narrowband interference parameterization for sparse

21
Narrowband Interference Parameterization for Sparse Bayesian Recovery Anum Ali 1 , Hesham Elsawy 1 , Tareq Y. Al-Naffouri 1,2 , and Mohamed-Slim Alouini 1 1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. 2 King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia. June 09, 2015 Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 1/17

Upload: others

Post on 06-Jan-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Narrowband Interference Parameterization for Sparse

Narrowband Interference Parameterization forSparse Bayesian Recovery

Anum Ali1, Hesham Elsawy1, Tareq Y. Al-Naffouri1,2, andMohamed-Slim Alouini1

1King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.2King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

June 09, 2015

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 1/17

Page 2: Narrowband Interference Parameterization for Sparse

Content

1 Introduction

2 Bayesian Sparse Recovery

3 Interference Parameterization

4 Simulation Results

InterferenceMitigation

CompressedSensing

StochasticGeometry

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 2/17

Page 3: Narrowband Interference Parameterization for Sparse

Introduction

Single Carrier-FDMA (SC-FDMA) is used in LTE uplink [1]

Narrowband Interfer-ence (NBI) Sources

Coexistingsystems inunlicensed bands

Garage dooropeners

Cordless phonesetc

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 3/17

[1] H. G. Myung, J. Lim, and D. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEEVeh. Technol. Mag., vol. 1, no. 3, pp. 30-38, 2006.

Page 4: Narrowband Interference Parameterization for Sparse

Introduction

Interference Impact on SC-FDMA

A single strong interference source can completely destroy thedata in single carrier-FDMA

0 32 64 96 128

0

0.2

0.4

0.6

0.8

1

Subcarrier Index

Nor

mal

ized

Rec

eive

dS

ign

al SC-FDMAInterference

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 4/17

Page 5: Narrowband Interference Parameterization for Sparse

Bayesian Sparse Recovery

How and Why?

Active interference on few frequencies −→ CompressedSensing based recovery is possible

Randomly chosen data points are kept data free to senseinterference at the receiver

Size M observation

vector

Measurement matrix

Sparse NBI

noiseThe unknown size

N NBI vector

Active NBI Sources

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 5/17

Page 6: Narrowband Interference Parameterization for Sparse

Bayesian Sparse Recovery

Sparse Signal Recovery Approaches

Bayesian (utilizeprior statistics)

• FBMP

• SBL

Convex optimization(robust)

• BP

• BPDN

• LASSO

Greedy (fast)

• OMP

• CoSaMP

• StOMP

Use Bayesian schemesfor sparse recovery

Low computationalcomplexityGood reconstructionaccuracyAcknowledgeGaussianity of noise

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 6/17

Page 7: Narrowband Interference Parameterization for Sparse

Bayesian Sparse Recovery

Sparse Signal Recovery Approaches

Bayesian (utilizeprior statistics)

• FBMP

• SBL

Convex optimization(robust)

• BP

• BPDN

• LASSO

Greedy (fast)

• OMP

• CoSaMP

• StOMP

Use Bayesian schemesfor sparse recovery

Low computationalcomplexityGood reconstructionaccuracyAcknowledgeGaussianity of noise

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 6/17

Page 8: Narrowband Interference Parameterization for Sparse

Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

Low complexity

minimum meansquared error(MMSE) estimation

Gaussian prior

FBMP

statistics

Simple,Accurate

no statistics

Boostrap,Complex

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 7/17

[2] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,” in Proc. Inform. Theory &Appl. Workshop, 2008, pp. 326-333.

Page 9: Narrowband Interference Parameterization for Sparse

Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

Low complexity

minimum meansquared error(MMSE) estimation

Gaussian prior

FBMP

statistics

Simple,Accurate

no statistics

Boostrap,Complex

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 7/17

[2] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,” in Proc. Inform. Theory &Appl. Workshop, 2008, pp. 326-333.

Page 10: Narrowband Interference Parameterization for Sparse

Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

Low complexity

minimum meansquared error(MMSE) estimation

Gaussian prior

FBMP

statistics

Simple,Accurate

no statistics

Boostrap,Complex

73Challenge: → How to estimate mean, variance, and sparsity rate.

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 7/17

[2] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,” in Proc. Inform. Theory &Appl. Workshop, 2008, pp. 326-333.

Page 11: Narrowband Interference Parameterization for Sparse

Interference Parameterization

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 8/17

1: Transmiter Power2: PathLoss Coefficient3: Location

Page 12: Narrowband Interference Parameterization for Sparse

Interference Parameterization

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 8/17

1: Transmiter Power X2: PathLoss Coefficient X3: Location ?

