nanomaterials for environmental remediation - frtr · pdf filepacific northwest national...

8
Pacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Nanomaterials for Environmental Remediation Environmental Remediation Glen E. Glen E. Fryxell Fryxell Pacific Northwest Pacific Northwest National Laboratory National Laboratory Richland, WA Richland, WA [email protected] [email protected]

Upload: trannga

Post on 28-Feb-2018

219 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

Pacific Northwest National LaboratoryU.S. Department of Energy

Nanomaterials for Nanomaterials for Environmental RemediationEnvironmental Remediation

Glen E. Glen E. FryxellFryxellPacific Northwest Pacific Northwest

National LaboratoryNational LaboratoryRichland, WARichland, WA

[email protected]@pnl.gov

Page 2: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

Advantages of nanomaterials

High surface area (capacity)Well defined structureHigh reactivityEasy dispersabilityReadily tailored for application in different environmentsChemistry/materials developed for remediation processes are readily tailored to sensing/detection

Nanomaterials provide:

Page 3: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

SAMMS: Self-Assembled Monolayers on Mesoporous

Supports

20 nm20 nm

A. Self-assembled monolayers

B. Ordered mesoporous oxide+

First reported in:

Science 1997, 276, 923-926.

POC: Glen Fryxell

Page 4: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

SAMMS in a Nutshell

Extremely high surface area = high capacityRigid, open pore structure provides for fast sorption kineticsChemical specificity dictated by monolayer interfaceEasily modified for new target speciesSequestration can be driven either by metal/ligand affinity or by adduct insolubilityGood chemical and thermal stability Easily regenerated/recycled

“Designing Surface Chemistry in Mesoporous Silica” in “Adsorption on Silica Surfaces”; pp. 665-687, Marcel-Dekker, 2000.

POC: Glen Fryxell

Page 5: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

Tailoring SAMMS interfacial chemistry to the periodic table

H HeLi Be B C N O F NeNa Mg Al Si P S Cl ArK Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I XeCs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnFr Ra Ac Rf Db Sg Bh Hs Mt Uun Uuu Uub 113 Uuq 115 117

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Chemistry of Materials 1999, 11, 2148-2154J. Physical. Chem. B. 2001, 105, 6337-6346.J. Synchrotron Radiation, 2001, 8, 922-924

Cu-EDA

OOSi

SH

OOSi

SH

HO OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OHOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

HO OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OHOSi

SH

OOSi

SH

OHOSi

SH

Science, 1997, 276, 923-926.J. Synchrotron Radiation, 1999, 6, 633-635Sep. Sci. & Technol. 1999, 3411, 2329-2345Mat. Tech. Adv. Perf. Mat. 1999, 14, 183-193Surf. Sci. & Catalysis, 2000, 105, 729-738.

thiol

SiO2

Si

O

O O

NHO

PHO

OHO

SiO2

Si

O

O O

NHO

NHO

O

3,2 HOPO

CH3

HOPO Prop-Phos

Cu-FC-EDA Cs

Env. Sci. & Tech. 2001, 35, 3962-3966.

Chem. Comm. 2002, 1374-1375.

Radiochimica Act2003, 91, 539-545

….all by varying the monolayer ligand field.

Page 6: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

Functional Nanomaterials for analytical preconcentration

20 nm20 nm

Self-assembled monolayers•Dense surface coverage

•Chemical specificity

Mesoporous materials•High surface area

•Rapid sorption kinetics

High-performance preconcentrators

E-chem

UV-Vis

XRF

RadiocountingIRGC

“Self-Assembled Monolayers on Mesoporous Supports (SAMMS): Environmental Clean-up and Enhanced Sensing Capability” Encyclopedia of Nanoscience and Nanotechnology,

Marcel-Dekker, 2004

POC: Shane Addleman

Page 7: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

Functionalized TiO2 Nanoparticlesfor Subsurface Injection

TiNano40TM CharacteristicsSurface Area (BET) 51.2 m2/gParticle Density 3.88 g/cm3Particle Size 40 – 60 nmTiO2 99.8%Impurities 0.2%(ZrO2, SiO2,Cl, P2O5, ZnO)Crystalline Phase Anatase

Tc-99 Adsorption ExperimentAdsorbent: Cu-EDA anatase nanoparticlesContact Solution: Hanford GW spiked with 49.5 pCi/ml of Tc-99Hanford Ground Water (mg/l)Ca 49.5 NO3 8.6Mg 14.6SO4 64.7K 1.7Si 16.5Na 13.2CO3 60.8Cl 16.4pH 8.3 (SU)EC 0.47 mS/cmSolution:Solid Ratio (ml/g) :25, 50, 100, 500, 100, 5000, 10000

Anatase Nanoparticle Injection TestsAn aqueous suspension of anatase (ammonium carboxylate ~ 2 wt %) was successfully injected in to a 100 cm long, 20 – 30 mesh sand column (~35% porosity).

The inlet pressure after injection of 3 pore volumes of suspension remained low (<14 psi).

An average of 4 wt % of anatase was uniformly distributed throughout the sand column.

POC: Shas Mattigod

Page 8: Nanomaterials for Environmental Remediation - FRTR · PDF filePacific Northwest National Laboratory U.S. Department of Energy Nanomaterials for Environmental Remediation Glen E. Fryxell

Tc-99 Sequestration by Functionalized TiO2 Nanoparticles

y = 3.0072x2.9643

R2 = 0.95370.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

0.0 10.0 20.0 30.0 40.0

Tc-99 Equilibrium Activity (pCi/ml)

Tc-9

9 ad

sorb

ed (p

Ci/g

)

y = 26.084x0.5453

R2 = 0.97320.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

5.0E+03

10.0 100.0 1000.0 10000.0

Solution:Solid Ratio (ml/g)

Dis

tribu

tion

Coe

ffici

ent (

Kd m

l/g)

02468

10121416

0 1 2 3

# of Pore Volumes Injected

Inle

t Pre

ssur

e (p

si)

Inlet Pressure Change as a Function of Pore Volume

SummaryAnatase nanoparticles were successfully functionalized with Cu-EDA monolayers.

Cu-EDA anatase selectively adsorbed Tc-99 from spiked Hanford ground water.

Successful injection of an aqueous suspension of anatase nanoparticles into a sand medium was demonstrated.

Tc-99 Adsorption ExperimentsMaximum Tc-99 loading: ~1.3 x 105 pCi/g.Tc-99 Kd: 1.5 x 102 – 4.0 x 103 ml/g.

POC: Shas Mattigod