detection in drain current• +4.3dB experimental gain demonstrated compared to capacitive detection using same structure

C. Durand et al., IEEE EDL 2008.

• e-beam defines gaps (~47nm gap resol.). • L=10m, W=165nm, d=120nm

LETI-CEA

28

D. Grogg, A.M. Ionescu, DRC 2008.

Laterally (in-plane) movable body:first demonstration of +30dB signal improvement

Double Gate switchable/vibrating body FET

EPFL

fres=2.4MHz, Q=6’000, Rm=200Ohm

29

D. Grogg, A.M. Ionescu,ESSDERC 2008, Confidential

Double Gate switchable/vibrating body FET

Experiment

30

• NEM-FET: true hybrid mechanical-solid-state switch with near-zero point subthreshold swing• attractive for low-Ioff power management switches, capacitor-less memory (D-RAM, S-RAM and NVM with appropriate storage layers) and new analog/RF functionality (in the resonant-gate configuration).• fabrication: compatibility of surface micromachining with CMOS processing.• Voltage scaling below 1-2V: nanogap technology• Size: ~as scalable as MOSFET (anchors needed) • NEMFET does not use mechanical contacts in the path of current flow: long-term reliability comparable to that of capacitive RF MEMS switches (>109 cycles), being limited by oxide charging.

Conclusion

31

MEMS/NEMS application roadmap in

crea

sin

g p

ow

er c

on

sum

pti

on

More transistorsthan MEMS devices

Nu

mb

er o

f T

ran

sist

ors

, NT

Number of Mechanical Components, NM

100

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105 106 107 108 109

Early MEMS(sensing applications)

M/NEMSIntegration Levels

Enabled Applications

RF MEMSADXL

More MEMS devicesthan transistors

NT/NM=1

OMM 32x32

NEM-FET Power Gating and Embedded D/SRAM

Ultra-low-power NEM-based

Embedded NVM

IntegratedActuatorSystems

Ultra-low-power NEM Relay

Logic

AdaptiveOptics

Optical Switches& Aligners

Digital MicromirrorDevice (DMD)

CPU’s

incr

easi

ng

po

wer

co

nsu

mp

tio

nin

crea

sin

g p

ow

er c

on

sum

pti

on

More transistorsthan MEMS devices

Nu

mb

er o

f T

ran

sist

ors

, NT

Number of Mechanical Components, NM

100

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105 106 107 108 109

Early MEMS(sensing applications)

M/NEMSIntegration Levels

Enabled Applications

RF MEMSADXL

More MEMS devicesthan transistors

NT/NM=1

OMM 32x32

NEM-FET Power Gating and Embedded D/SRAM

Ultra-low-power NEM-based

Embedded NVM

IntegratedActuatorSystems

Ultra-low-power NEM Relay

Logic

AdaptiveOptics

Optical Switches& Aligners

Digital MicromirrorDevice (DMD)

CPU’s

More transistorsthan MEMS devices

Nu

mb

er o

f T

ran

sist

ors

, NT

Number of Mechanical Components, NM

100

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105 106 107 108 109

Early MEMS(sensing applications)

M/NEMSIntegration Levels

Enabled Applications

M/NEMSIntegration Levels

Enabled Applications

RF MEMSADXL

More MEMS devicesthan transistors

NT/NM=1

OMM 32x32

NEM-FET Power Gating and Embedded D/SRAM

Ultra-low-power NEM-based

Embedded NVM

IntegratedActuatorSystems

Ultra-low-power NEM Relay

Logic

AdaptiveOptics

Optical Switches& Aligners

Digital MicromirrorDevice (DMD)

CPU’s

NEM sensing

32

• NEMS Beyond CMOS = low power nano-switch More than Moore = new functionality

• Key role of NEMS for power savings and new functionality: future hybrid NEMS-CMOS

• Future role of true hybrid NEM-FET devices: abrupt switch, memory, resonator, sensing• Challenges for hybrid NEM-FET:

additional process control of nanoscale air-gap, thickness and uniformity of suspended structures, control and uniformity of mechanical properties fabrication: top-down & bottom-up (Si, CNTs) wafer-level packaging and reliability thermal drift

MEMS/NEMS application roadmap

33

Acknowledgments

EPFL: FP7 IST projects MIMOSA, MINAMI and NANO-RF

Stanford: DARPA, FCRP C2S2, NSF Roger T. Howe, David Elata, J Provine, Roozbeh Parsa, Kyeongran Yoo, Soogine Chong

UC Berkeley: DARPA, FCRP C2S2 Hei Kam