Page 13: Narrowband Interference Parameterization for Sparse

Interference Parameterization

Homogenous Poisson Point Process

Tractable Analysis [3]

Accurate expressions

Widely used

Applicable to diverse typesof networks

ad-hoc networkscellular networks

Process→ Ψ, Intensity→ λ

Iagg=∑

i∈Ψ

√E si hi

AggregateInterference

TransmittedEnergy

ChannelIncludingPathloss

TransmittedSymbol

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 9/17

[3] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic geometry for modeling, analysis, and design ofmulti-tier and cognitive cellular wireless networks: A survey,” IEEE Commun. Surveys and Tutorials, vol.15, no. 3, pp. 996-1019, 2013.

Page 14: Narrowband Interference Parameterization for Sparse

Interference Parameterization

For interference Iagg =∑

i∈Ψ

√Esihi , Characteristic Function (CF) is

Φ(ω) = exp

−λπγ2

+∞∑q=1

ΥqE[|s|2q

]( |ω|2EΩ

γ2b

)q

Obtain mean and variance by differentiating the CF

µIagg = E [Iagg] = −1Φ′(0) = 0

σ2Iagg = E

[|Iagg|2

]= −2Φ′′(0) = 2πλγ2Υ1E

[|s|2] (

EΩγ2b

)

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 10/17

Page 15: Narrowband Interference Parameterization for Sparse

Interference Parameterization

Gaussian Assumption

Sparsity Rate

ρ dominant elements

N − ρ elements atnoise level

Decide a threshold ξa.

Assume Gaussianityon interference

0 16 32 48 640

0.2

0.4

0.6

0.8

1

Subcarrier Index

Normalized

Interferen

ce

Threshold ξ

s =2ρ

NQ(4√INR−1) + 2

N − ρN

Q(4)

INR: Impulse-to-noise ratio, Q(·) is Q function.

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 11/17

a. We use ξ = 4√σ2z .

Page 16: Narrowband Interference Parameterization for Sparse

Results

Mean and Variance as a function of intensity λ

10−1 100 101−1

−0.5

0

0.5

1

λ

µI a

gg

SimulationAnalysis

10−1 100 1010

1

2

3

4

λ

σ2 I a

gg

SimulationAnalysis

SimulationParameters:

b=2

γ=2m

R=20m

Subcarriers=256

Users=2

Modulation=64QAM

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 12/17

Page 17: Narrowband Interference Parameterization for Sparse

Results

Mean and Variance as a function of pathloss coefficient b

1.5 2 2.5 3 3.5 4−1

−0.5

0

0.5

1

b

µI a

gg

SimulationAnalysis

1.5 2 2.5 3 3.5 4

0

0.5

1

b

σ2 I a

gg

SimulationAnalysis

SimulationParameters:

λ=1

γ=2m

R=20m

Subcarriers=256

Users=2

Modulation=64QAM

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 13/17

Page 18: Narrowband Interference Parameterization for Sparse

Results

Sparsity rate as a function of INR and dominant elements ρ

30 35 40 45 500

0.05

0.1

Impulse-to-Noise Ratio (dB)

Sparsity

SimulationAnalysis

ρ = 10

8 24 40 56 720

0.15

0.3

Dominant elements - ρ

Sparsity

SimulationAnalysis

INR=40dB

SimulationParameters:

ξ = 4√σ2Z

γ=2m

R=20m

Subcarriers=256

Users=2

Modulation=64QAM

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 14/17

Page 19: Narrowband Interference Parameterization for Sparse

Results

BER performance of the proposed scheme

5 10 15 20 25

10−3

10−2

10−1

Eb/N0 (dB)

BER

ImpairedPoor Init.

Poor Init. (Ref) (L = 10)AnalyticalNumericalInterference free

5 10 15 20 25

0.2

0.4

0.6

0.8

1

Eb/N0 (dB)

Normalized

RunTim

e

Poor Init. (Ref) (L = 10)AnalyticalNumericalPoor Init.

Simulation Parameters:Measurements= 25%,SIR=−10dB, ρ=4,Subcarriers=256, Users=2,Modulation=64 QAM

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 15/17

Page 20: Narrowband Interference Parameterization for Sparse

Summary

Interference has a dire impact of SC-FDMA systems

Compressed sensing can be used to mitigate interference

Bayesian compressed sensing has good performance and lowcomplexity

Bayesian schemes require interference parameters

Parameters can be obtained analytically using stochasticgeometry

Analytical parameter estimation reduces computationalcomplexity significantly

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 16/17

Page 21: Narrowband Interference Parameterization for Sparse

Thank you for your Attention!

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 17/17